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ABSTRACT: Silyl dienol ethers readily underwent copper(I)-
catalyzed [4 + 1] cycloaddition with sodium bromodifluor-
oacetate to afford 4,4-difluorocyclopent-1-en-1-yl silyl ethers.
On the basis of high-resolution mass spectroscopy analysis,
annulation presumably proceeded via a copper(I) difluor-
ocarbene complex, which represents an unprecedented
example of [4 + 1] cycloadditions promoted by a transition metal difluorocarbene complex.

Transition metal difluorocarbene complexes, LnM= CF2, are
highly promising intermediates for the synthesis of

fluorine-containing compounds, considering the significant role
of their fluorine-free counterparts in today’s synthetic organic
chemistry.1 Despite their potential utility, however, only a limited
number of reactions of difluorocarbene complexes have been
reported in the past year.2 Our continuous interest in transition
metal difluorocarbene complexes prompted us to apply them to
catalytic synthesis.
Recently, we reported the synthesis of 5,5-difluorocyclopent-

1-en-1-yl silyl ethers (regioisomer A) via the domino
difluorocyclopropanation/vinylcyclopropane (VCP) rearrange-
ment sequence of silyl dienol ethers (Scheme 1a).3 Silyl dienol
ethers, prepared from α,β-unsaturated ketones, were treated with
tr imethyls i ly l 2 ,2-difluoro-2-(fluorosulfonyl)acetate
(FSO2CF2CO2SiMe3)

4 in the presence of a nickel(II) catalyst,
leading to the α,α-difluorocyclopentanone derivatives in good
yields.5

Encouraged by this success, we revisited the synthesis of
difluorocyclopentanone derivatives to provide the regioisomers.
We report herein the [4 + 1] cycloaddition of copper
difluorocarbene complexes and silyl dienol ethers, affording
4,4-difluorocyclopent-1-en-1-yl silyl ethers (regioisomer B)
(Scheme 1b). It should be mentioned that the chemistry of [4
+ 1] cyclizations is much less developed for five-membered ring
formation compared to [3 + 2] and [2 + 2 + 1] cyclizations;6,7

furthermore, the [4 + 1] cycloaddition promoted by a transition
metal difluorocarbene complex has not been reported in the
literature.
To conduct the desired [4 + 1] cycloaddition, we adopted a

copper(I) salt as a catalyst and a halodifluoroacetate as a carbene
source (XCF2CO2

−) for the following reasons (Scheme 1b): (i)
decarboxylation of copper(I) carboxylate is known to proceed
with an activation energy of ca. 20 kcal/mol (calculated value),8

and elimination of a halide ion (X−) from the resulting
(halodifluoromethyl)copper(I) species would generate the
required difluorocarbene complexes;9 (ii) copper(I) carbene
complexes mediated dihydrofuran formation via a [4 + 1]
pathway.10

An attempted reaction with several copper(I) complexes
realized the desired [4 + 1] cycloaddition as expected (Table 1).
In the absence of a copper(I) complex, silyl dienol ether 1a
reacted with sodium bromodifluoroacetate in acetonitrile at 50
°C to afford vinylcyclopropane 3 and α,α-difluorocyclopenta-
none-derived silyl enol ether 4 in 35 and 5% yields, respectively
(entry 1). While cyclopropane 3 was produced by the reaction
with free difluorocarbene generated in situ,11 the undesired
regioisomer A, silyl enol ether 4, was obtained from 3 via VCP
rearrangement.3,12 Silyl dienol ether 1a afforded the desired 4,4-
difluorocyclopent-1-en-1-yl silyl ether 2a (regioisomer B) in the
presence of copper(I) bromide, (phenylethynyl)copper(I), or
SIMesCuCl in 25, 37, and 10% yields (entries 2−4), respectively.

Received: July 16, 2016

Scheme 1. Syntheses of gem-Difluorocyclopentanone
Derivatives
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Product 2a was obtained with bipyridyl complex 5a or
phenanthroline complexes 5b,c in 39, 62, or 51% yields (entries
5−7).13,14 Eventually, dimethylphenanthroline-based complex
5d was revealed to be the most effective catalyst for the
cycloaddition reaction, affording 2a in 71% yield (entry 8).15−17

The scope of the [4 + 1] cycloaddition with respect to 4,4-
difluorocyclopent-1-en-1-yl silyl ethers 2 is described in Table
2.18 Electron-donating and -withdrawing groups installed on the
aromatic ring at the terminal position (R1) did not affect the
reaction, leading to the corresponding products 2b−d in 61−
70% yields (entries 2−4). 2-Naphthyl-substituted substrate 1e
also afforded the product 2e in 59% yield (entry 5).
Cycloaddition of alkyl-substituted substrate 1f (R1 = n-Pr)

worked well to afford 2f in 57% yield; however, a longer reaction
time was required (entry 6). A methyl group installed at the
internal position (R2) allowed the reaction to afford the desired
product 2g in 76% yield (entry 7). The reaction was also applied
to a cyclic system. Silyl enol ether 2h, bearing a bicyclo[4.3.0]-
nonane skeleton, was efficiently synthesized from cyclic silyl
dienol ether 1h in 63% yield (entry 8).
The obtained silyl enol ethers 2 are useful intermediates for β-

fluorocyclopentenones (eq 1). Upon treatment with tetrabuty-

lammonium fluoride in THF/HCOOH, 2a and 2d underwent
desilylation and dehydrofluorination to provide 4-substituted 3-
fluorocyclopent-2-en-1-ones 6a and 6d in 81 and 85% yields,
respectively. Thus, the copper(I)-catalyzed [4 + 1] cycloaddition
provides a variety of β,β-difluoro- and β-fluorocyclopentanone
derivatives.5

To elucidate the reaction intermediate, we conducted the
following experiment (Scheme 2).When complex 5dwas treated

with sodium bromodifluoroacetate (5.0 equiv) in the presence of
butylamine (10 equiv) at room temperature, isocyanide complex
7d+, losing triphenylphosphine, was observed by high-resolution
mass spectroscopy (HRMS).15 This fact suggested that
phenanthroline-based difluorocarbene complex 8d+ was gen-
erated in situ to be trapped as the aminolysis product 7d+.9b,19

There remained a possibility that in situ generated free
difluorocarbene produced the corresponding isocyanide (n-
BuNC) by the reaction with butylamine, leading to the
generation of 7d+. However, this possibility seems unlikely
because isocyanide was not observed by 1H NMR analysis on
treatment of sodium bromodifluoroacetate (1.0 equiv) with
butylamine (2.0 equiv) in acetonitrile at room temperature for
12 h.20,21

A plausible mechanism is proposed to account for the [4 + 1]
cycloaddition process (Scheme 3). The key difluorocarbene
complex 8d+Br− is generated from a catalyst precursor 5d and
sodium bromodifluoroacetate through the sequence of anion

Table 1. Effect of Copper(I) Complexa

entry Cu(I) complex t (h) 2a (%) 3 (%) 4 (%)

1 none 15 − 35 5
2 CuBr 18 25 3 −
3 CuCCPh 15 37 10 −
4 SIMesCuCl 15 10 10 trace
5 5ab 12 39 40 2
6 5bb 12 62 11 −
7 5cb 18 51 4 −
8 5db 12 71 (70)c 7 2

a19F NMR yield based on an internal standard, (CF3)2C(C6H4p-Me)2,
unless otherwise noted. TBS = Sit-BuMe2, SIMes = 1,3-bis(2,4,6-
trimethylphenyl)imidazolin-2-ylidene, and Phen = 1,10-phenanthro-
line. b5 mol %. cIsolated yield.

Table 2. Copper(I)-Catalyzed Synthesis of 4,4-
Difluorocyclopent-1-en-1-yl Silyl Ethersa

entry 1 R1 R2 2 (%)

1b 1a Ph H 70, 2a
2 1b C6H4p-Me H 70, 2b
3 1c C6H4p-OMe H 61, 2c
4c 1d C6H4p-Br H 62, 2d
5 1e 2-naphthyl H 59, 2e
6c,d 1f n-Pr H 57, 2f
7c 1g Ph Me 76, 2g
8 1h −(CH2)4− 63, 2h

aIsolated yield. TBS = Sit-BuMe2.
bTable 1, entry 8. c2 mol % of 5d.

d36 h.

Scheme 2. HRMS Analysis of Reactive Intermediate
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exchange, decarboxylation, and α-bromine elimination. Unlike
the nickel(II) difluorocarbene complex that promoted cyclo-
propanation of silyl dienol ethers 1,3 copper(I) difluorocarbene
complex 8d+Br− is electrophilic enough to be nucleophilically
attacked by silyl dienol ethers 1 either (I) directly on its CF2
carbon or (II) on its metal center followed by migratory
insertion,22 to generate alkyl copper(I) species [Cu = Cu(4,7-
dimethylphenanthroline)]. The intermediate 9+Br− in turn
undergoes a Michael-type ring closure10b to afford 4,4-
difluorocyclopent-1-en-1-yl silyl ethers 2 ([4 + 1] cycloadducts).
Thus, complex 8d+Br− serves as a one-carbon component in the
[4 + 1] cycloaddition. The resulting copper(I) species 10 reacts
with the second molecule of the carbene source, BrCF2CO2Na,
regenerating the difluorocarbene complex.23

In summary, [4 + 1] cycloaddition of sodium bromodifluor-
oacetate with silyl dienol ethers was achieved to provide β,β-
difluorocyclopentanone-derived silyl enol ethers under
copper(I) catalysis. High-resolution mass spectroscopy analysis
suggested that the reaction would proceed via a copper(I)
difluorocarbene complex. This is an unprecedented example of a
cycloaddition caused by a transition metal difluorocarbene
complex.
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