

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Cleavage of Unactivated Si-C(sp3) Bonds with Reed's Carborane Acids: Clean Formation of Known and Unknown Silylium Ions

Authors: Qian Wu, Zheng-Wang Qu, Lukas Omann, Elisabeth Irran, Hendrik Klare, and Martin Oestreich

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201805637 Angew. Chem. 10.1002/ange.201805637

Link to VoR: http://dx.doi.org/10.1002/anie.201805637 http://dx.doi.org/10.1002/ange.201805637

WILEY-VCH

Cleavage of Unactivated Si–C(sp³) Bonds with Reed's Carborane Acids: Formation of Known and Unknown Silylium Ions

Qian Wu, Zheng-Wang Qu,* Lukas Omann, Elisabeth Irran, Hendrik F. T. Klare, and Martin Oestreich*

Dedicated to Professor Douglas W. Stephan on the occasion of his 65th birthday

Abstract: An efficient method for the benzenium-ion-mediated cleavage of inert $Si-C(sp^3)$ bonds is reported. By this, various tetraalkylsilanes are converted into the corresponding counteranion-stabilized silylium ions. The reaction is chemoselective in the case of hexamethyldisilane. Computations reveal a mechanism with backside attack of the proton at one of the alkyl groups. Likewise, several activated $Si-C(sp^n)$ bonds (n = 3–1) react equally well, and the protocol can be extended to the generation of stannylium ions.

 Me_4Si is considered inert, and that holds true for any quaternary, fully alkyl-substituted silane. Examples of cleavage of unactivated Si–C(sp³) bonds are exceedingly rare and essentially limited to the smallest member Me_4Si [Scheme 1, Eq. (1) and Eq. (2)]. Both hard oxygen nucleophiles^[1] and acids^[2] have been shown to convert Me_4Si into an oxygenated silane with release of methane.^[3,4] Itami and co-workers found that tetraalkylsilanes are rapidly degraded to the corresponding alkanes in supercritical water at high temperature and pressure [Scheme 1, Eq. (3)];^[5] the addition of mineral acid accelerates these reactions.

[*] Dr. Q. Wu, L. Omann, Dr. E. Irran,* Dr. H. F. T. Klare, Prof. Dr. M. Oestreich Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 115, 10623 Berlin (Germany) E-mail: martin.oestreich@tu-berlin.de Homepage: http://www.organometallics.tu-berlin.de

Dr. Z.-W. Qu

Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4, 53115 Bonn (Germany) E-mail: qu@thch.uni-bonn.de Homepage: http://www.thch.uni-bonn.de/tc

[⁺] X-ray crystal-structure analysis.

Supporting information for this article is given via a link at the end of the document.

 $\label{eq:scheme 1} \begin{array}{l} \mbox{Scheme 1.} \ \mbox{Reported methods for Si-C(sp^3) bond cleavage. DMSO = dimethyl sulfoxide. Tf = trifluoromethanesulfonyl; sc = supercritical. \end{array}$

Inspired by the literature precedence, we entertained the idea of employing Reed's carborane acids^[6] such as $H^{+}[CHB_{11}H_{5}Br_{6}]^{-[7]}$ as well as cognate protonated benzene $[C_{6}H_{6}\cdot H]^{+}[CHB_{11}H_{5}Br_{6}]^{-[8]}$ for the cleavage of rather inert Si- $C(sp^{3})$ bonds (Scheme 2).^[9] Unlike the reported methods,^[2,5] its successful implementation would enable the generation of counteranion-stabilized silylium ions^[10] directly from completely unfunctionalized precursors. This strategy would be complementary to the common preparations of silylium ions^[11] by either hydride abstraction from hydrosilanes^[12] or the allylleaving-group approach of sterically hindered systems.^[13] We dislcose here the chemoselective heterolysis of unactivated Si- $C(sp^{3})$ bonds by protonation to arrive at "exceptionally" clean silylium ions. Computations also reveal a rather unexpected mechanism of the bond-breaking event.

Scheme 2. Representative carborane acids and their planned use in the generation of counteranion-stabilized silylium ions.

We began our investigation with $H^{+}[CHB_{11}H_{5}Br_{6}]^{-}$ and quickly found that tetraalkylsilanes are indeed converted into the corresponding counteranion-stabilized silylium ions. However, residual water in $H^{+}[CHB_{11}H_{5}Br_{6}]^{-}$ and difficulties with its removal were detrimental to the purity of the obtained silylium ion-like species. We therefore turned toward easy-to-purify benzenium ion $[C_{6}H_{6}\cdot H]^{+}[CHB_{11}H_{5}Br_{6}]^{-}$. Our reasoning was that it would make no difference to start with either acid as the protonation is performed in benzene. Gratifyingly, $[C_{6}H_{6}\cdot H]^{+}[CHB_{11}H_{5}Br_{6}]^{-}$ transformed several tetraalkylsilanes into counteranionstabilized trialkylsilylium ions of remarkable purity with gas evolution (Table 1); *n*Bu₄Si was included into the survey as it did

COMMUNICATION

allow for the conclusive verification of the released alkane, that is n-butane, by ¹H NMR spectroscopy (entry 3; see the Supporting Information for details). The chemoselectivity of 1° over 2° and 3° alkyl substitution, respectively, was also demonstrated and is explained by steric hindrance (entries 4 and 5). Strikingly, chemoselective cleavage of the Si-C(sp³) was also possible in the presence of the less stable Si-Si bond (bond dissociation enthalpies^[14] for Me₃Si–Me = $395 \pm 4 \text{ kJ/mol versus}$ $Me_3Si-SiMe_3 = 333 \pm 6$ kJ/mol). Again, we attribute this to the sterically more accessible methyl group. This enabled the formation of the previously unavailable silvl-substituted silvlium ion-like [Me₂(Me₃Si)Si]⁺[CHB₁₁H₅Br₆]⁻ (Scheme 3, top); its molecular structure was established by X-ray diffraction (Scheme 3, bottom). Conversely, dodecamethylcyclohexasilane did not yield the targeted silvlium ion; a complex mixture was obtained, probably as a result of rearrangement reactions.^[15]

Table 1: Protonation of unactivated tetraalkylsilanes.

Alkyl	Alkyl —Si-Alkyl Ålkyl	[C ₆ H ₆ ·H] ⁺ [CHB ₁₁ H₅Br ₆ C ₆ D ₆ RT for 1 h	Alk alton AlkyI−Si ⁺ Álk [CHB ₁₁ H₅B	:yl + Alkyl–H :yl r ₆] [–]
Entry	Silane	Alkane	Silylium ion	δ (²⁹ Si) [ppm] ^[a]
1	Me ₄ Si ^[b]	Me–H (methane)	Me₃Si⁺	93.5
2	Et₄Si	Et–H (ethane)	Et ₃ Si ^{+[c]}	100.0
3	<i>n</i> Bu₄Si	<i>n</i> Bu–H (<i>n</i> -butane)	<i>n</i> Bu₃Si⁺	98.0
4	<i>i</i> Pr ₂ Me ₂ Si	Me–H (methane)	<i>I</i> Pr₂MeSi ⁺	100.9
5	<i>t</i> BuMe₃Si	Me–H (methane)	<i>t</i> BuMe₂Si⁺	98.0

[a] Determined by ¹H/²⁹Si HMQC NMR spectroscopy (500/99 MHz, 298 K, optimized for *J* = 7 Hz) in 1,2-Cl₂C₆D₄. [b] 2.0 equiv used due to the volatility of Me₄Si. [c] The solid state ²⁹Si NMR spectrum (CPMAS) of Et₃Si⁺[CHB₁₁H₅Br₆]⁻ has been reported: δ (²⁹Si) = 111.8 and 106.2 ppm.^[10b]

Scheme 3. Chemoselective protonation of disilane (top) and molecular structure of the silyl-substituted silylium ion-like Me₂(Me₃Si)Si⁺[CHB₁₁H₅Br₆]⁻ (bottom; thermal ellipsoids are shown at the 50% probability level; hydrogen

atoms are omitted for clarity); selected bond length (Å) and angles (°): Si–Br: 2.444(4); Si–Si: 2.354(5); Me–Si–SiMe₃: 115.5(5); Me–Si–SiMe₃: 116.0(6); Me–Si–Me: 116.3(8).

To highlight the generality of the method, we subjected representative trialkylsilanes decorated with leaving groups known to be cleaved by protons (Table 2).^[16] Activated Si–C(sp³) bonds as in allyl-^[2,17] and surprisingly benzylsilanes^[18] cleanly afforded the counteranion-stabilized trialkylsilylium ions (entries 1–3). Likewise, vinyl-^[19] and arylsilanes^[20] underwent protodesilylation (entries 4 and 5). These reactions are initiated by protonation of the unsaturated unit and involve the intermediacy of β -silicon-stabilized carbocations.^[21] In turn, the cleavage of an Si–C(sp) bond by protonation would pass through a β -silicon-substituted vinyl cation.^[22] Such reaction was possible but less clean. For example, alkynyl-substituted trimethylsilane led to a complex mixture but [Me₃Si]⁺[CHB₁₁H₅Br₆]⁻ was nevertheless isolated in pure form after precipitation and washing with 1,2-Cl₂C₆D₄ (entry 6).

Table 2: Protonation of activated trialkyl(organo)silanes.

All	Alkyl kyl—Si–LG <u>[C</u> Ålkyl	₆ H ₆ ·H] ⁺ [CHB ₁₁ H₅Br ₆] [−] C ₆ D ₆ RT for 1 h	Alkyl − Alkyl−Ši ⁺ – Alkyl [CHB ₁₁ H ₅ Br ₆	+ LG–H
Entry	Silane	LG-H	Silylium ion	δ (²⁹ Si) [ppm] ^[a]
1	(allyl)Me₃Si	Allyl–H (propene)	Me₃Si⁺	93.1
2	(allyl) <i>i</i> Pr₃Si	Allyl–H (propene)	<i>i</i> Pr₃Si⁺	103.6
3	BnMe₃Si	Bn–H (toluene)	Me₃Si⁺	93.5
4	Me ₃ (vinyl)Si	Vinyl–H (ethylene)	Me₃Si⁺	93.4
5	Me₃PhSi	Ph–H (benzene)	Me₃Si⁺	93.3
6	Me₃(<i>n</i> BuC≡C)Si	[b]	Me₃Si ⁺	93.6

[a] Determined by ${}^{1}\text{H}{}^{29}\text{Si}$ HMQC NMR spectroscopy (500/99 MHz, 298 K, optimized for J = 7 Hz) in 1,2-Cl₂C₆D₄. [b] Formation of hex-1-yne not verified. LG = leaving group.

The method was also applicable to the cleavage of unactivated Sn–C(sp³) bonds and, hence, to the synthesis of trialkylstannylium ions^[13,23] stabilized by the counteranion (Scheme 4). Treatment of *n*Bu₄Sn with [C₆H₆·H]⁺[CHB₁₁H₅Br₆]⁻ gave [*n*Bu₃Sn]⁺[CHB₁₁H₅Br₆]⁻ with a highly deshielded tin atom. Its ¹¹⁹Sn chemical shift of δ 476.8 ppm is in accordance with repor-ted [*n*Bu₃Sn]⁺[CMeB₁₁M₆]⁻ at δ 454.3 ppm.^[23b]

 $\begin{array}{c} & n B u \\ n B u - S n - n B u \\ n B u - S n - n B u \\ R T \text{ for 1 h} \\ R T \text{ for 1 h} \\ [CHB_{11}H_5Br_6]^- \\ R T \text{ for 1 h} \\ [CHB_{11}H_5Br_6]^- \\ \delta (^{119}Sn) 476.8 \text{ ppm} \\ \text{ in 1,2-C_6}D_4Cl_2 \end{array}$

COMMUNICATION

Scheme 4. Protonation of tetraalkylstannane for the generation of the corresponding stannylium ion.

Density functional theory (DFT) calculations were performed at the PW6B95-D3/def2-QZVP + COSMO-RS(benzene) // TPSS-D3/def2-TZVP + COSMO(benzene) level of theory^[24] to provide insight into the mechanism of the protonation of Me₄Si induced by Wheland complex **A**⁺ (Scheme 5). In solution, **A**⁺ exists as a separate ion together with the counteranion [CHB₁₁H₅Br₆]⁻. The proton of **A**⁺ attacks at one of the methyl groups in Me₄Si either opposite to the silicon atom through **TSAB**⁺ or from the side of the Si–C(sp³) bond through **TSAB**^{+*}. The former scenario proceeds with inversion of the configuration at the carbon atom and is kinetically more favorable ($\Delta\Delta G^{\ddagger} = 5.6$ kcal/mol). That step releases CH₄ and the silylium ion **B**⁺ and is exergonic by 11.5 kcal/mol. The same applies to the protonation of the Sn–C(sp³) bond yet with a lower barrier of 13.2 kcal/mol (see the Supporting Information for details).

Scheme 5. DFT computed Gibbs free energy profile (in kcal/mol at 298 K and 1 mol/L reference state) for the protonation of Me_4Si omitting the counteranion. Computations with involvement of $[CHB_{11}H_5Br_6]^-$ are to be found in the Supporting Information.

The method disclosed in this work enables the facile and clean generation of counteranion-stabilized silylium ions from fully alkylated silanes as well as stannanes. The protonation and cleavage of the largely inert Si–C(sp³) bond have been achieved with [C₆H₆·H]⁺[CHB₁₁H₅Br₆]⁻, one of Reed's arenium ions. The reaction involves backside attack of the proton at the Si–C(sp³) bond, resulting in inversion of the configuration at the departing carbon atom. Other Si–C linkages can be cleaved by the same procedure but, depending on the leaving group, e.g., allyl or vinyl, follow different mechanisms with the involvement of β -silicon-stabilized carbocations.

Acknowledgements

Q.W. gratefully acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship (2017–2019), and L.O. thanks the Fonds der Chemischen Industrie for a predoctoral fellowship (2015–2017). Z.-W.Q. thanks Prof. Dr. Stefan Grimme for his support as well as funding through the Deutsche Forschungsgemeinschaft (Leibniz Prize to S.G.). M.O. is indebted to the Einstein Foundation (Berlin) for an endowed professorship.

Keywords: Brønsted acids • carboranes • density functional calculations • protonation • silylium ions

- [1] C. C. Price, J. R. Sowa, J. Org. Chem. 1967, 32, 4126–4127.
- [2] G. A. Olah, A. Husain, B. G. B. Gupta, G. F. Salem, S. C. Narang, J. Org. Chem. 1981, 46, 5212–5214.
- [3] For the oxidative cleavage of unactivated Si–C(sp³) bonds, see: a) F. Kakiuchi, K. Furuta, S. Murai, Y. Kawasaki, *Organometallics* **1993**, *12*, 15–16 and cited references; b) J. H. Smitrovich, K. A. Woerpel, J. Org. Chem. **1996**, *61*, 6044–6046.
- [4] For transition-metal-catalyzed intermolecular Si–C(sp³) bond activation, see: a) A. F. Heyduk, J. A. Labinger, J. E. Bercaw, *J. Am. Chem. Soc.* 2003, *125*, 6366–6367; b) C. M. Ong, T. J. Burchell, R. J. Puddephatt, Organometallics 2004, *23*, 1493–1495; c) M. Yu, X. Fu, *J. Am. Chem. Soc.* 2011, *133*, 15926–15929.
- a) K. Itami, K. Terakawa, J.-i. Yoshida, O. Kajimoto, *J. Am. Chem. Soc.* **2003**, *125*, 6058–6059; b) K. Itami, K. Terakawa, J.-i. Yoshida, O. Kajimoto, *Bull. Chem. Soc. Jpn.* **2004**, *77*, 2071–2080.
- a) C. A. Reed, Acc. Chem. Res. 2013, 46, 2567–2575; b) C. A. Reed, Acc. Chem. Res. 2010, 43, 121–128; c) C. A. Reed, Chem. Commun.
 2005, 1669–1677; d) C. A. Reed, Acc. Chem. Res. 1998, 31, 133–139.
- [7] C. A. Reed, K.-C. Kim, R. D. Bolskar, L. J. Mueller, Science 2000, 289, 101–104.

[8] a) C. A. Reed, N. L. P. Fackler, K.-C. Kim, D. Stasko, D. R. Evans, P. D. W. Boyd, C. E. F. Rickard, *J. Am. Chem. Soc.* **1999**, *121*, 6314–6315;
b) D. Stasko, C. A. Reed, *J. Am. Chem. Soc.* **2002**, *124*, 1148–1149; c)
C. A. Reed, K.-C. Kim, E. S. Stoyanov, D. Stasko, F. S. Tham, L. J. Mueller, P. D. W. Boyd, *J. Am. Chem. Soc.* **2003**, *125*, 1796–1804.

[9] For the protonation of alkanes by a carborane acid, see: M. Nava, I. V. Stoyanova, S. Cummings, E. S. Stoyanov, C. A. Reed, Angew. Chem. Int. Ed. 2014, 53, 1131–1134; Angew. Chem. 2014, 126, 1149–1152.

- [10] a) C. A. Reed, Z. Xie, R. Bau, A. Benesi, *Science* 1993, *262*, 402–404;
 b) Z. Xie, R. Bau, A. Benesi, C. A. Reed, *Organometallics* 1995, *14*, 3933–3941;
 c) Z. Xie, J. Manning, R. W. Reed, R. Mathur, P. D. W. Boyd, A. Benesi, C. A. Reed, *J. Am. Chem. Soc.* 1996, *118*, 2922–2928.
- [11] For general reviews of silylium ion chemistry, see: a) V. Ya. Lee, A. Sekiguchi in Organosilicon Compounds, Vol. 1 (Ed.: V. Ya. Lee), Academic Press, Oxford, 2017, pp. 197–230; b) T. Müller in Structure and Bonding, Vol. 155 (Ed.: D. Scheschkewitz), Springer, Berlin, 2014, pp. 107–162; c) T. Müller in Science of Synthesis: Knowledge Updates 2013/3 (Ed.: M. Oestreich), Thieme, Stuttgart, 2013, pp. 1–42; d) H. F. T. Klare, M. Oestreich, Dalton Trans. 2010, 39, 9176–9184.
- [12] J. Y. Corey, J. Am. Chem. Soc. 1975, 97, 3237-3238.
- [13] J. B. Lambert, Y. Zhao, H. Wu, W. C. Tse, B. Kuhlmann, J. Am. Chem. Soc. 1999, 121, 5001–5008.
- [14] J. Z. Dávalos, T. Baer, J. Phys. Chem. A 2006, 110, 8572–8579.
- a) L. Albers, J. Baumgartner, C. Marschner, T. Müller, *Chem. Eur. J.* **2016**, *22*, 7970–7977; b) L. Albers, S. Rathjen, J. Baumgartner, C. Marschner, T. Müller, *J. Am. Chem. Soc.* **2016**, *138*, 6886–6892.
- [16] a) T. H. Chan, I. Fleming, Synthesis 1979, 761–786; b) C. Eaborn, Pure Appl. Chem. 1969, 375–388.
- a) T. Morita, Y. Okamoto, H. Sakurai, *Tetrahedron Lett.* **1980**, 835–838;
 b) G. A. Olah, A. Husain, B. P. Singh, *Synthesis* **1983**, 892–895.
- [18] Benzylsilanes preferentially undergo electrophilic aromatic substitution.^[16a] For a rare example of protodebenzylation, see: H. H.

COMMUNICATION

Szmant, O. M. Devlin, G. A. Brost, J. Am. Chem. Soc. 1951, 73, 3059– 3061.

- [19] I. M. Salimgareeva, O. Zh. Zhebarov, N. G. Bogatova, V. P. Yur'ev, *Zh. Obshch. Khim.* **1981**, *51*, 420–425.
- [20] a) C. Eaborn, J. Chem. Soc. 1956, 4858–4864; b) O. Allemann, S. Duttwyler, P. Romanato, K. K. Baldridge, J. S. Siegel, Science 2011, 332, 574–577.
- [21] a) J. B. Lambert, Y. Zhao, R. W. Emblidge, L. A. Salvador, X. Liu, J.-H. So, E. C. Chelius, Acc. Chem. Res. **1999**, *32*, 183–190; b) J. B. Lambert, *Tetrahedron* **1990**, *46*, 2677–2689.
- [22] A. V. Vasilyev, Russ. Chem. Rev. 2013, 82, 187-204.
- [23] a) M. Kira, T. Oyamada, H. Sakurai, J. Organomet. Chem. 1994, 471, C4–C5; b) I. Zharov, B. T. King, Z. Havlas, A. Pardi, J. Michl, J. Am. Chem. Soc. 2000, 122, 10253–10254; c) F. Forster, V. M. Rendón López, M. Oestreich, J. Am. Chem. Soc. 2018, 140, 1259–1262.
- [24] a) TURBOMOLE V7.0 2015, a development of the University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007,

TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com; b) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; c) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154119; d) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465; e) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; f) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143-152; g) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124; h) P. Deglmann, K. May, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2004, 384, 103-107; i) F. Eckert, A. Klamt in COSMOtherm, Version C3.0, Release 14.01, COSMOlogic GmbH & Co., Leverkusen, Germany, 2013; j) F. Eckert, A. Klamt, AIChE J. 2002, 48, 369-385; k) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799-805; I) A. J. Klamt, Phys. Chem. 1995, 99, 2224-2235; m) S. Grimme, Chem. Eur. J. 2012, 18, 9955–9964; n) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.

This article is protected by copyright. All rights reserved.

WILEY-VCH

COMMUNICATION

Suggestion for the Entry for the Table of Contents

COMMUNICATION

Watch your back! The benzenium ion $[C_6H_6 \cdot H]^+[CHB_{11}H_5Br_6]^-$ enables the cleavage of inert Si–C(sp³) bonds, yielding counteranion-stabilized silylium ions. As shown for Me₄Si, the protonation proceeds with inversion at the carbon atom (see scheme). The method is broadly applicable to tetraalkylsilanes and extends to various activated Si–C(spⁿ) bonds (n = 3–1). The related stannylium ions can be made in the same way.

Q. Wu, Z.-W. Qu,* L. Omann, E. Irran, H. F. T. Klare, M. Oestreich*

Page No. – Page No.

Cleavage of Unactivated Si–C(sp³) Bonds with Reed's Carborane Acids: Formation of Known and Unknown Silylium Ions

This article is protected by copyright. All rights reserved.