392 Communications SYNTHESIS

Treatment of 2-ethylthiopropyl phenyl ketone (1a) with 3-chlorobenzeneperoxoic acid or sodium periodate² and chromatographic isolation of the products on a silica gel column affords 1-oxo-1-phenyl-2-butene (2a, propenyl phenyl ketone) in 80 and 78% yields, respectively. Similarly other 2-alkylthioalkyl and 2-phenylthioalkyl ketones (1b-e), 3-ethylthio-3-phenylpropanal (1f), and the 2,2-bis[alkylthio]-alkyl ketones 1g and 1h are converted into the corresponding α,β -unsaturated carbonyl compounds (2b-h) in good yields by oxidative desulfenylation with 3-chlorobenzenecarboperoxoic acid.

Known compounds were identified by comparison of their boiling points, I.R.-, and ¹H-N.M.R. spectra with those of authentic samples. The structures of new compounds 1 were assigned on the basis of microanalyses, I.R.-, and ¹H-N.M.R.-spectral data.

The reactions presumably proceeds via S-oxidation of 1 to give the corresponding 2-oxoalkyl sulfoxide which is then thermally cleaved to give the 2-alkenal or 1-alkenyl ketone 2, respectively, and the corresponding (unstable) sulfenic acid. The 2-oxoalkyl sulfoxide could not, however, be isolated as a side product.

In combination with our present cleavage method, the β -alkylthio- and β -arylthio-carbonyl compounds 1, which are easily prepared from α,β -unsaturated carbonyl compounds (type 2) and thiolate ion via a Michael-type addition, can be utilized as protected α,β -unsaturated carbonyl compounds.

β -Alkylthio- and β -Arylthio-aldehydes and -ketones (1, Aryl or Alkyl 2-Oxoalkyl Sulfides); General Procedure:

A solution of the 2-alkenal or 1-alkenyl ketone (2; 0.01 mol) in ether (20 ml) containing sodium methoxide (from 23 mg sodium and 1 ml methanol) is added dropwise to a stirred solution of an alkylmercaptan or arenethiol (0.015 mol) in ether (10 ml) at 0 °C (ice bath). Stirring is continued for 15 h at room temperature and the mixture then poured into a solution of sodium hydroxide (2 g) in water (50 ml). The mixture is extracted with ether (2 × 50 ml), the extract washed with 0.5 normal hydrochloric acid (50 ml) and water (1 × 50 ml), and dried with magnesium sulfate. The solvent is removed and the residual product purified by distillation or recrystallization.

The 3-oxoaldehyde 1-dithioacetals 1g and 1h are prepared according to Ref.³.

2-Alkenals or 1-Alkenyl Ketones (2) from Compounds 1 by Oxidative Desulfenylation:

Method A, using 3-Chlorobenzenecarboperoxoic Acid; General Procedure: A solution of 3-chlorobenzenecarboperoxoic acid (0.194 g, 1.2 mmol) in chloroform (10 ml) is added slowly to a stirred solution of a sulfenylated aldehyde or ketone (1; 1 mmol) in chloroform

Oxidative Desulfenylation of β -Alkylthio- and β -Arylthio-aldehydes and -ketones to α,β -Unsaturated Carbonyl Compounds

Takehiko Nishio, Yoshimori Омоте

Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki, 300-31, Japan

The versatile reactivity of sulfur substituents in organic molecules provides unique opportunities for devising new reactions and reagents in organic synthesis¹. Particularly useful is the juxtaposition of sulfur substituents and carbonyl groups (2-oxoalkyl sulfides)¹. We report here a facile synthesis of 2-alkenals (2, $R^1 = H$) and 1-alkenyl ketones (2, $R^1 = H$) and 1-alkenyl ketones (2, $R^1 = H$) by the oxidative desulfenylation of the corresponding β -alkylthio- or β -arylthio-carbonyl compounds (1).

Table 1. Preparation of β -Alkylthio- and β -Arylthio-aldehydes and -ketones (1)

1	R¹	R ²	R³	R ⁴	Yield [%]	b.p./torr ^a or m.p. [°C]	Molecular formula ^b
а	C ₆ H ₅	Н	CH ₃	C ₂ H ₅	72	b.p. 123°/2	C ₁₂ H ₁₆ OS (208.3)
b	C_6H_5	Н	CH ₃	C_6H_5	96	b.p. 155°/2	C ₁₆ H ₁₆ OS (256.3)
c	C_6H_5	Н	C_6H_5	C_2H_5	81	m.p. 63-64° (ethanol)	C ₁₇ H ₁₈ OS (270.3)
d	CH ₃	Н	C_6H_5	C_2H_5	93	b.p. 125°/2	$C_{12}H_{16}OS$ (208.3)
e	CH ₃	CH_3	CH ₃	C_2H_5	62	b.p. 60°/2 (b.p. 97-99°/15) ⁷	(====,
f	H	Н	C ₆ H ₅	C_2H_5	50	b.p. 120°/2	C ₁₁ H ₁₄ OS (194.2)
g	C_6H_5	Н	SC_2H_5	C_2H_5	85	m.p. 43-44° (benzene)	$C_{13}H_{18}OS_2$ (254.3)
h	C ₆ H ₅	Н	SCH ₂ C ₆ H ₅	$-CH_2$ C_6H_5	90	b.p. 200°/2	$C_{23}H_{22}OS_2$ (378.4)

a Kugelrohr temperature.

Table 2. Spectral Data of Compounds 1

1	I.R. ν [cm ⁻¹]	¹H-N.M.R. (CDCl₃/TMS) δ [ppm]	1	f.R. ν [cm ¹]	'H-N.M.R. (CDCl ₃ /TMS) δ [ppm]
a b c	3060, 1680, 750, 695 3055, 1680, 750, 690 3060, 3030, 1680, 750, 720, 700, 685 3060, 3030, 1715, 760, 730, 700	1.26 (t, 3 H); 1.36 (d, 2 H, J= 6.6 Hz); 2.60 (q, 2 H); 3.18 (m, 2 H); 3.35-3.55 (m, 1 H); 7.3-7.7 (m, 3 H); 7.85-8.0 (m, 2 H) 1.37 (d, 3 H, J= 6.6 Hz); 2.6-3.45 (m, 2 H); 3.75-3.95 (m, 1 H); 7.2-7.6 (m, 8 H); 7.85-7.95 (m, 2 H) 1.16 (t, 3 H); 2.28 (q, 2 H); 3.53 (d, 2 H, J= 7.1 Hz); 4.59 (t, 1 H, J= 7.1 Hz); 7.15-7.55 (m, 8 H); 7.85-8.0 (m, 2 H) 1.14 (t, 3 H); 2.08 (s, 3 H), 2.37 (q, 2 H); 2.96 (d, 2 H, J= 7.3 Hz); 4.34 (t, 1 H,	e f g	1715, 1360 3060, 3040, 1725, 750, 700 3060, 1690, 755, 685 3060, 3030, 1690, 760, 695	1.24 (t, 3 H); 1.42 (s, 6 H); 2.19 (s, 3 H); 2.58 (q, 2 H); 2.70 (s, 2 H) 1.16 (t, 3 H); 2.28 (q, 2 H); 2.94 (dd, 2 H, J=1.7, 7.4 Hz); 4.36 (t, 1 H, J=7.4 Hz); 7.2–7.6 (m, 5 H); 9.68 (t, 1 H, J=1.7 Hz) 1.25 (t, 6 H); 2.69 (q, 4 H); 3.46 (d, 2 H, J=6.6 Hz); 4.52 (t, 1 H, J=6.6 Hz); 7.2–7.6 (m, 3 H); 7.7–8.0 (m, 2 H) 3.25 (d, 2 H, J=7.2 Hz); 3.80 (s, 4 H); 4.31 (t, 1 H, J=7.2 Hz); 7.1–7.5 (m, 13 H); 7.6–7.8 (m, 2 H)

Table 3. 2-Alkenals (2, R'=H) and 1-Alkenyl Ketones (2, R'=alkyl, aryl) obtained from Compounds 1 by Oxidative Desulfenylation

2	R¹	R ²	R ³	Starting Material	Meth- od ^a	Ratio Oxidizing Agent/1	Yield [%]	b.p./torr or m.p. [°C]		Recovery
								found	reported	of 1 [%]
a	C_6H_5	Н	CH ₃	1a	A	1.2/1	80	85°/2	111-112°/94	16
				1a	Α	2.4/1	86	, , , , , , , , , , , , , , , , , , , ,	/-	trace
				1a	В	1.2/1	78			trace
				1b	Α	1.2/1	*85			6.5
c	C_6H_5	Н	C_6H_5	1c	Α	1.2/1	92	57-58°	58°4	trace
d	CH_3	Н	C_6H_5	1d	Α	1.2/1	89	41-43°	42°4	8
e	CH_3	CH_3	CH_3	1e	Α	1.2/1	58	125°/760	130-131°/760 ⁴	39
f	Н	H	C_6H_5	1f	Α	1.2/1	69	75°/1	130°/20 ⁴	trace
g	C_6H_5	Н	SC_2H_5	1g	Α	1.2/1	70	146-147°/3	125-126°/0.5 ⁵	6
h	C ₆ H ₅	Н	S CH ₂ C ₆ H ₅	1h	Α	1.2/1	91	61.5-62.5°	61.5-62.5°6	trace

^a Method A: 3-chlorobenzenecarboperoxoic acid; Method B: sodium periodate.

(20 ml) cooled in an ice bath. Stirring is continued for 15 h at room temperature, the mixture then poured into concentrated aqueous sodium hydrogen sulfite solution (30 ml), and the resultant mixture extracted with chloroform $(2 \times 50 \text{ ml})$. The extract is washed with sodium hydrogen carbonate solution (50 ml) and then water $(1 \times 50 \text{ ml})$, and is dried with magnesium sulfate. The solvent is removed and the residual oil chromatographed on a silica gel column using benzene/hexane (9/1) as eluent to give product 2 and the starting material 1.

Method B, using Sodium Periodate; Typical Procedure: A solution of sodium periodate (NaJO₄; 0.261 g. 1.2 mmol) in methanol (10 ml) + water (20 ml) is added slowly to a stirred solution 3-ethylthio-1-phenyl-1-butanone (1a; 0.209 g, \sim 1 mmol) in 2-propanol (10 ml) in an ice bath. Stirring is continued for 15 h at room temperature, the mixture then poured into water (30 ml), and extracted with chloroform (2 × 50 ml). The extract is dried with magnesium sulfate, the solvent removed, and the residual oil chromato-

The microanalyses showed the following maximum deviations from the calculated values: C, ± 0.17 ; H, ± 0.35 .

394 Communications SYNTHESIS

graphed on a silica gel column using benzene/hexane (9/1) as eluent to give 1-phenyl-1-butenone (2a) and starting material (1a).

Received: August 8, 1979 (Revised form: October 9, 1979)

0039-7881/80/0532-0394 \$ 03.00

© 1980 Georg Thieme Verlag · Stuttgart · New York

B. M. Trost, *Chem. Rev.* **78**, 363 (1978); *Acc. Chem. Res.* **11**, 453 (1978); and references cited therein.

² A similar oxidative desulfenylation of 2-(1-phenylthioalkyl)-cyclohexanones to 2-alkylidenecyclohexanones using sodium periodate and thermal cleavage has been reported: I. Paterson, I. Fleming, *Tetrahedron Lett.* **1979**, 2179.

³ I. Shahak, Y. Sasson, Tetrahedron Lett. 1973, 4207.

⁴ S. I. Heilbron, Dictionary of Organic Compounds, Eyre and Spottiswoode, London, 1969.

⁵ K. Bowden, E. A. Braude, E. R. H. Jones, *J. Chem. Soc.* **1946**, 945.

⁶ N. Furukawa, M. Fukumura, T. Nishio, S. Oae, *Phosphorus and Sulfur* 5, 191 (1978).

⁷ T. Mukaiyama, T. Izawa, K. Saigo, H. Takei, *Chem. Lett.* 1973, 355.