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Catalytic carbon–carbon bond formation has enabled the streamlining 
of synthetic routes when assembling complex molecules1. It is 
particularly important when incorporating saturated hydrocarbons, 
which are common motifs in petrochemicals and biologically 
relevant molecules. However, cross-coupling methods that involve 
alkyl electrophiles result in catalytic bond formation only at specific 
and previously functionalized sites2. Here we describe a catalytic 
method that is capable of promoting carboxylation reactions at 
remote and unfunctionalized aliphatic sites with carbon dioxide at 
atmospheric pressure. The reaction occurs via selective migration of 
the catalyst along the hydrocarbon side-chain3 with excellent regio- 

and chemoselectivity, representing a remarkable reactivity relay 
when compared with classical cross-coupling reactions. Our results 
demonstrate that site-selectivity can be switched and controlled, 
enabling the functionalization of less-reactive positions in the 
presence of a priori more reactive ones. Furthermore, we show that raw 
materials obtained in bulk from petroleum processing, such as alkanes 
and unrefined mixtures of olefins, can be used as substrates. This offers 
an opportunity to integrate a catalytic platform en route to valuable 
fatty acids by transforming petroleum-derived feedstocks directly4.

Methods that incorporate saturated hydrocarbon chains have tradi-
tionally been problematic using palladium catalysts2. Pioneering work5,6 
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Figure 1 | Switchable site-selective catalytic 
carboxylation at remote sp3 C–H sites.  
a, Classical cross-coupling reactions involve 
the use of alkyl electrophiles with carbon-based 
counterparts (coloured circles labelled ‘C’) 
and occur at the original reaction site (left). 
Reactivity relay (unconventional coupling) 
in carbon–carbon bond formation of alkyl 
electrophiles with switchable site-selectivity 
gives rise to two divergent products from a 
common precursor (right, paths a and b). 
b, Mechanistic rationale for the switchable site-
selective carboxylation at remote sp3 C–H sites. 
Tunable and controllable displacement of the Ni 
catalyst through a saturated hydrocarbon side-
chain (nickel catalytic cycles A and B) is shown.  
c, Application to the direct catalytic conversion 
of biomass-derived feedstocks into single fatty 
acids via a tandem bromination/carboxylation 
process. Coloured circles represent substituents 
at the aliphatic side-chain.
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demonstrated that nickel catalysts markedly improved the efficiency of 
alkyl cross-coupling reactions by minimizing the rate of unproductive 
β​-hydride elimination that leads to alkene by-products. These reports 
prompted the design of nickel-catalysed reactions of unactivated alkyl 
electrophiles occurring at the initial reaction site, ranging from classical  
nucleophilic/electrophilic regimes to the coupling of two distinct  
electrophiles7, and culminating in stereoconvergent reactions8 or visible- 
light photochemical techniques9 (Fig. 1a, left). An emerging strategy 
has been the design of catalytic bond formation at remote reaction 
sites3,10. However, carbon–carbon bond formation in hydrocarbons 
is problematic, owing to the presence of multiple, yet similar, sp3 C–H 
positions. Several methodologies have tackled this issue by activat-
ing weak sp3 C–H bonds11 or by using directing groups at a specific 
location within the side-chain12–15. As part of our interest in nickel- 
catalysed carboxylations16,17, we sought to develop a protocol for 
incorporating carbon dioxide (CO2) at remote sp3 C–H sites en route 
to fatty acids (Fig. 1a, right), which are relevant in the manufacture 
of soaps, detergents, rubber, plastics and dyes4,18. Indeed, the global 
market for carboxylic acids is anticipated to reach approximately 
$20 billion by 2023, expanding at an annual growth rate of 5% from  
2017 to 20234.

A detailed description of our design principle is outlined in Fig. 1b.  
Although retarding β​-hydride elimination has long been the goal 
of organometallic chemists when using alkyl (pseudo)halides as  
coupling partners (Fig. 1a, left), we questioned whether we could turn a 
to-be-avoided event into a desirable process. Specifically, we envisioned 
that fine-tuning of the ligand on the nickel catalyst could accelerate the 
rate of β​-hydride elimination from I before CO2 insertion, providing a 

basis for a chain-walking via iterative β​-hydride elimination/migratory  
insertion sequences3. The resulting nickel intermediates III and V 
formed via II or IV would then enable a final CO2 insertion while 
ultimately releasing the targeted carboxylic acid. As chain-walking  
scenarios for forging carbon–carbon bonds remain currently confined 
to ‘unidirectional’ events that result in the activation of a single reaction 
site11,14,19–21 and/or the use of noble expensive metals19,22, our proposed 
switchable selectivity platform based on abundant nickel catalysts could 
unlock a multifaceted challenge for selectively activating less-reactive 
positions in the presence of a priori more reactive ones. If such a strategy  
could be implemented, we speculated that valuable fatty acids could 
be within reach by directly reacting raw materials derived in bulk 
from petroleum processing (such as alkanes or unrefined mixtures of 
alkenes) with CO2 without requiring the isolation of the corresponding  
reaction intermediates (Fig. 1c). Such a scenario would constitute 
a unique platform for converting simple chemical feedstocks into  
valuable compounds.

We began our investigations by evaluating a proof-of-principle of 
our Ni-catalysed remote carboxylation with a discrete alkyl halide 
(2-bromoheptane) and CO2 (1 bar) at ambient temperature. After  
systematically evaluating the reaction parameters, we found that a 
combination of NiI2 (2.5 mol%) and bench-stable L1 (4.4 mol%; Fig. 2)  
afforded octanoic acid (1; Fig. 2) in 92% isolated yield as a single regio-
isomer using Mn as reductant in DMF (dimethylformamide) at 25 °C. 
1,10-Phenanthroline ligands other than L1 possessing less-sterically 
encumbered substituents at C2 or C9, or the absence of aromatic groups 
at C4 or C7, resulted in diminished reactivity (see Supplementary 
Information). Control experiments revealed that all of the reaction 

R

Br

Alkyl bromide

n
CO2

2.5 mol% NiI2
4.4 mol% L1 

Mn, DMF (0.30–1.0 M)
R n CO2HHa

HH

Carboxylic acid

NN
n-Hex n-Hex

PhPh

L1

• Secondary alkyl bromides

1 
92% (56%)* (86%)‡

1
81%

1
72% (50%)*

2
58%#

CO2H

Me Me Me

OPiv

3 
77%

4
61%#

5
51%§

6
61%

O

O

7
65%#

8
82%#

9
57%

10
44%§

TsN

CO2Me

CN OTIPS

11
53%#§

12
74%#

13
59%#

14
56%#

O

O

OMe

• Tertiary alkyl bromides

19
50%#

20
38%¶

21
42%§

• Site-selectivity
Me

Me

Me

Me

15
57%†§

16
51%§

TsN

Cl

O

SCF3

18
50%¶

O

Ph

O

25 ºC, 20 h 

HH

Single regioisomer

Me

O

O

H

H

H H

OH

Me

Me

17
54%§

Cl

HO
N

CO2H CO2H CO2H CO2H CO2H

+

CO2H CO2H CO2H CO2H CO2H CO2H

CO2HCO2H CO2H CO2H CO2H CO2H

CO2H CO2HCO2HCO2H

CO2H

Figure 2 | Catalytic carboxylation of discrete alkyl halides at remote  
sp3 C–H sites. Top, reaction studied, with structure of L1 at right;  
bottom, products 1–21. All yields are isolated yields, the average of  
at least two independent runs; the variance is estimated to be within 5%. 
Ts, p-toluensulfonate; TIPS, triisopropylsilyl; Piv, pivaloyl. Reaction  

conditions: NiI2 (2.5 mol%), L1 (4.4 mol%), Mn (3.0 equiv.), CO2 (1 bar), 
DMF, 25 °C. *​Alkyl tosylate as substrate. ‡10 mmol scale, NiI2 (1 mol%),  
L1 (1.80 mol%). §NiI2 (7.5 mol %), L1 (13.2 mol%). ¶NiI2 (10 mol%),  
L1 (17.6 mol%). #10 °C. †From the corresponding acetal after hydrolytic 
workup.
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parameters were critical for success. With optimal conditions in hand, 
we examined the generality of our transformation by exploring a wide 
range of discrete secondary alkyl electrophiles (Fig. 2). The reaction 
turned out to be widely applicable regardless of the constitutional 
isomer of bromoheptane used, yielding exclusively 1 in comparable  
yields. Notably, the preparation of 1 could be scaled up in 86% yield 
on a gram scale at 1 mol% Ni. Remarkably, alkyl tosylates could also 
serve as electrophilic partners. Particularly informative was the  
chemoselectivity profile, as esters (4, 7, 12), ketones (5, 10, 18), acetals 
(6, 15), sulfonamides (7, 14), nitriles (8), silyl ethers (9), trifluorometh-
ylthiols (11), free hydroxyl groups (16) or heterocycles (13) could all 
be tolerated, obtaining in all cases linear carboxylic acids. Similarly, 
aryl/alkyl chlorides or pivalates do not interfere, leaving ample room 
for further functionalization via cross-coupling methodologies (4, 14 
and 17). No ketone arising from a chain-walking en route to enol-type 
intermediates in 16 was detected14, and perfect linear selectivity was 
observed in the presence of weak and a priori more reactive benzylic sp3 
C–H bonds within the side-chain (3–6)11. Variable amounts of internal 
olefins and reduced by-products were observed in the carboxylations 
listed in Fig. 2.

As this protocol is conducted in the absence of base, substrates  
possessing relatively acidic protons in the α​ position relative to 
carbonyl functional groups can be tolerated (5, 7, 8, 18). Although 
substrates bearing different primary C(sp3)–H bonds might lead to site- 
selectivity issues, exclusive carboxylation took place at the less-hindered 
primary sp3 C–H site (11). Even single regioisomers could be obtained 
by using sterically hindered tertiary alkyl bromides 19 and 20. Excellent 
site-selectivity could also be accomplished with multiple primary sp3 
C–H sites (21).

We note that 1 could be selectively obtained in 83% yield from an 
equimolecular mixture of regioisomeric bromoheptanes, showing the 
viability of implementing regioconvergent carboxylation processes 

(see Supplementary Information). This finding provided the basis for 
unravelling the preparative potential of this method by designing a 
unified catalytic strategy by which bulk raw materials derived from 
petroleum processing (such as alkanes or alkenes) could be used as 
substrates. The collective one-step synthesis of 1, 25 and 26 from their 
alkane congeners (Fig. 3a) or from unrefined mixtures of alkenes  
(Fig. 3b) showcases the potential of a catalytic platform that combines 
chemical feedstocks, demonstrating the synthetic streamlining and 
the rapid production of added-value compounds from inexpensive  
raw materials. Neither purification nor isolation of the intermediate  
halogenated compounds was necessary, showing the robustness of our 
protocol. As pure α​-olefins are not generally available at an economically 
viable price, the possibility of using mixtures of olefins from petroleum 
processing to prepare fatty acids constitutes a powerful alternative to 
classical Reppe-type carbonylation techniques with toxic and hazardous  
carbon monoxide23. A similar reaction could also be integrated en route 
to 31 (Fig. 3b) that can simply be converted into 1,12-dodecanedioic 
acid (DDA), which is an important component of the synthesis of nylon 
12 (ref. 24).

The use of 2-bromoheptane-1,1,1-d3 resulted in 1 with substantial 
deuterium incorporation at C2 and C8, suggesting the viability of tar-
geting differently substituted remote sp3 C–H sites (see Supplementary 
information). Specifically, we found an excellent preference for second-
ary sp3 C–H sites at 42 °C (32, linear:branched (l:b) =​ 8:92), whereas a 
selectivity switch occurred at 10 °C (33, l:b =​ 85:15) (Fig. 4). As shown 
for 32 and 33, lower linear selectivities were found for substrates  
possessing C–Br bonds proximal to the ester motif. These results suggest  
that regiodivergency arises from a subtle kinetic and thermody-
namic control, forming preferentially an intermediate α​-olefin or an  
α​,β​-unsaturated compound that can be thermally modulated. The  
generality of this finding could be extended to amides on the side-
chain, delivering either branched (34 and 36) or linear carboxylic 
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Figure 3 | Catalytic carboxylation of feedstock materials by 
regioconvergent events. a, Regioconvergent carboxylation of alkanes 
(left) with CO2 via a radical bromination/carboxylation process, to obtain 
single-regioisomer carboxylic acids (right, boxed). Reaction conditions: 
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acids (35 and 37). The observed 99:1 site-selectivity for amides at 
either 10 °C or 42 °C cannot be simply attributed to electronic effects, 
as the pKa of the α​-protons of both amides and esters have similar 
values (pKa =​ 30–32 in DMSO, dimethylsulfoxide). Regiodivergency 
could be even accomplished at long-range, a testament to the effi-
ciency of our carboxylation event (38, l:b =​ 6:94). A substrate bearing a  
tertiary sp3 C–H bond could also participate in the reaction, leading 
to either 40 (l:b =​ 85:15) or quaternary carbon centres (39, l:b =​ 1:99). 
The limits of our regiodivergent strategy were explored with primary 
alkyl bromides, and showed that even substrates prone to carbon– 
carbon bond formation before β​-hydride elimination25 can be used for  

activating remote sp3 C–H sites, resulting in either 32 (l:b =​ 16:84) or 
36 (l:b =​ 1:99).

With an efficient protocol for effecting nickel-catalysed chain-walking  
carboxylation reactions, we wondered whether the inclusion of pre- 
existing stereogenic centres on the side-chain would be tolerated. To 
this end, we conducted the reaction of 41 containing a pre-existing 
stereogenic centre at C4 (enantiomeric ratio e.r. =​ 98:2). Although we 
found considerable erosion in enantioselectivity at 42 °C (e.r. =​ 80:20), 
substantial preservation of the chiral integrity at C4 was observed 
at 25 °C, leading to 42 after subsequent treatment with TMSCHN2 
(e.r. =​ 89:11). These results indicate that our nickel catalyst remains 
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ligated to the substrate throughout the chain-walking, constitut-
ing a rare example in which pre-existing stereogenic centres are not  
substantially altered when displacing a catalyst through an alkyl 
chain14,26.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
General carboxylation procedure. An oven-dried Schlenk tube containing a 
stirring bar was charged with NiI2 (2.5–10.0 mol%), L1 (4.4–17.6 mol%) and Mn 
powder (3 equiv.). The Schlenk tube was then evacuated and back-filled under 
a CO2 flow (this sequence was repeated three times) and finally an atmospheric 
pressure of CO2 was established. The corresponding alkyl bromide (0.5 mmol) 
and DMF (1 M) were added under a CO2 flow. Once added, the Schlenk tube 
was closed at atmospheric pressure of CO2 (1 atm) and stirred at the desired  

temperature for 20–48 h. The mixture was then carefully quenched with 2 M HCl 
to hydrolyse the resulting carboxylate and extracted with EtOAc (three times). The 
combined organic layer was washed with brine (three times), dried over anhydrous 
MgSO4, filtrated and evaporated. The resulting crude carboxylic acid was purified 
by conventional flash chromatography in silica gel using hexanes/EtOAc 3:1 with 
1% formic acid.
Data availability. The data supporting the findings of this study are available 
within the paper and its Supplementary Information.
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