Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. Qi, Z. Luo and X. Lu, *Green Chem.*, 2019, DOI: 10.1039/C9GC00779B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/green-chem

М
A L
59:2
8::
2015
31/2
13/.
a oi
liud
Coa
de (
ma
onc
Αu
dad
ersi
Jniv
y L
led l
load
luw
Õ.
019
h 2
Jarc
25 N
on
hed
blis
Pu

1	View Article Online DOI: 10.1039/C9GC00779B Modulation of starch nanoparticles surface characteristics
2	for facile construction of recycling Pickering interfacial
3	enzymatic catalysis
4	Liang Qi ¹ , Zhigang Luo ^{1,2,3*} , Xuanxuan Lu ⁴
5	1. School of Food Science and Engineering, South China University of
6	Technology, Guangzhou, 510640, China.
7	2. South China Institute of Collaborative Innovation, Dongguan, 523808, China.
8	3. Overseas Expertise Introduction Center for Discipline Innovation of Food
9	Nutrition and Human Health (111 Center), Guangzhou 510640, China.
10	4.Department of Food Science, Rutgers, The State University of New Jersey, 65
11	Dudley Rd, New Brunswick, New Jersey 08901, USA.
12	
13	
14	
15	
16	*Corresponding author:
17	Zhigang Luo, Tel: +86-20-87113845, Fax: +86-20-87113848. E-mail address:
18	zhgluo@scut.edu.cn

19 Abstract

20	In this work, maize starch (MS) was successively modified via the esterification
21	reaction with acetic anhydride (AA) and phthalic anhydride (PTA). Combined with
22	the gelatinization-precipitation process, the formed starch nanoparticles at AA/PTA
23	ratio of 2 (MS-AP (2)) and 3 (MS-AP (3)) had the similar regular spheres but distinct
24	surface characteristics. In order to enhance the activity of lipase
25	B from <i>Candida antarctica</i> (CALB) in organic solvent, we designed oil-in-water (o/w)
26	and water-in-oil (w/o) Pickering interfacial catalytic system simultaneously by
27	utilizing MS-AP (2) and MS-AP (3) as robust Pickering emulsion stabilizers.
28	Impressively, in the esterification of 1-butanol and vinyl acetate, the specific activity
29	of CALB in the o/w (0.0843U· $\mu L^{-1})$ or w/o (0.0724U· $\mu L^{-1})$ Pickering interfacial
30	catalytic system was much higher than that of free enzymes in the monophasic
31	$(0.0198U \cdot \mu L^{-1})$ and biphasic $(0.0282U \cdot \mu L^{-1})$ system. Meanwhile, after preliminarily
32	elaborating mass transfer discrepancies between o/w and w/o Pickering interfacial
33	catalytic system and calculating their mass transfer resistance, we clarified the effects
34	of the location of two phases on the catalytic capacity of Pickering emulsion.
35	Impressively, both Pickering interfacial catalytic systems exhibited high effectiveness
36	in product separation. It was found that w/o Pickering emulsion enabled the organic

Green Chemistry

View Article Online DOI: 10.1039/C9GC00779E
emulsion achieved the same results after adjusting system temperature. The biobased
nanomaterials and simple protocol, in conjunction with the stability to simultaneously
achieve high catalysis efficiency and excellent recyclability, makes us believe that this
starch nanoparticles-based Pickering interfacial catalytic system is promising for
meeting the requirements of green and sustainable chemistry.
Key words: Starch nanoparticles, Pickering emulsion, interfacial enzymatic catalysis,
recyclable catalysis, green and sustainable chemistry.
Introduction
Enzymes catalyze a broad variety of organic reactions with high chemo-, stereo-,
and regioselectivity under mild conditions ¹ . However, the application of free enzymes
in organic media is often hampered by the fact that, in many cases, enzymes have low
stability and poor recyclability. A simple, gentle, and general way to solve these
problems is to create a microenvironment to maintain the enzyme activity in biphasic
aqueous-organic system ² . In recent years, such researches have advanced in a
promising direction toward the use of nanoparticles as building blocks for the
construction of capsules (often referred to as Pickering emulsions) as enzyme

54 carriers³⁻⁶. The presence of Pickering emulsion droplets in the reaction systems can

View Article Online DOI: 10.1039/C9GC00779B
liquid-solid interfacial area is created. To meet above requirements, it takes
hydrophobic modification of nanoparticle surface to construct water-in-oil (w/o)
Pickering emulsion. Meanwhile, high interfacial activity is necessary for
nanoparticles to be closely packed at the oil-water interface. Moreover, the
biocompatibility of nanoparticles to enzymes as another crucial parameter has to be
considered ⁷ . As a result, elaborately modified synthetic stabilizers, involving hybrid
micelles ^{8, 9} , polymersomes ^{6, 10} and surface functionalized inorganic particles ¹¹⁻¹³ , have
been reported in the Pickering interfacial enzymatic catalysis.
As we know, once the particles are anchored onto the emulsion droplet surface,
they cannot optionally depart from the droplet surface due to a high energy barrier ¹⁴ .
Therefore, the applications of oil-in-water (o/w) Pickering emulsion are hampered in
enzymatic catalysis because existing methods for product separation, such as heating

56	liquid-solid interfacial area is created. To meet above requirements, it takes
57	hydrophobic modification of nanoparticle surface to construct water-in-oil (w/o)
58	Pickering emulsion. Meanwhile, high interfacial activity is necessary for
59	nanoparticles to be closely packed at the oil-water interface. Moreover, the
60	biocompatibility of nanoparticles to enzymes as another crucial parameter has to be
61	considered ⁷ . As a result, elaborately modified synthetic stabilizers, involving hybrid
62	micelles ^{8, 9} , polymersomes ^{6, 10} and surface functionalized inorganic particles ¹¹⁻¹³ , have
63	been reported in the Pickering interfacial enzymatic catalysis.
64	As we know, once the particles are anchored onto the emulsion droplet surface,
65	they cannot optionally depart from the droplet surface due to a high energy barrier ¹⁴ .
66	Therefore, the applications of oil-in-water (o/w) Pickering emulsion are hampered in
67	enzymatic catalysis because existing methods for product separation, such as heating
68	and centrifugation, are bothersome due to enzyme activity loss, high time- and
69	energy-consumption. Inspired by interfacial metal nanoparticles catalysis ¹⁵⁻¹⁷ , we
70	propose developing stimulus-responsive o/w Pickering emulsions is a potential way,
71	because stimulus-responsive demulsification/emulsification cycle or phase inversion
72	provides a good recyclability and a facile separation. To meet this requirement,

Green Chemistry Accepted Manuscript

View Article Online

73	surface charge, wettability and even size that governs the stabilizer performance, are
74	required to be easily tuned by adjusting the surrounding environment stimulation
75	factors ¹⁸ . However, since the transformation of environment stimulation factors is
76	dramatic in these reports, which may not be suitable for preserving the enzyme
77	activity, few stimulus-responsive o/w Pickering emulsions have been reported in
78	interfacial enzyme catalysis until now. Therefore, this limitation urges the
79	development of modified nanoparticles that are sensitive to the environment
80	stimulation factors.
81	In recent years, starch nanoparticles have acquired a reputation as having
82	potential as biobased nanomaterials since they are easily processed, renewable,
83	biocompatible, and nontoxic. ¹⁹ Notably, they have been intensively studied as
84	stabilizers for Pickering emulsions owing to their regular sphere shape and excellent
85	tolerance in both organic and water phase. ^{20, 21} Moreover, the abundant hydroxyls
86	endows starch with a reaction activity, thus esterifying agent, alkyl chains and

87 polymer chains can be easily introduced on the starch chains through 88 hydroxyls-derived reactions.^{22, 23} In this way, it is easy to functionalize the starch 89 nanoparticles to acquire the interfacial activity and structural characteristics as 90 requested.

The starch m	91
surface energy of	92
solubility in organ	93
of unique hydroph	94
packaging industr	95
(PTA) is a prefer	96
with sensitive pro	97
pH values, its cha	98
attached substrates	99
AA and PTA, it	100
nanoparticles and	101
high interfacial act	102
an ha a natartial	102

91	View Article Online DOI: 10.1039/C9GC00779B The starch modification with acetic anhydride (AA) has been reported to reduce
92	surface energy of starch nanocrystals ²⁴ or cellulose nanofibers ²⁵ and shows a good
93	solubility in organic solvents such as acetone, chloroform and ethyl acetate. Because
94	of unique hydrophobicity, acetylated starch nanocrystals are useful in applications in
95	packaging industry and as nano-reinforcements ²⁴ . Meanwhile, phthalic anhydride
96	(PTA) is a preferred esterifying agent, which displays the pH-responsive property
97	with sensitive protonation-deprotonation transition of carboxyl ^{20, 26} . By adjusting the
98	pH values, its charged-uncharged interconversion impacts the surface wettability of
99	attached substrates. Based on this, through the adjustment of substitution degrees of
100	AA and PTA, it is expected to modulate the surface characteristics of starch
101	nanoparticles and achieve the hydrophilic and hydrophobic starch nanoparticles with
102	high interfacial activity simultaneously. Accordingly, hydrophobic starch nanoparticle
103	can be a potential candidate for the interfacial enzymatic catalysis in w/o Pickering
104	emulsion. In the meantime, the presence of PTA gives an opportunity for hydrophilic
105	starch nanoparticles to construct stimulus-responsive o/w Pickering emulsions
106	applying to the interfacial enzymatic catalysis.

107 Besides, it is worth noting that, for the synthesis of starch nanoparticles, the

108 traditional acid hydrolysis is not an option under the ever-growing environmental

Published on 25 March 2019. Downloaded by Universidad Autonoma de Coahuila on 3/31/2019 8:59:27 AM.

109	View Article Online pressure. Delightfully, the process of nanoprecipitation has been investigated as a new
110	procedure for the generation of nanoparticles ^{27, 28} . This process involves the
111	successive addition of a dilute solution of polymer to a nonsolvent, which leads to
112	polymer precipitation at a nanoscale. Benefiting from this, starch possesses a higher
113	chemical activity by liberalizing the molecular chains to expose more active hydroxyl
114	groups, and the usage of large amounts of toxic solvents and external energy sources
115	are avoided, which is in accordance with environment-friendly concept.
116	Herein, through optimizing the rational adjustments of AA and PTA substitution
117	degree and cooperation with the gelatinization-precipitation method, we synthesized
118	two starch nanoparticles with the similar regular spheres but distinct surface
119	characteristics. The structure of starch nanoparticles was clarified using ¹ H nuclear
120	magnetic resonance (1H NMR), the results from X-ray diffraction (XRD) and
121	scanning electron microscopy (SEM) disclosed the change of crystallinity,
122	morphology and size of nanoparticles at different degree of esterification. For
123	enhancing lipase activity in organic solvent, we designed oil-in-water (o/w) and
124	water-in-oil (w/o) Pickering interfacial catalytic system simultaneously. The location
125	of enzymes was directly confirmed by laser scanning confocal microscopy (LSCM)
126	with fluorescent dye labeled lipase. Through comparison experiments with

View Article Online I: 10.1039/C9GC00779B

127	monophasic and biphasic system, the merits of these two Pickering interfacial
128	catalytic systems, such as high catalysis efficiency, facile products separation and
129	enzymes recycling were intensively demonstrated with esterification of 1-butanol and
130	vinyl acetate. Meanwhile, their underlying principles were preliminarily elaborated.
131	To the best of our knowledge, it is the first report on starch nanoparticles participating
132	in the Pickering emulsion for the recyclable interfacial enzymatic catalysis. The
133	excellent performance makes us believe that this system will attract widespread
134	interest from both fundamental and industrial researchers because it unites some key
135	advantages in terms of green and sustainable chemistry.
136	Experimental Section
137	Materials
138	Native maize starch (MS) was provided by Qin Huangdao LiHua Maize
139	Products Co. (Qin Huangdao, China), the moisture content of starch was 12.2% (w/w),
140	weight-average molecular weight was 2.634×107g/mol, number-average molecular
141	weight was 1.29×107g/mol. Acetic anhydride (AA), phthalic anhydride (PTA),
142	dimethylsulfoxide (DMSO), N, N-dimethylaminopyridine (DMAP), pyridine,
143	n-heptane were purchased from Aladdin Chemical Reagent Company (Shanghai,

144 China). 1-butanol, vinyl acetate, agarose (Type VII-A, low gelling temperature),

145 lipase B from Candida sp. expressed in Aspergillus niger (CALB, liquid form),

146 Tris(hydroxymethyl)aminomethane (Tris) and fluorescein isothiocyanate (FITC) were

- 147 purchased from Sigma-Aldrich (Shanghai, China).
- 148Preparation of starch amphiphilic nanoparticles

3 g of maize starch was added into 30 mL of DMSO in a 50 mL conical flask. Then the temperature was raised to 40 °C to initiate gelatinization process. After 15 min, the completely gelatinized starch paste was heated to 80 °C followed by the addition of a certain amount of PTA, 10 mL of pyridine and 0.05 g of DMAP, respectively. This esterification reaction was carried out for 3 h under stirring of 200 rpm. After that, a certain amount of AA was added and the mixture was allowed to react for another 3 h at 80 °C under stirring.

The nanosized granulation process was conducted using an water precipitation process. Specifically, 10 mL of composite starch paste was firstly sucked with a disposable syringe (ID 0.3×8 mm). Then, it was added dropwise into the 200mL of water at 1 mL·min⁻¹ rate. The resulting suspensions were stirred under 600 rpm for 20 min. Finally, the product was obtained after washing/centrifugation (with water for 3 times) and vacuum drying overnight.

162 **Preparation of Pickering emulsion**

View Article Online Typically, 20 mg of hydrophobic nanoparticles were firstly dispersed in 2 mL of 163 164 n-heptane under ultrasonication for 10 min, followed by addition of the water phase 165 with the same volume. The resulting mixture was vigorously stirred using an 166 Ultraturrax T25 homogenizer (IKA, Germany) at a stirring rate of 15,000 rpm for 1 167 min, giving rise to a uniform emulsion composed of a large number of nanoparticle 168 capsules. The formation of Pickering emulsion stabilized by hydrophilic nanoparticles 169 was similar to that of MS-AP (3), except that nanoparticles firstly dispersed in 2 mL 170 of water phase. 171 **Preparation of lipase-loading Pickering emulsion** 172 In a typical experiment, a 40 µL aqueous stock solution of CALB was diluted to 173 2 mL of Tris-HCl buffered saline (10 mM, pH 7.2) and mixed under shaking for 3 174 min. This enzyme buffered saline was taken as the water phase, the other procedures

- 175 followed the same procedures in the preparation of Pickering emulsion as mentioned
- 176 above.

177 Assessment of the Catalytic Performance of Lipase

The catalytic performances of CALB were determined via the transesterification of 1-butanol and vinyl acetate in a heptane medium by three different catalytic systems. For Pickering interfacial system, 2 mL of heptane solution containing 150

	View Article Online
181	mmol·L ⁻¹ 1-butanol and 150 mmol·L ⁻¹ vinyl acetate was taken as the organic phase to
182	form a lipase-loaded Pickering emulsion. For biphasic system, except for the
183	nanoparticles, the other conditions, including substrate concentration, solvent
184	composition, and lipase content, were the same as given before. For monophasic
185	system, 40 μ L aqueous stock solution of CALB was directly added into organic phase
186	with same substrate concentration to initiate the transesterification. All of
187	esterification reactions were carried out with stirring rate of 200 rpm at room
188	temperature. At different time points, A 60 µL aliquot of n-heptane in Pickering
189	interfacial system, biphasic system and monophasic system could be directly
190	extracted. For o/w Pickering interfacial system, after increasing the temperature of
191	system to 40 °C and stirring, the emulsion could be inversed accompanying with
192	organic phase transferring into the upper layer, product could be isolated accordingly.
193	The concentration of the product analyzed via ¹ H NMR ²⁹ . One unit of lipase activity
194	(U) was defined as 1 µmol of product produced within 1 min. The specific activities
195	$(U \cdot \mu L^{-1})$ of lipase were determined under the same condition within 40 min. All
196	reactions were repeated at least three times.
197	Characterization of starch amphiphilic nanoparticles

198 The ¹H NMR spectra were recorded using an AVANCE digital 400 (Brukev,

View Article Online

DOI: 10.1039/C9GC00779B 199 Germany) operating at 400 MHz for ¹H NMR. The ¹H spectra were collected in 128 200 individual scans with a sweep width of 16 ppm and a delay time of 1 s. Prior to ¹H 201 NMR analysis, nanoparticles were dissolved in the deuterium dimethyl sulfoxide 202 (DMSO-d₆) at 40 °C to obtain clear solutions. 203 Morphology observations were performed using a Merlin scanning electron 204 microscope (Zeiss Co., Germany) at an accelerating voltage of 3 kV. The samples 205 were dispersed in the distilled water (0.05 wt) under mechanical agitation of 600 206 rpm for 2 min. One drop of dispersion was carefully placed on a glass slide and dried 207 at room temperature. After that, the samples were coated with Au for conductivity and 208 put under SEM for observations. 209 The average size of starch nanoparticles was determined through statistical 210 analysis of the geometric parameters including the area, perimeter, diameter which 211 were derived from SEM images using Image-pro Plus 6.0^{30} . 212 XRD patterns were obtained using a D/max-IIIA fully automatic XRD 213 instrument (Rigaku, Japan). Diffractograms were collected at 40 kV and 30 mA with

- 214 nickel-filtered Cu K α radiation (λ =1.5405 Å). Powdered sample was scanned from 5
- 215 to $60^{\circ}(2\theta)$ at a scanning rate of 4° ·min⁻¹. Before XRD analysis, starch nanoparticles
- 216 were sealed in a vessel at 75% relative humidity using saturated sodium chloride.

217	Characterization	of Pickering	Emulsion
-----	------------------	--------------	----------

The emulsion droplets were visualized using a MB11 polarizing microscope (Shanghai optical instrument factory, China) equipped with a video camera. Emulsion droplets were placed directly onto a glass slide and captured under 50-400 magnification.

222 The morphology of mircocapsules derived from self-assembly of starch 223 nanoparticles at oil-water interface was measured by SEM. For MS-AP (2) capsules, a 224 few drops of o/w Pickering emulsion were diluted to 10 times with distilled water, 225 then they were added on culture dish and lyophilized. The resulting powders were 226 placed onto a sample stage with an aluminum tape and then coated with Au and put 227 under SEM for observations. For easy characterization of MS-AP (3) capsules, the 228 aqueous core of w/o Pickering emulsion was solidified by addition of agarose (1.5 229 wt% to the water phase) prior to emulsification. Then the jellified Pickering 230 emulsions were lyophilized and imaged by SEM.

N₂ adsorption/desorption isotherm was measured at 77 K using a Flowsorb III
232 2310 Surface Characterization Analyzer (Micromeritics Instrument Co., USA) after
mircocapsules were first degassed at 45 °C overnight. Pore size distribution was
determined using the adsorption branch of N₂ isotherms. Mesopore size distribution

was calculated using the Barrett-Joyner-Halenda method (BJH).

Green Chemistry Accepted Manuscript

View Article Online DOI: 10.1039/C9GC00779B

Published on 25 March 2019. Downloaded by Universidad Autonoma de Coahuila on 3/31/2019 8:59:27 AM.

235

236 Zeta potential measurements of nanoparticles at different pH values were 237 measured using a nano ZS instrument (Malvern Instrument Ltd., UK) equipped with a 238 dip cell. The concentration of nanoparticles was maintained at 0.1 wt % and the 239 experiments were conducted at room temperature. 240 Water contact angles were measured by analyzing the image of each water 241 droplet on the sample films using a DCa40 MICRO system (DATA physics, 242 Germany). Prior to measurement, the samples were pressed into the films. The films 243 were swollen in the solution at certain pH and then oven-dried at 40 °C for 1 h. Water 244 contact angles were obtained by depositing water droplets of a given pH onto the film 245 that had been previously swollen at the same pH. 246 To confirm the location of lipase within Pickering emulsion, the lipase molecules 247 were labeled with fluorescein isothiocyanate (FITC) and then were used for formation 248 of Pickering emulsion by following the same procedure as mentioned before. The 249 resulting lipase-loading emulsion were then directly observed with confocal laser 250 scanning microscopy (CLSM, TCS SPE, Leica, America) with an excitation

wavelength of 488 nm.

252

Far-UV circular dichroism (CD) spectra of lipase solutions were measured on a

253	J-810 CD spectropolarimeter (Jasco Inc., Tokyo, Japan) over a wavelength range of
254	200-280 nm with a resolution of 0.5 nm. A quartz cell with 1 mm path length was
255	used for CD measurements. Spectra were recorded three times using a scanning speed
256	of 50 nm min ⁻¹ with a bandwidth of 1.5 nm.
257	Results and discussion
258	Synthesis and characterization of starch nanoparticles
259	The synthesis of starch nanoparticles is illustrated in Fig.1. The gelatinization
260	process was firstly performed so as to endow the starch with a high chemical activity
261	by liberalizing the molecular chains to expose more active hydroxyl groups. In this
262	condition, AA and PTA directly participated in the esterification reaction with starch
263	molecules catalyzed by the DMAP and pyridine. Subsequently, the modified starch
264	paste went through the granulation process by water precipitation to obtain the final
265	nanoparticles. Thus, the whole process was performed in an environment that was
266	simple and practical to implement.
267	It is well established that the interfacial activity of nanoparticles is mainly
268	dictated by their surface characteristics. To screen out an optimal starch nanoparticle,
269	we have prepared a set of samples by adjusting additive amount of AA and PTA.
270	FT-IR spectra of samples are shown in Fig.2A. By contrast with MS, the formed

271	View Article Online DOI: 10.1039/C9GC00779B starch products with different substitutions showed the carbonyl antisymmetry
272	deformation vibration at 1751 cm ⁻¹ , which was a strong ester signal. Besides it
273	increased in intensity with the rise of substitution degree. At the same time, new
274	absorption bands at 1580-1600, 1372, and 1239 cm ⁻¹ could be assigned to the
275	stretching vibration of benzene rings, symmetrical deformation vibration of methyls
276	and stretch vibration of carbonyls, respectively. The appearance of these new
277	absorptions confirmed the combination of AA and PTA with starch molecules during
278	the esterification process.
279	¹ H NMR spectra (Fig.2B) gave a clearer composition picture of obtained
280	products. Peaks arising from the anhydroglucose in starch, AA and PTA were
281	assigned according to the literatures ^{20, 31} . The area of OH-2,3,6 and H-1 protons for
282	anhydroglucose, H-1'proton for AA and H-1" for PTA are calculated in Table 1. On

283 the basis of the method by Chi et al. 31 , we estimated the degree of substitution for AA

 $^{284 \}quad \text{ and PTA (} DS_{AA} \text{ and } DS_{PTA}\text{)}.$

285	From the relatively high values of DS_{AA} in different samples, it suggested that
286	AA as a highly reactive micromolecular agent could steadily graft onto starch chains
287	through esterification. In contrast, due to the steric effects of benzene ring, PTA had a
288	limited reactivity with starch chains by observing its much lower degree of

	View Article Online DOI: 10.1039/C9GC00779B
289	substitution. Meanwhile, when the additive amount of AA kept constant and PTA
290	increased from 0 to 4.5, a clear decrease was observed for DS_{AA} (2.2 to 0.9). This
291	inferred although AA had a prior reactivity to hydroxyls of anhydroglucose, it still
292	suffered a competition with PTA in the reaction with active sites of starch chains. As
293	a result, it clearly confirmed that chemical composition of starch-based nanoparticles
294	could be easily altered by adjusting additive amount of each ingredient.
295	In the meantime, the reactive sites were also specified from area of protons (S) in
296	$^1\mathrm{H}$ NMR spectra. As expectedly, a decrease was found in the $\mathrm{S}_{\mathrm{OH-2,3}}$ of MS-A and
297	MS-P, which meant hydroxyls in C-2 and 3 of anhydroglucose readily participated in
298	the esterification under the employed conditions. In the meantime, the new signals at
299	4.75, 5.25 and 4.25 ppm corresponding H-2 and H-3 and H-6 signals of
300	anhydroglucose unit in the sugar ester structure are detected. Besides, these signals
301	slightly varied at different of DS_{AA} and DS_{PTA} . However, there was a great
302	discrepancy in the $S_{\rm OH\text{-}6}$ between MS-A and MS-P, in which $S_{\rm OH\text{-}6}$ of MS-A was
303	decreased to 0 whereas S_{OH-6} of MS-P barely changed. This disclosed the hydroxyls in
304	C-6 were only involved in the AA esterification, showing the hydroxyl heterogeneity
305	of anhydroglucose. The similar phenomenon was also verified by other starch
306	esterification and copolymerzation ³² . Given the above, possible structures of MS-AP 17

View Article Online DOI: 10.1039/C9GC00779B

307 are listed in Fig.1.

Published on 25 March 2019. Downloaded by Universidad Autonoma de Coahuila on 3/31/2019 8:59:27 AM

308 In this study, starch nanoparticles were prepared by gelatinization-precipitation 309 process, in which the gelatinization contributed to the regularity destruction of native 310 starch granules. Therefore, the obtained products were mainly in amorphous forms, as 311 proved by mostly diffuse peaks in the corresponding XRD diffraction spectrum 312 (Fig.S1). Furthermore, since the change of composition directly affected the 313 molecular weight, polarity, and charge, etc. of dissolved polymer, there would be 314 differences in the granulation process for different samples in terms of formation of 315 aggregations in the supersaturation region and subsequent particle growth process 316 within a poor solvent³³. From Figure.3A, nano-granulation of native starch could not 317 be achieved by only finding a block of deformed sedimentations in MS. This was 318 because hydroxyl-rich unmodified starch chains (water contact angle of 41° for MS) 319 possessed a similar polarity to water, which had a difficulty in entangling with each 320 other in the solvent conversion from DMSO to water. In stark contrast, MS-A 321 exhibited a regular spherical nanoparticle with average size of 421nm (Figure.3B and 322 Figure S2). We attributed this improvement to the "bridging action" brought by 323 introduced acetyls. Since the carbonyls could form hydrogen bonds with hydroxyls²⁴, 324 acetyls played a role of "bridge" that facilitated to connect other starch chains, thus

Green Chemistry

325	more cross-linking occurred between modified starch chains in DMSO. In this
326	condition, exposed methyls played an important role in generating a hydrophobic
327	surface (water contact angle of 112° for MS-A), which not only facilitated the
328	formation of aggregations during the solvent conversion, but also avoided the collapse
329	and adhesion of obtained nanoparticles in particle growth process.
330	Moreover, when PTA was introduced to the synthesis of starch nanoparticles,
331	residual carboxyls of phthalic ester were of great importance in adjusting the charge
332	of modified starch chains. From zeta potential of MS-APs (Table.S1), it was clear
333	that dissociated carboxyls increased the negative charge of modified starch chains in
334	employed condition. This enhanced electrostatic repulsion between modified starch
335	chains possibly induced more localized aggregations formed by a smaller number of
336	modified starch chains in the supersaturation region, thus resulting in a limited size of
337	formed particles (Figure.3C-E). With rational DS_{AA} and DS_{PTA} , amphipathic MS-AP
338	(2) and (3) achieved ideal wettablities (water contact angle near to 90°) and presented
339	regular spheres with average size of 197 and 185nm, respectively. However, for
340	MS-AP (1), higher DS_{PTA} induced more hydrophilicity of surface, thus particles
341	adhered to each other to form clusters in the end. With only PTA grafting onto starch
342	chains, MS-P (Figure.3F) exhibited highest zeta potential (-26.93mV) and lowest

View Article Online DQI: 10.1039/C9GC00779B

344 due to the increased electrostatic repulsion and excessive hydrophilicity.

345 Characterization of o/w and w/o Pickering emulsions

346 Before the formation of emulsion, we firstly observed the dispersibility of these 347 samples with different chemical characteristics in water/n-heptane solution. As shown 348 in Fig.4, hydroxyl-rich MS only dispersed in the aqueous phase, while MS-A after 349 hydrophobic modification dispersed well in n-heptane. For MS-AP (3), they initially 350 dispersed in organic phase, but transferred to the n-heptane-water interface within 10 351 min, suggesting their excellent amphiphilicity. Interestingly, a completely opposite 352 phenomenon was observed for MS-AP (2), where nanoparticles firstly dispersed well 353 in aqueous phase and subsequently transferred to the interface. When it came to 354 MS-AP (1) and MS-P, both samples steadily dispersed in the aqueous phase. However, 355 it was worth noting that dispersion of MS-P in the aqueous phase exhibited more 356 transparent because starch was mainly present in the form of dissolved molecular 357 chain.

358 Subsequently, we applied these samples to form Pickering emulsion and then 359 investigated the status of the emulsion. In specific experiment, based on the surface 360 characteristics, 1 wt% of sample was firstly dispersed in n-heptane or water, followed

361	View Article Online DOI: 10.1039/C9GC00779B by addition of the other phase with the same volume. After homogenization (12000
362	rpm, 60 s), the resulting emulsion was allowed to stand at room temperature for 10
363	min without any disturbance. The emulsion type was determined by the conductivity
364	analysis. As shown in Fig.5, a demulsification was observed as soon as the emulsion
365	was formed in the emulsions stabilized by MS, MS-AP (1) and MS-P, which
366	confirmed these samples were unable to stabilize the emulsion mainly due to their
367	deformed morphology, non-uniform size and high hydrophilicity. Furthermore, the
368	use of hydrophobic MS-A as stabilizers led to the formation of w/o emulsion, but it
369	had low stability, as evidenced by the obvious increase in droplet size after standing
370	for 10 min. Noteworthily, because of regular morphology and excellent
371	amphiphilicity, MS-AP (2) and MS-AP (3) both had better emulsifying capacities,
372	leading to the long-lasting stable emulsion layers. The only difference was that, for
373	MS-AP (3) stabilized w/o Pickering emulsion, since the emulsion droplets with water
374	core possessed a higher density compared to continuous phase n-heptane, the
375	emulsion layer would sink to the bottom. In contrast, because of oil core, droplets in
376	o/w Pickering emulsion stabilized by MS-AP (2) possessed a lower density compared
377	to continuous phase water, the emulsion layer would float on the top.
378	Fig. 6A, D shows microscopic images of the droplets acquired from the emulsion

Fig. 6A, D shows microscopic images of the droplets acquired from the emulsion

Downloaded by Universidad Autonoma de Coahuila on 3/31/2019 8:59:27 AM.	
March 2019.	
shed on 25 N	
Publi	

380	a similar diameter range of 5-30 $\mu\text{m},$ which was related to the similar size of
381	stabilizers. However, in contrast to MS-AP (2) stabilized o/w emulsion that possessed
382	a uniform distribution of intact droplets, MS-AP (3) stabilized w/o emulsion had an
383	unsatisfactory status, in which the macroscopic agglomerations of stabilizers were
384	dispersed in the continuous phase and adhered to the surface of droplets. Scanning
385	electron microscopy (SEM) imaging confirmed this discrepancy. It clearly revealed
386	that the droplets of o/w Pickering emulsion stabilized by MS-AP (2) were regular
387	spheres (Fig.6E, F). The shell of the intact sphere was firm and remained unbroken
388	even in the freeze-drying process. After the formed spheres were greatly grinded with
389	a mortar, the broken spheres revealed the hollow interior, confirming the
390	microcapsule structures (Fig.6J, K). Moreover, their shells were thin and consisted of
391	one or two layers of starch-based nanoparticles (Fig.6L). In contrast, although most
392	droplets in Pickering emulsion stabilized by MS-AP (3) presented intact hollow
393	capsules as well (Fig.6B, C, G, H), excessive particles adhering to the surface greatly
394	increased the thickness of the shell (Fig.6I). This phenomenon was mainly due to the
395	discrepancy in dispersibility of starch nanoparticles in different solvent. In this study,
396	hydrophilic MS-AP (2) easily achieved regular arrangement when immersed in the 22

397	View Article Online DOI: 10.1039/C9GC00779B water phase. The rational electrostatic repulsion brought by surface charges ensured
398	the stabilization of MS-AP (2) dispersion. Its corresponding polydispersity index (PDI)
399	was 0.125 (calculated by size distribution), which suggested the monodispersity of
400	particles. In contrast, although MS-AP (3) had a better wettability to organic phase
401	with higher DS_{AA} , the residual hydroxyls and carboxyls made inevitable repulsions
402	with n-heptane molecules, which induced MS-AP (3) to form the agglomeration in
403	organic phase. Because of this, there were easy particle sedimentations on the surface
404	of droplets in the formation of Pickering emulsion. The similar phenomenon was also
405	found in our previous report ³⁴ .
406	Biocatalytic performances of Pickering interfacial catalytic systems
407	For construction of interfacial enzymatic catalytic system, we introduced CALB
408	as the target enzyme. Then Tris-HCl buffered saline (10 mM, pH 7.2) with CALB
409	was taken as the water phase of Pickering emulsion. Since the continuous phase and
410	dispersed phase were reversed for Pickering emulsion stabilized by MS-AP (2) and
411	MS-AP (3), CALB should be distributed inside and outside the shell of capsules,
412	respectively. To confirm this assumption, CALB molecules were firstly labeled with
413	FITC and then used for the formation of Pickering emulsion by following the same
414	procedure as mentioned before. As shown in Fig.7A, B, CLSM imaging clearly

415	revealed that the emulsion stabilized by MS-AP (3) was composed of green capsules
416	and thus indicated that the interior of capsules was loaded with FITC-labeled lipase
417	molecules. But for MS-AP (2), the green fluorescent was observed around the blank
418	capsules, which confirmed the lipase molecules dispersed outside the capsules
419	(Fig.7C, D). Fig.7E, F illustrated the forming process of these two interfacial
420	enzymatic catalytic systems.
421	Furthermore, to determine whether the lipase was destroyed during the
422	emulsification process, we used CD spectra to identify the secondary structure of the
423	free lipase before emulsification and after release from the Pickering emulsions via
424	centrifugation (10000rpm, 5min). As shown in Fig.S3, the CD spectra showed little
425	changes in terms of secondary structure, suggesting that the emulsification process
426	insignificantly impacted the enzyme.

427 The biocatalytic performances of these two CALB loaded Pickering interfacial 428 catalytic systems were then investigated by transesterification of 1-butanol and vinyl 429 acetate. To confirm their superiorities, two other catalytic systems, biphasic and 430 monophasic enzymatic reactions containing same amount of free CALB, were carried 431 out as negative controls. As shown in Fig.8A, the conversion rate of the reaction in 432 o/w Pickering interfacial catalytic system reached 100% within 8 h. In the meantime,

433	View Article Online 92% conversion was observed for w/o Pickering interfacial catalytic system. In stark
434	contrast, a significant reaction inhibition was observed for biphasic and monophasic
435	catalytic system, where only 60% and 32% conversion rate were achieved at the same
436	time. For directly comparing the catalytic activity of enzyme, the specific activity of
437	CALB for each system was calculated according to the conversion rate obtained
438	within 40 min. As shown in Fig.8B, free lipase dissolved in n-heptane only had a
439	specific activity of $0.0198U \cdot \mu L^{-1}$, which clearly indicated that long-term exposure of
440	free enzymes to an organic solvent caused reduced enzyme activity. Comparatively,
441	the increased specific activity (0.0282U $\cdot \mu L^{\text{-1}})$ in the water/n-heptane biphasic system
442	suggested that enzymes typically preferred an aqueous environment, which protected
443	them effectively from the organic media. However, inefficient mass transfer between
444	two phases resulted in the low conversion rate even after a long reaction time.
445	Delightfully, the formation of Pickering emulsion significantly improved the catalytic
446	activity of CALB by observing higher specific activities of $0.0724 U \cdot \mu L^{\text{-1}}$ and
447	$0.0843 U \cdot \mu L^{\text{-1}}$ for w/o and o/w Pickering interfacial catalytic system, respectively. In
448	accordance with previous report, the higher catalytic activity could be attributed to the
449	nanoparticles-assembled capsules, which not only functioned as an idea screen for
450	preserving enzyme activity in organic solvent, but also provided increased interfacial

451	areas that improved mass transfer and accessibility of enzyme molecules. More
452	importantly, by comparing specific activities of CALB between o/w and w/o
453	Pickering interfacial catalytic system, we proposed that the location of two phases in
454	Pickering emulsion also played a key role in the catalytic capacity.
455	To give a deeper insight of this proposal, the whole reaction processes for
456	transesterification of 1-butanol and vinyl acetate in o/w and w/o Pickering interfacial
457	catalytic system are illustrated in Fig.9. Given the same phases (water and organic
458	phases) and elements (substrates, enzymes and stabilizers), the reaction processes in
459	both two systems mainly composed of five steps: (1) enzymes dissolved in the water
460	phase and substrates dissolved in the organic phase transferred to the emulsion droplet
461	surface simultaneously, (2) enzymes and substrates both accessed to the
462	n-heptane-water interface, (3) the catalytic reaction took place on the interface, (4)
463	after the end of reaction, products and enzymes departed from the interface, (5)
464	products entered the organic phase and enzymes entered the water phase, respectively.
465	Clearly, step (1) and (5) mainly involved mass transfer in the phase, whereas step (2)
466	and (4) were closely related to the mass transfer on the interface.
467	As described in Fig.9A, the continuous phase of the o/w Pickering emulsion
468	served as an avenue for enzyme transfer. Because of good water solubility, enzymes

Green Chemistry

469	could be uniformly distributed around the droplets in the water phase. Doi: 10.1039/C9GC00779B
470	dispersed oil droplets as microreactors efficiently confined substrates in tight spaces.
471	The resulting decreased transfer distance in organic phase was beneficial for
472	substrates to contact with enzymes distributed on the interface and thus resulted in a
473	higher specific activity. In stark contrast, the continuous phase of the w/o Pickering
474	emulsion was n-heptane (Fig.9B), so that it served as an avenue for substrates
475	transport. Given that enzymes were uniformly distributed within the droplets, thus
476	enzymatic reaction was determined by the transfer of substrates in bulk continuous
477	phase. Since transfer distance outside droplets was much larger, it was reasonable that
478	specific activity of CALB in w/o Pickering emulsion was relatively low.
479	In view of increasing stirring rate could enhance the mass transfer in the phase,
480	we compared the catalysis efficiency of these two systems under different stirring
481	input powers in Fig.10A (a larger stirring input power corresponds to a higher stirring
482	rate; the relationships were reflected in Table.S2). For MS-AP (2) stabilized o/w
483	Pickering interfacial catalytic system, specific activity of CALB slightly increased
484	with increasing stirring input power and then leveled off after the stirring input power
485	exceeded 12.5 W. The maximum specific activity for transesterification reached
486	$0.0868U\cdot\mu L^{-1}$, which was only 4.8% higher than original value. This limited increase

27

487	clearly confirmed a higher stirring rate had little impact on the catalysis efficiency of
488	o/w Pickering interfacial catalytic system, which was due to the short transfer distance
489	of substrates brought by droplets that had already promoted the interfacial reaction as
490	much as possible. When it came to MS-AP (3) stabilized w/o Pickering interfacial
491	catalytic system, specific activity of CALB underwent a sharp increase with
492	increasing stirring input power. Notably, its maximum catalysis efficiency could reach
493	$0.0853U\cdot\mu L^{-1}$ after the stirring input power exceeding 22.5 W, which was close to o/w
494	emulsion system. As expectedly, elevating stirring input power was more effective in
495	improving the catalysis efficiency of w/o Pickering interfacial catalytic system by
496	accelerating the transfer of substrates in bulk continuous phase. The similar results
497	were also reported by Huo ³⁵ in the Pt-catalyzed interfacial reaction.
498	As mentioned above, the shell of hollow microcapsules was composed by the
499	layers of starch nanoparticles, whose status was closely related to the mass transfer on
500	the interface. For the o/w Pickering emulsion stabilized by MS-AP (2), self-assembled
501	starch nanoparticles at the n-heptane-water interface yielded a stable shell with one or
502	two nanoparticle thickness. Pore-size-distribution curves were plotted based on the
503	nitrogen adsorption-desorption isotherms using the BJH method (Fig.S4). The result
504	revealed microcapsules formed by MS-AP (2) had a board pore distribution ranging 28

Green Chemistry

505	View Article Online DOI: 10.1039/C9GC00779B from 3 nm to 120nm. (Fig.10B). This confirmed that, in contrast to the uniform
506	distribution of inorganic particles at the oil-water interface, the starch nanoparticles
507	presented an irregular arrangement. Pores with size of less than 10 nm likely arose
508	from the interspaces between the starch nanoparticles closely arranged at the oil-water
509	interface. In the meantime, pores with larger size were mainly due to the gaps
510	between the layers of starch nanoparticles. As the hydrate diameters of the substrate
511	and the product molecules were about 0.6-0.8 nm (calculated by Material Studio
512	software, Fig.S5) and CALB had dimensions of $3 \times 4 \times 5$ nm ³⁶ , it could be deduced that
513	the shell of the microcapsules could allow the free diffusion of enzymes, substrates
514	and products. When it came to microcapsules formed by MS-AP (3), the data showed
515	an increase in the pore size of $5\sim10$ nm whereas decrease in the pore size of $10\sim100$
516	nm. This result indicated that excessive adhesion of starch nanoparticles to the surface
517	of droplets brought about more serious agglomeration, which resulted in not only
518	closer arrangement between MS-AP (3) at the oil-water interface, but also more
519	compressed space in the multilayer of starch nanoparticles(Fig.10B).
520	To quantificationally clarify the discrepancy in mass transfer on the interface
521	between these two systems, we designed a pure Pickering emulsion by tripling the
500	

522 concentration of nanoparticles prior to emulsification (**Fig.11**), in which the emulsion

AM.
:59:27
2019 8
1 3/31/.
nuila oi
le Coal
noma c
d Auto
versida
oy Univ
oaded l
Downl
2019.
March
l on 25
blishe
2

523	View Article Online DOI: 10.1039/C9GC00779B layer would not sink to the bottom or float on the top. In this condition, droplets with
524	dense and uniform distribution in the w/o Pickering emulsion confined the majority of
525	mass transfer to the local interfacial area instead of bulk continuous phase. Meanwhile,
526	decreased size of droplets in the o/w Pickering emulsion also contributed to more
527	mass transfer on the interface, as similar as possible to the situation in w/o Pickering
528	emulsion. Subsequently, we determined the enzymatic Michaelis-Menten kinetics of
529	CALB with respect to substrates between these two systems (Fig.S6). It was found
530	that the CALB in o/w emulsion showed $K_{\rm m}$ value of 464 mM and $v_{\rm max}$ value of 17.54
531	mM·min ⁻¹ , whereas the K_m and v_{max} of CALB in w/o emulsion was 547 mM and 8.77
532	mM·min ⁻¹ , respectively. A lower K_m and higher v_{max} indeed confirmed o/w emulsion
533	exhibited a higher affinity of CALB toward substrates on the interface, which agreed
534	well with its shell structure with favorable mass transfer channels.
535	Finally, the apparent activation energy estimation was used to analyze the mass
536	transfer resistance of both systems ³⁷ . Fig.S7A, B shows the kinetics plots of
537	transesterification in these two systems at different reaction temperatures. Clearly, the
538	w/o Pickering interfacial catalytic system was more temperature sensitive than that of
539	the o/w Pickering interfacial catalytic system. Based on these kinetics plots, we could
540	estimate the apparent reaction rate constants of these two systems. As shown in $_{30}$

556

541	View Article Online DOI: 10.1039/C9GC00779B
542	both linear over the investigated temperature range, which suggested that the
543	temperature effects on the apparent reaction rate constant followed the Arrhenius
544	equation. Based on the Arrhenius equation, the apparent activation energies of the o/w
545	and w/o Pickering interfacial catalytic system were estimated to be 19.8 and 26.9
546	kJ·mol-1, respectively. These results confirmed that the o/w Pickering interfacial
547	catalytic system had a lower mass transfer resistance in comparison with w/o system.
548	Recycling and Applicability
549	Benefiting from organic phase located outside the shell of capsule, MS-AP (3)
550	stabilized w/o Pickering interfacial catalytic system allowed us to effectively recycle
551	the reaction (Fig.12A). At the end of each reaction cycle, the emulsion layer and
552	excess organic phase were automatically separated into two layers with a clear
553	boundary. When organic phase was removed through a simple decantation, the
554	residual emulsion layer could be directly used in the next batch. After adding fresh
555	n-heptane, a new interfacial enzymatic system was formed without the need for

further emulsification. The emulsion droplet morphology and size were maintained

557 during the course of consecutive reaction cycles (Fig.S8). To our delight, this MS-AP

558 (3) stabilized w/o Pickering interfacial catalytic system was highly recyclable, which

View Article Online DOI: 10,1039/C9GC00779B 559 was highlighted by least 10 reaction cycles (Fig.12B). Given that the secondary 560 structure of enzyme has been proved to be intact in the emulsion layer, the slight 561 reduction of conversion rate was mainly due to enzyme leakage during the mixing of 562 two phases. Although the yields of the first reaction cycle was about 60.7%, from the 563 second reaction cycle onward the yields increased up to 93–99%. This high 564 conversion and significantly simplified process justified the effectiveness of MS-AP 565 (3) stabilized w/o Pickering interfacial catalytic system in product separation and 566 enzyme recycling. 567 However, the recycling of reaction was not easy to achieve in the MS-AP (2) 568 stabilized o/w Pickering interfacial catalytic system. It is well documented that 569 particle-stabilized emulsion has extremely high stability because a high energy barrier 570 confines the nanoparticles at the interface of droplets. As a result, organic phase 571 within the capsules could not be separated out easily. Inspired by Yang³⁸, the 572 emulsion-inversion might provide a feasible way of transferring organic phase 573 because it was not accompanied with detachment of solid particles from the oil-water 574 interface. Given the pH-responsive surface characteristics of MS-AP (2) brought by 575 phthalic ester, we attempted to achieve the emulsion-inversion by adjusting the pH of

576 system. However, it was worth mentioning that frequent pH adjustment by directly

577	adding acids and bases was not an ideal process for recycling enzymatic catalysis.
578	This was because it took much more acids and bases to break the buffer system prior
579	to changing pH, the resulting excessive salts inevitably deteriorated the
580	pH-responsiveness of emulsion ³⁴ . Moreover, enzyme activity was vulnerable to the
581	environment due to the lack of buffer protection.
582	Since the pH of Tris-HCl buffer was temperature-responsive ^{39, 40} , it reminded us
583	to control the pH of MS-AP (2) stabilized o/w Pickering interfacial catalytic system
584	by adjusting temperature. Impressively, when the temperature of system was elevated
585	to 45°C, the corresponding pH of water phase was decreased to 6.4 (no damage to the
586	structure of the enzyme, Fig.S9). After emulsification process, MS-AP (2) transferred
587	to the bottom layer to form w/o emulsion. More interestingly, if cooling the system to
588	room temperature, the pH was back to 7.2, accordingly. Then MS-AP (2) again
589	transferred back to the upper layer to form o/w emulsion after emulsification
590	(Fig.13A). Therefore, a facile recyclable procedure for MS-AP (2) stabilized o/w
591	Pickering emulsion was achieved: (1) lowered pH at high temperature to induce w/o
592	emulsion, organic phase with products was removed. (2) supplemented the fresh
593	organic phase and elevated pH by decreasing temperature to regain o/w emulsion for
594	recycling the reaction (Fig.13B). However, the repeated use of the emulsification

595	process for recycling reaction would induce more serious phase lost, capsule breakage
596	and deformation (Fig.S10). Therefore, a less yield and conversion rate were obtained
597	in each cycle of o/w Pickering emulsion in comparison to w/o Pickering emulsion
598	(Fig.13C).
599	For clarifying the role of MS-AP (2) in the regulation of emulsion-inversion, its
600	surface characteristics were analyzed at different pH. As shown in Fig.13D, under the
601	weak acid conditions (pH 6.4), the zeta potential of MS-AP (2) was measured to be
602	-13.4 mV. As the pH value slightly increased, the zeta potential increased owing to
603	the gradual deprotonation of carboxyls. When pH value reached 10, the zeta potential
604	became -22.1 mV, suggesting a nearly full deprotonation of the carboxyls. The
605	carboxyls deprotonation at the high pH values made the nanoparticles surface
606	hydrophilic owing to it bearing charges, whereas the protonation of carboxyls at low
607	pH values rendered the surface hydrophobic ³⁸ , which endowed MS-AP(2) with a
608	better wettabity to organic phase. This pH-triggered hydrophilicity/hydrophobicity
609	switching was confirmed by water contact angle measurements (Fig.13D). The water
610	contact angle of fresh MS-AP (2) (point a) was 84°, whereas the water contact angle
611	of MS-AP (2) treated with an acidic aqueous solution (pH 6.4, point b) increased to
612	92°. When the protonated MS-AP (2) was further treated with a basic solution (pH 7.8,

613	point c).	its water	contact	angle restored	the value ((82°)	
						(-)	-

614	Furthermore, to check the applicability of these two systems, we conducted
615	transesterification of other substrates with a regular carbon chain growth. Table.2 lists
616	the results of transesterification in the first and second reaction cycles. For substrates
617	with shorter carbon chains(C \leqslant 8), the o/w and w/o Pickering interfacial catalytic
618	system were both effective in the transesterification, achieving 100% conversion rate
619	within 20 h. At the end of the first reaction cycle, the yields of 57-65% was directly
620	obtained through simple phase separation. The yields increased up to 88-96% from
621	the second reaction cycle onwards. For substrates with longer carbon chains(C>8),
622	substrate concentration was reduced to 60 mmol/L to ensure complete solubility in the
623	reaction solvent. In this condition, 83-90% conversion rate was achieved in the o/w
624	Pickering interfacial catalytic system, whereas 76-82% conversion rate in w/o system.
625	These results suggested that the both two systems had a high flexibility in tolerating
626	various substrates.

627 Conclusion

In summary, we have prepared amphiphilic starch nanoparticles by the grafting
of AA and PTA onto maize starch, followed by the gelatinization-precipitation
process. Then they were employed to construct Pickering interfacial catalytic system

<u>.</u> :
AN
27
59:
8
19
20
31
3
IO
iila
hu
ő
le (
a c
ШO
ion
₹ut
/ pi
idε
ers
Dİ.V
5
by
led
oac
ĮĽ.
Ň
Ξ.
119
5
rch
Ma
51
C L
оp
she
blis
Pul
_

631	for enhancing enzyme activity in organic solvent. Due to the distinct surface
632	characteristics of MS-AP (2) and MS-AP (3), we succeeded to design o/w and w/o
633	Pickering interfacial catalytic system at the same time. When CALB was chosen as a
634	model enzyme and esterification of 1-butanol and vinyl acetate as catalytic reaction,
635	these two Pickering interfacial catalytic systems both exhibited significantly enhanced
636	catalysis efficiency in comparison with monophasic and biphasic system. By contrast,
637	a higher catalysis efficiency was achieved in o/w Pickering interfacial catalytic
638	system because of less substrate transfer distance in phase and higher enzyme affinity
639	on the interface. Impressively, the products could be isolated from both Pickering
640	interfacial catalytic systems and their high effectiveness was highlighted by at least 10
641	reaction cycles. By this successive products separation and enzymes recycling system,
642	the overall efficiency of an enzymatic process might be significantly improved and
643	the work-up method might be simplified. The amphiphilic starch nanoparticles that
644	participate in the facile construction of recycling Pickering interfacial enzymatic
645	catalysis will attract widespread interest because it is in accordance with the concept
646	of green and sustainable chemistry.

647 Acknowledgements

648 This research was supported by the National Natural Science Foundation of Chin

649	a (21878106 and 21576098), Fundamental Research Funds for the Central Universitie
650	s, SCUT (2018ZK08), National International Science and Technology Cooperation B
651	ase for Tropical Health Food (2017D01005), 111 Project (B17018), the Key Project o
652	f Science and Technology of Guangdong Province (2018A050506016,2017B0909010
653	02).
654	Reference
655	1. R. A. Sheldon and S. van Pelt, Chemical Society reviews, 2013, 42, 6223-6235.
656	2. M. Hartmann and X. Kostrov, <i>Chemical Society reviews</i> , 2013, 42 , 6277-6289.
657	3. J. Liu, G. Lan, J. Peng, Y. Li, C. Li and Q. Yang, Chemical communications, 2013, 49,
658	9558-9560.
659	4. Z. Wang, M. C. van Oers, F. P. Rutjes and J. C. van Hest, Angewandte Chemie, 2012, 51,
660	10746-10750.
661	5. Z. Sun, U. Glebe, H. Charan, A. Böker and C. Wu, Angewandte Chemie, 2018, 130,
662	14006-14010.
663	6. X. Yang, Y. Wang, R. Bai, H. Ma, W. Wang, H. Sun, Y. Dong, F. Qu, Q. Tang and B. Binks,
664	Green Chemistry, 2019.
665	7. F. Rudroff, M. D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding and U. T. Bornscheuer,
666	Nature Catalysis, 2018, 1, 12.
667	8. Z. Chen, L. Zhou, W. Bing, Z. Zhang, Z. Li, J. Ren and X. Qu, Journal of the American
668	<i>Chemical Society</i> , 2014, 136 , 7498-7504.
009 670	9. J. Shi, X. Wang, W. Zhang, Z. Jiang, Y. Liang, Y. Zhu and C. Zhang, <i>Advanced Functional</i>
671	Materials, 2013, 23, 1450-1458.
672	10. LH. Xue, CY. Ale, SX. Meng, KX. Bai, X. Yang, Y. Wang, S. Wang, B. P. Binks, T.
673	Guo and T. Meng, ACS <i>Macro Leavers</i> , 2017, 0 , 079-085.
674	11. F. Cuomo, A. Cegne, A. De Leonardis and F. Lopez, <i>Calalysis</i> , 2019, 9, 1.
675	12. 1. Chen, Z. El, II. wang, T. Fel, T. Shi and J. wang, Langmun . the ACS journal of
676	13 I Peng A Feng S Liu M Huo T Fang K Wang V Wei V Wang and I Vuon ACS
677	annlied materials & interfaces 2016 8 29203-29207
011	<i>appica materials & interfaces, 2010, 0, 27203-27201.</i>
	37

14. B. Binks and S. Lumsdon, <i>Langmuir : the ACS journal of surfaces and colloids</i> , 2001,1179/C9GC00779B 4540-4547.
15. Z. Zhai, Q. Wu, J. Li, B. Zhou, J. Shen, Z. H. Farooqi and W. Wu, Journal of Catalysis, 2019,
369 , 462-468.
16. Z. Fang, D. Yang, Y. Gao and H. Li, Colloid and Polymer Science, 2015, 293, 1505-1513.
17. WJ. Zhou, L. Fang, Z. Fan, B. n. Albela, L. Bonneviot, F. De Campo, M. Pera-Titus and
JM. Clacens, Journal of the American Chemical Society, 2014, 136, 4869-4872.
18. J. Tang, P. J. Quinlan and K. C. Tam, Soft matter, 2015, 11, 3512-3529.
19. C. Cai, B. Wei, Z. Jin and Y. Tian, Acs Sustainable Chemistry & Engineering, 2017, 5.
20. Y. Tan, K. Xu, C. Liu, Y. Li, C. Lu and P. Wang, Carbohydrate Polymers, 2012, 88,
1358-1363.
21. S. B. Haaj, W. Thielemans, A. Magnin and S. Boufi, Acs Applied Materials & Interfaces,
2014, 6, 8263.
22. Y. Habibi and A. Dufresne, Biomacromolecules, 2008, 9, 1974-1980.
23. H. Namazi and A. Dadkhah, Carbohydrate Polymers, 2010, 79, 731-737.
24. Y. Xu, W. Ding, J. Liu, Y. Li, J. F. Kennedy, Q. Gu and S. Shao, Carbohydrate Polymers,
2010, 80 , 1078-1084.
25. M. Jonoobi, J. Harun, A. P. Mathew, M. Z. B. Hussein and K. Oksman, Cellulose, 2010, 17,
299-307.
26. T. M. Don, S. C. Chou, L. P. Cheng and H. Y. Tai, Journal of Applied Polymer Science, 2011,
120 , 1-12.
27. Y. Tan, K. Xu, L. Li, C. Liu, C. Song and P. Wang, ACS applied materials & interfaces,
2009, 1, 956-959.
28. S. F. Chin, S. C. Pang and S. H. Tay, Carbohydrate Polymers, 2011, 86, 1817-1819.
29. J. Huo, J. Aguilera-Sigalat, S. El-Hankari and D. Bradshaw, Chemical science, 2015, 6,
1938-1943.
30. L. Qi, JH. Cheng, XY. Liang and YY. Hu, Polymer Engineering & Science, 2016, 56,
158-169.
31. H. Chi, K. Xu, X. Wu, Q. Chen, D. Xue, C. Song, W. Zhang and P. Wang, Food chemistry,
2008, 106 , 923-928.
32. H. Chi, K. Xu, D. Xue, C. Song, W. Zhang and P. Wang, Food research international, 2007,
40 , 232-238.
33. D. Quintanar-Guerrero, E. Allémann, E. Doelker and H. Fessi, Colloid and Polymer Science,
1997, 275 , 640-647.
34. L. Qi, Z. Luo and X. Lu, Green Chemistry, 2018, 20, 1538-1550.

- 714 36. M. Foresti, G. Valle, R. Bonetto, M. Ferreira and L. Briand, *Applied Surface Science*, 2010,
- 715 **256**, 1624-1635.
- 716 37. H. Liu, Z. Zhang, H. Yang, F. Cheng and Z. Du, *ChemSusChem*, 2014, 7, 1888-1900.
- 717 38. H. Yang, T. Zhou and W. Zhang, *Angewandte Chemie*, 2013, **52**, 7455-7459.
- 718 39. D. Perrin, *Buffers for pH and metal ion control*, Springer Science & Business Media, 2012.
- 719 40. R. A. Durst and B. R. Staples, *Clinical Chemistry*, 1972, **18**, 206-208.

View Article Online DOI: 10.1039/C9GC00779B Table.1 Results of ¹H NMR spectrum and calculated degree of substitution for starch products 722

	Additive amount:		_					
Sample	MS (g)/ AA(g)/	5.40-5.50ppm	4.59ppm	5.10ppm	2.02ppm	7.65ppm	DS	DS _{PTA}
	PTA (g)	(OH-2,3)	(OH-6)	(H-1) ^[a]	(H-1')	(H-1'')		
MS	3/0/0	2.04	1.01	1.00	-	-	-	-
MS-P	3/0/4.5	1.89	0.99	1.00	-	0.22	-	0.15
MS-AP(1)	3/4.5/4.5	1.55	0.31	1.00	2.51	0.14	0.90	0.07
MS-AP(2)	3/4.5/2.25	1.09	-	1.00	4.67	0.08	1.70	0.04
MS-AP(3)	3/4.5/1.5	0.78	-	1.00	5.81	0.03	2.08	0.02
MS-A	3/4.5/0	0.71	-	1.00	6.30	-	2.20	-

723 with various compositions.

724

[a] Area of H-1 protons was set as the basic value 1.

Green Chemistry

View Article Online DOI: 10.1039/C9GC00779B Table.2 Results for the first and second reaction cycles of the transesterification of various 726

727 substrates in the o/w and w/o Pickering interfacial catalytic system..

	o/w Pickering emulsion				w/o Pickering emulsion					
Substrates	concentration	t (h)	Ru	n 1	Ru	ın 2	Ru	n 1	Ru	n 2
	(mmol·L ⁻¹)		Y (%) ^[a]	$C^{[a]}(\%)$	Y (%)	C (%)	Y (%)	C (%)	Y (%)	C (%)
о Н + но Н + но	150	20	57.3	100	91.2	100	63.2	100	95.5	100
	150	20	58.5	100	88.2	100	64.7	100	94.2	100
0 Н НО	150	20	58.3	100	93.1	100	65.3	100	94.1	
H + HO OH	60	20	57.2	92.3	92.4	91.4	66.1	83.7	93.2	81.70
H HO OH	60	20	58.1	88.1	91.6	89.7	65.4	81.4	94.1	80.3
H HO OH	60	20	59.1	83.1	89.3	84.2	65.6	76.2	93.4	77.80

728 [a] Y and C stands for yield and conversion rate, respectively.

View Article Online DOI: 10.1039/C9GC00779B
Figure.1 Schematic representation of possible mechanisms for preparation of starch
nanoparticles.
Figure.2 FT-IR (A) and ¹ H NMR (B) spectra of starch products after
gelatinization-esterification-precipitation process. Designation "a" and "b" refer to
signals attributed to protons of anhydroglucose unit before and after esterification,
respectively.
Figure.3 SEM images and water contact angles of (A) MS, (B) MS-A, (C) MS-AP
(3), (D) MS-AP (2), (E) MS-AP (1) and (F) MS-P and their responding forming
mechanism diagrams. Scale bar: 1µm.
Figure.4 Suspension of starch products in water/n-heptane solution.
Figure.5 Status of the Pickering emulsion stabilized by various starch products.
Figure.6 Optical micrograph of droplets in Pickering emulsion stabilized by (A)
MS-AP (3) and (D) MS-AP (2). SEM images of microcapsules formed by the
self-assembly of (B, C) MS-AP (3) and (E, F) MS-AP (2). SEM images of broken
microcapsules formed by (G, H) MS-AP (3) and (J, K) MS-AP (2). SEM images of
the cross section of layer in microcapsules formed by (I) MS-AP (3) and (L) MS-AP
(2).
Figure.7 (A, B) CLSM images of the MS-AP (3) self-assembled capsules containing
FITC-labeled lipase. (C, D) CLSM images of MS-AP (2) self-assembled capsules
surrounded by FITC-labeled lipase (scale bar for (A) and (C) is 50µm, for (B) and (D)
is 10µm). (E, F) Forming process of two interfacial enzymatic catalytic systems.
42

753	Figure.8 (A) Time dependent conversion rate of butyl acetate catalyzed by different
754	biocatalytic system. (B) Specific activity of CALB for each biocatalytic system.
755	Figure.9 Reaction processes for transesterification in (A) o/w and (B) w/o Pickering
756	interfacial catalytic system.
757	Figure.10 (A) Specific activities of CALB for the o/w and w/o Pickering interfacial
758	catalytic system under different stirring input powers. (B) Mesopore-size distributions
759	of microcapsules shell formed by MS-AP (2) and MS-AP (3), calculated by the BJH
760	absorption method.
761	Figure.11 Reaction processes for transesterification in (A) o/w and (B) w/o pure
762	Pickering interfacial catalytic system.
763	Figure.12 (A) Recycling process of w/o Pickering interfacial catalytic system. (B)
764	Recycling results for the transesterification in the w/o Pickering interfacial catalytic
765	system, reaction time was 20 h.
766	Figure.13 (A) Photographs of successive temperature-responsive MS-AP (2)
767	stabilized o/w Pickering emulsion (1st, 2nd, 5th and 10th cycle). (B) Recycling
768	process of o/w Pickering interfacial catalytic system. (C) Recycling results for the
769	transesterification in the o/w Pickering interfacial catalytic system, reaction time was
770	12h. (D) Zeta potentials and water contact angles of MS-AP (2) treated with different

771

pH value.

774

Figure.1

Figure.3

Published on 25 March 2019. Downloaded by Universidad Autonoma de Coahuila on 3/31/2019 8:59:27 AM.

Figure.4

Figure.5

790

Figure.7

View Article Online DOI: 10.1039/C9GC00779B

797

796

795

Published on 25 March 2019. Downloaded by Universidad Autonoma de Coahuila on 3/31/2019 8:59:27 AM.

Figure.8

799

800

Figure.9

802

Figure.10

View Article Online DOI: 10.1039/C9GC00779B

805

Figure.11

808

Figure.12

811 Figure.13