Accepted Manuscript

Hydration of aromatic terminal alkynes catalyzed by sulfonated condensed polynuclear aromatic (S-COPNA) resin in water

Kiyoshi Tanemura, Tsuneo Suzuki

PII:	S0040-4039(17)30104-1
DOI:	http://dx.doi.org/10.1016/j.tetlet.2017.01.072
Reference:	TETL 48575
To appear in:	Tetrahedron Letters
Received Date:	15 December 2016
Revised Date:	16 January 2017
Accepted Date:	23 January 2017

Please cite this article as: Tanemura, K., Suzuki, T., Hydration of aromatic terminal alkynes catalyzed by sulfonated condensed polynuclear aromatic (S-COPNA) resin in water, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/ 10.1016/j.tetlet.2017.01.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Hydration of aromatic terminal alkynes catalyzed by sulfonated condensed	Leave this area blank for abstract info.
polynuclear aromatic (S-COPNA) resin in water	
Kiyoshi Tanemura, Tsuneo Suzuki	
Ar−C≡CH Aromatic Alkynes S-COPNA (NP) H ₂ O, reflux	Ar-C, CH3
R−C≡CH Aliphatic Alkynes	No reaction
.onP	

Tetrahedron Letters

journal homepage: www.elsevier.com

Hydration of aromatic terminal alkynes catalyzed by sulfonated condensed polynuclear aromatic (S-COPNA) resin in water

Kiyoshi Tanemura *, Tsuneo Suzuki

Chemical Laboratory, School of Life Dentistry at Niigata, Nippon Dental University, Hamaura-cho, Niigata 951-8580, Japan

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Keywords:

Hydration Alkynes Water Ketones Solid acids Acid catalysts Hydration of aromatic terminal alkynes in the presence of a catalytic amount of sulfonated condensed polynuclear aromatic (S-COPNA) resin in water gave the corresponding methyl ketones in good yields. On the other hand, aliphatic terminal alkynes did not react at all under the employed conditions. Chemoselective hydration of aromatic terminal alkyne in the presence of aliphatic terminal alkyne catalyzed by S-COPNA resin was carried out.

2009 Elsevier Ltd. All rights reserved.

1

The hydration of alkynes is a synthetically useful and atom economical method for the synthesis of ketones.¹ This transformation is of great importance in industrial purposes as well as in laboratory use. The traditional procedure using a catalytic amount of mercury salts has been known.^{2,3} In order to avoid the use of highly toxic mercury salts, many metal catalysts such as Au,⁴⁻⁶ Ag,⁷⁻⁹ Pt,^{10,11} Ru,¹² Pd,¹³ Fe,^{14,15} Co,¹⁶ and Ga¹⁷ have been devised. As the method using a Brønsted acid, H₂SO₄-mediated reaction has been reported.^{18,19} However, this method requires large amounts (> 1500 equiv) of H₂SO₄.²⁰ Although the reactions catalyzed by super acids such as TfOH,²⁰ Tf₂NH,²⁰ and Nafion NR50²¹ have been reported, these reagents are considerably acidic and expensive. Recently, gallic acid/tannic acid-catalyzed hydration has been devised.²²

Organic transformations catalyzed by hydrophobic polymers in water without the use of harmful organic solvents have been paid for much attention since water is an easily available, safe, economical, and environmentally friendly solvent.^{23,24} In addition, organic reactions using polymers are of great interest because they realize easy work-up and recycling of the catalysts.

During the course of our investigations on sulfonated condensed polynuclear aromatic (S-COPNA) resins^{25,26} and sulfonated polyarenes,^{27,28} we found that S-COPNA (NP) resin (NP = naphthalene) is the quite useful catalyst for the hydration of aromatic terminal alkynes in water. In this paper, we report the results for the transformation of various alkynes catalyzed by S-COPNA (NP) resin in water.

First, we examined the hydration of 4-ethynyltoluene (3) in the presence of a catalytic amount of highly hydrophobic S-COPNA (PR) resin (PR = pyrene) or sulfonated polypyrene (S-

PPR) at reflux temperature for 16 h in various solvents. The results are shown in Table 1. In dioxane-H₂O (1 : 1) which formed a homogeneous phase, the reactions proceeded more slowly than those in the other biphasic media such as toluene-H₂O and heptane-H₂O in both cases of S-COPNA (PR) resin and S-PPR (entries 2-6).²⁹ Interestingly, S-COPNA (PR)-catalyzed reaction in water completed within 5 h to give 4-methylacetophenone (**23**) in good yield (entry 1).

Table 1

Acid-catalyzed hydration of alkyne 3 in various solvents^a

Enter	Colvert	Yield (%) ^b			
Enuy	Solvent	S-COPNA (PR)	S-PPR		
1	H ₂ O	81 ^c	37		
2	Dioxane - H ₂ O (1:1)	54	13		
3	<i>n</i> Bu ₂ O - H ₂ O (1:1)	72	80		
4	CHCl ₂ CHCl ₂ - H ₂ O (1:1)	80	82		
5	Toluene - $H_2O(1:1)$	82	81		
6	Heptane - H ₂ O (1:1)	72	84		

^a Alkyne 3 (2.0 mmol), catalyst (0.2 mmol), solvent (4 mL), reflux (bath temp. 120 °C), 16 h, 600 rpm.

^b Isolated yield.

° 5 h.

Next, Table 2 summarizes the results for various sulfonated polymers and monomeric Brønsted acids in water. S-COPNA resins were more active than the other sulfonated polymers and monomeric Brønsted acids (entries 1 and 2). The low yields of S-PPR and sulfonated polynaphthalene (S-PNP) would be

* Corresponding author. Fax: +81 25 267 1134; E-mail address: tanemura@ngt.ndu.ac.jp (K. Tanemura).

Tetrahedron

Table 4

attributed to the considerably high hydrophobic nature of these polymers which were separated from the reaction mixture to attach at the neck of the flask during the reactions. Although Dowex 50WX8 resin worked most efficiently in the employed commercially available sulfonated polymers, it required 60 h to complete the reaction (entry 6). It is noteworthy that the employed sulfonated polymers except S-PPR and S-PNP were superior to monomeric Brønsted acids in water. Although S-COPNA (PR) resin was the most active catalyst, it gradually decomposed and was completely inactive on the fourth recycling (Table 3, entry 1). The elemental analysis of the recovered S-COPNA (PR) resin after the fourth use was $C_{1.000}H_{0.745}O_{0.163}S_{0.012}$ [S-COPNA (PR) resin: $C_{1.000}H_{0.725}O_{0.396}S_{0.088}$]. The acid density of S-COPNA (PR) resin decreased from 4.02 to 0.76 mmolg indicating the removal of the sulfo group. The IR spectra showed the desulfonation¹⁶ from aromatic rings of S-COPNA (PR) resin. The intensity of the characteristic absorptions at 1168 and 1029 cm⁻¹ assigned to OH vibration of the sulfo groups largely decreased and the absorptions due to the phenolic OH groups did not appear. Although S-COPNA (NP) resin is less active than S-COPNA (PR) resin, it did not lose the activity after the fifth recycling (Table 3, entry 2).

Table 2

Η	vdration	of alky	vne 3 ca	talyzed	by v	various	acids	in	water
	-			_					

Entry	Catalyst	Acid density (mmol·g ⁻¹)	Yield $(\%)^{b}$
1	S-COPNA (PR)	4.02	81 ^c
2	S-COPNA (NP)	3.42	$84(51)^{d}(35)^{e}$
3	S-PPR	2.25	30
4	S-PNP	2.05	22
5	Amberlyst 15	4.8	43
6	Dowex 50WX8	4.8	59 (80) ^f
7	Nafion NR50	0.9	51
8	H_2SO_4	-	6
9	TsOH	-	16
10	TfOH	-	10
11	$C_8F_{17}SO_3H$	-	32

 a Alkyne 3 (2.0 mmol), catalyst (0.2 mmol H⁺), H₂O (4 mL), reflux (bath temp. 120 °C), 8 h, 600 rpm. b Isolated yield.

^c 5 h.

^d In dioxane – $H_2O(1:1)$ (4 mL).

^e In toluene – $H_2O(1:1)(4 \text{ mL})$.

^f 60 h.

Table 3

F	Recycl	le experi	ments f	for the	e hyd	ration	of all	kyne 3
	~ 1				~			~

Entry	Catalyst	Yield (%) ^a					
		1st	2nd	3rd	4th	5th	
1 ^b	S-COPNA (PR)	81	41	16	0	0	
2^{c}	S-COPNA (NP)	82	82	84	80	80	
^a Isolated	d vield					-	

^b Alkyne **3** (2.0 mmol), S-COPNA (PR) (0.2 mmol), H₂O (4 mL), reflux (bath temp. 120 °C), 5 h, 600 rpm.

 $^{\circ}$ Alkyne 3 (2.0 mmol), S-COPNA (NP) (0.2 mmol), H₂O (4 mL), reflux (bath temp. 120 $^{\circ}$ C), 8 h, 600 rpm.

Table 4 shows the results for the reactions of a wide range of alkynes catalyzed by S-COPNA (NP) resin in water. Aromatic terminal alkynes except **8** were transformed to the corresponding methyl ketones in good to excellent yields, respectively (entries

Hydration of various alkynes catalyzed by S-COPNA (NP)^a

Entry	/ Alkyne	Time (h)	Product	Yield (%) ^b
1	меО-√У-С≡СН 1	3	MeO-C-CCH3	90 21
2	PhO-CECH 2	16		96 22
3	с≡сн з	8	-<	84 23
4	C≡CH 4	24		82 24
5	С≡сн 5	24	С>-с ⁰ СН ₃	96° 25
6	сі—∕)–с≡сн	72	ci–	89 ^d
7	Br-∕_C≡CH 7	72	вг{Сс-Сссс	82 ^d 3 27
8	F ₃ C-∕C≡CH	8 72	F ₃ C-C-C-C	0 ^d
9	C ^{IICH}	8		87 29
10	_с≡сн 10	8		99° 30
11	MeO-√C≡C-TN 11	MS 24	MeO-	92 H ₃ 21
12	C≡C-TMS 12	72	С>-с ⁰	94 ^c
13		24	() С, с, с, с, с, с, н, з	30 81 ^c
14		4 ⁸		H ₃ 31 75
15	C≡C-CH ³	⁷²		32 35 ^d
16	C≡c-	72 16	()-c', _{CH2} -() 33 ^{0^d}
17		72		34 0 ^d
18	ликование и конструкции и констру и конструкции и констру и конструкции и конструкции и конструкции и конструкции и конструкции и конструпни и конструпни и конструпни и конструпни и констру и констру и конструпни и констру и конструпни и конструпни и конструпни и констру и конструпни и конструпни и к	72		CH ₃ 0 ^d 35
19	но _{лос} 19 сн	72		H ₃ 0 ^d 36
20	ноос [~] с, 20 ^{°°} СН	72	ноос^с	^{CH} 3 0 ^d 37

 $[^]a$ Alkyne (2.0 mmol), S-COPNA (NP) (59 mg, 0.2 mmol), H_2O (4 mL), reflux (bath temp. 120 $^\circ C$), 600 rpm.

^b Isolated yield.

^c Yield was determined by ¹H-NMR with anisole as the internal standard. ^d 0.4 mmol of S-COPNA (NP) was used.

1-7 and 9). The hydration of 6 and 7 possessing electronwithdrawing halogen groups in the phenyl moiety proceeded slowly to afford 26 and 27 in good yields, respectively. The presence of the strongly electron-withdrawing trifluoromethyl group suppressed the reaction entirely (entry 8). α , β -Unsaturated alkyne **10** tolerated the reaction conditions without decomposition to give 30 in excellent yield. Aryl trimethylsilyl (TMS) acetylenes, which can be easily synthesized from Sonogashira coupling,^{30,31} reacted to give the corresponding methyl ketones more slowly than the unprotected alkynes via the deprotection followed by hydration (entries 11 and 12).³² Further utility of S-COPNA (NP) resin was explored on the reactions of propargylic alcohols 13 and 14, which were converted into α , β unsaturated ketones 30 and 31 via the dehydration followed by the hydration of the alkyne, respectively (Rupe rearrangement).² The reaction of internal alkyne, 1-phenyl-1-propyne (15) underwent quite slowly to afford carbonyl compound 32. No reaction occurred with aromatic internal alkyne 16 and aliphatic internal alkyne 17. It is noteworthy that aliphatic terminal alkynes 18-20 were inert under the employed conditions.

Based on the difference in reactivities between aromatic terminal alkynes and aromatic internal alkynes, we explored the chemoselective hydration of **4** and **5**. Aromatic terminal alkyne was hydrated exclusively in the presence of aromatic internal alkyne to give the corresponding methyl ketone in good yield (Scheme 1). We also succeeded the chemoselective hydration of aromatic terminal alkyne in the presence of aliphatic terminal alkyne (Scheme 2). This is the first example as far as we know

Scheme 1. Chemoselective hydration of aromatic terminal alkyne in the presence of aromatic internal alkyne.

Scheme 2. Chemoselective hydration of aromatic terminal alkyne in the presence of aliphatic terminal alkyne.

which resulted in the exclusive reaction of aromatic terminal alkyne in the presence of aliphatic terminal alkyne.

Table 5 summarizes the results for the competitive hydration between aromatic terminal alkyne 3 and aliphatic terminal alkyne 18 promoted by metal catalysts and Brønsted acids. In the cases of examined metal-catalyzed reactions, both compounds 23 and 35 were obtained in moderate to good yields (entries 1-6). Because the rates of the hydration of **3** and **18** did not have large differences, it was difficult to obtain 23 in good yields without the production of 35. Exclusive hydration of 3 was observed when super acids as well as S-COPNA (NP) resin were employed as the catalysts (entries 7-10). It was found to be a general tendency of Brønsted acid catalysis. The hydration catalyzed by Nafion NR50 in AcOH progressed faster than that in water (Table 2, entry 7 and Table 5, entry 9), but a large amount of alkaline solution is required to remove AcOH on work-up. It should be noted that S-COPNA (NP) resin realized the chemoselective hydration of 3 in the presence of 18 which was difficult to carry out by the metal catalysts (entry 10).

Table 5

Competitive hydration of alkynes 3 and 18 by various catalysts

		Yield (%) ^a		
Entry	Catalyst	23	35	
1 ^b	HgSO ₄	84	74	
2 ^c	AuCl	91	99	
3 ^d	[(Ph ₃ P)AuCH ₃]	83	85	
4 ^e	AgSbF ₆	58	80	
5 ^f	AgOTf	98	67	
6 ^g	$[PtCl_2(C_2H_4)]_2$	43	92	
7 ^h	Tf ₂ NH	87	4	
$8^{\rm h}$	TfOH	90	0	
9 ⁱ	Nafion NR50	88	0	
10 ^j	S-COPNA (NP)	84	0	

^a Isolated yield.

^b Alkyne **3** (2.0 mmol), Alkyne **18** (2.0 mmol), HgSO₄ (0.11 mmol), H₂O (1 mL), H₂SO₄ (0.04 mL), 90 °C, 12 h.

^c Alkyne **3** (2.0 mmol), Alkyne **18** (2.0 mmol), AuCl (0.1 mmol), MeOH (4 mL), H₂O (8 mmol), 65 °C, 1 h, N₂.

 d Alkyne **3** (10.0 mmol), Alkyne **18** (10.0 mmol), [(Ph_3P)AuCH_3] (0.01 mmol), MeOH (5 mL), H₂O (0.5 mL), TfOH (0.25 mmol), 70 $^\circ$ C, 0.5 h.

^e Alkyne **3** (2.0 mmol), Alkyne **18** (2.0 mmol), AgSbF₆ (0.2 mmol), MeOH (3 mL), H₂O (0.3 mL), 75 °C, 48 h.

 $^{\rm f}$ Alkyne 3 (2.0 mmol), Alkyne 18 (2.0 mmol), AgOTf (0.2 mmol), EtOAc (6 mL), H2O (0.4 mL), 80 °C, 48 h.

^g Alkyne **3** (2.0 mmol), Alkyne **18** (2.0 mmol), Zeise's dimer (0.014 mmol), THF (1.5 mL), H₂O (6 mmol), 70 °C, 48 h.

^h Alkyne **3** (2.0 mmol), Alkyne **18** (2.0 mmol), Tf₂NH or TfOH (0.2 mmol), dioxane (4 mL), H₂O (6 mmol), 100 °C, 5 h.

¹ Alkyne **3** (5.0 mmol), Alkyne **18** (5.0 mmol), Nafion NR50 (167 mg, 0.15 mmol), AcOH (2 mL), H₂O (15 mmol), 100 °C, 3 h.

 j Alkyne 3 (2.0 mmol), Alkyne 18 (2.0 mmol), S-COPNA (NP) (59 mg, 0.2 mmol), H₂O (4 mL), 120 °C, 12 h.

In summary, we devised an environmentary benign method for the hydration of aromatic terminal alkynes in water. It constitutes a useful procedure for selective hydration of aromatic terminal alkyne in the presence of aliphatic terminal alkyne. In addition, it is noteworthy that (1) the work-up procedure is remarkably simple because S-COPNA (NP) resin is a solid acid and (2) S-COPNA (NP) resin can be reused without significant loss of activity.

Acknowledgments

Tetrahedron

We thank the Division of Chemical Analysis, Systems Engineering for the elemental analyses. We thank the Research Promotion Grant (NDU Grants N-16010) from Nippon Dental University.

Supplementary data

Supplementary data (general experimental procedures, data of IR and ¹H-NMR spectra of the products) associated with this article can be found, in the online version.

References and notes

- Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079-3160.
- Newman, M. S.; Reichle, W. R. Org. Synth. 1973, Coll. Vol. 5, 1024-1025.
- 3. Stacy, G. W.; Mikulec, R. A. Org. Synth. 1963, Coll. Vol. 4, 13-15.
- Das, A. K.; Park, S.; Muthaiah, S.; Hong, S. H. Synlett 2015, 26, 2517-2520.
- Mizusawa, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563-4565.
- Xu, Y.; Hu, X.; Shao, J.; Yang, G.; Wu, Y.; Zhang, Z. Green Chem. 2015, 17, 532-537.
- Chen, Z.-W.; Ye, D.-N.; Qian, Y.-P.; Ye, M.; Liu, L.-X. Tetrahedron 2013, 69, 6116-6120.
- 8. Das, R.; Chakraborty, D. Appl. Organomet. Chem. 2012, 26, 722.
- Thuong, M. B.; Mann, A.; Wagner, A. Chem. Commun. 2012, 48, 434-436.
- 10. Hartman, J.; Hiscox, W.; Jennings, P. J. Org. Chem. 1993, 58, 7613-7614.
- 11. Hiscox, W.; Jennings, P. Organometallics 1990, 9, 1997-1999.
- 12. Tokunaga, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. 1998, 37, 2867-2869.
- Kadota, I.; Lutete, L. M.; Shibuya, A.; Yamamoto, Y. *Tetrahedron Lett.* 2001, 42, 6207-6210.
- 14. Wu, X. -F.; Bezier, D.; Darcel, C. Adv. Synth. Catal. 2009, 351, 367-370.
- 15 Park, J.; Yeon, J.; Lee, P. H.; Lee, K. Tetrahedron Lett. 2013, 54, 4414-4417.
- Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.; Naka, H. J. Am. Chem. Soc. 2013, 135, 50-53.
- 17. Liang, S.; Hammond, G. B.; Xu, B. Chem. Commun. 2015, 51, 903-906.
- Allen, A. D.; Chiang, Y.; Kresge, A. J.; Tidwell, T. T. J. Org. Chem. 1982, 47, 775-779.
- Smith Jr, J. M.; Stewart, H. W.; Roth, B.; Northey, E. H. J. Am. Chem. Soc. 1948, 70, 3997-4000.
- Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777-1778.
- Liang, S.; Hammond, G. B.; Xu, B. Chem. Commun. 2015, 51, 903-906.
- 22. Deng, T.; Wang, C. -Z. Catal. Sci. Technol. 2016, 6, 7029-7032.
- 23. Kobayashi *et al.* have been conducting the pioneering work on organic transformation in water. Alkyne 3 was hydrated in the presence of 10 mol% of low-loading and alkylated polystyrene-supported sulfonic acid (LL-ALPS-SO₃H) in boiling water for 48 h to give 23 in 81% yield: Iimura, S.; Manabe, K.; Kobayashi, S. *Org. Biomol. Chem.* 2003, *1*, 2416-2418.
- Iimura, S.; Manabe, K.; Kobayashi, S. Org. Lett. 2003, 5, 101-103.
- 25. Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. *Tetrahedron* **2011**, *67*, 1314-1319.
- Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. Polym. Bull. 2012, 68, 705-719.
- Tanemura, K.; Suzuki, T. Tetrahedron Lett. 2013, 54, 1972-1975.

- Tanemura, K.; Suzuki, T.; Horaguchi, T. J. Appl. Polym. Sci. 2013, 127, 4524-4536.
- 29. Komine, N.; Sako, A.; Hirahara, S.; Hirano, M.; Komiya, S. *Chem. Lett.* **2005**, *34*, 246-247.
- Sakamoto, T.; Kondo, Y.; Iwasawa, S.; Yamanaka, H. Chem. Pharm. Bull. 1987, 35, 1823-1828.
- Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* 1975, 16, 4467-4470.
- 32. Hassam, M.; Li, W.-S. Tetrahedron 2015, 71, 2719-2723.
- 33. Olah, G. A.; Fung, A. P. Synthesis 1981, 1981, 473-474.

* Hydration of aromatic terminal alkyne in the presence of aliphatic terminal alkyne.

* The solvent is environmentally friendly water.

* The work-up procedure is remarkably simple.

Accepter * The catalyst can be recycled without significant loss of activity.