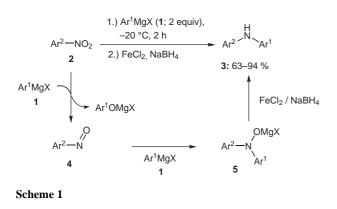
Preparation of Polyfunctional Amines by the Addition of Functionalized Organomagnesium Reagents to Nitrosoarenes

Felix Kopp, Ioannis Sapountzis, Paul Knochel*

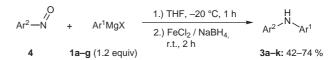

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377 München, Germany Fax +49(89)21807680; E-mail: knoch@cup.uni-muenchen.de

Received 19 March 2003

Abstract: The addition of functionalized arylmagnesium reagents to nitrosoarenes at -20 °C in THF furnishes after a reductive work-up polyfunctional diarylamines in 43–74% yield.

Key words: diarylamines, nitrosoarenes, organomagnesium reagents, arylation of amines, amination reaction

The amination of aryl halides is an important reaction.¹ Recently, several $Pd(0)^2$ and $Cu(I)^3$ catalyzed reactions between aromatic halides and various amines have been reported.⁴ We found that this synthetic transformation can also be realized by reacting various polyfunctional arylmagnesium species 1 with nitroarenes 2 leading after a reductive workup procedure to polyfunctional amines of type 3 (Scheme 1).⁵ This reaction requires two equivalents of the arylmagnesium reagent **1** since a first equivalent is wasted for the generation of the reactive nitrosoarene 4, which reacts in a second step with Ar¹MgX **1** providing the magnesiated hydroxylamine **5**.⁶ After reduction with $FeCl_2/NaBH_4$ the amines 3 are produced in good yields. Since a wide range of polyfunctional arylmagnesium reagents $\mathbf{1}^7$ can be used for this amination, the waste of one equivalent of Ar¹MgX (converted to Ar¹OH) is disturbing. This could now be avoided by using directly the nitrosoarene⁸ 4 for the amination reaction. Herein, we wish to report an efficient method



Synlett 2003, No. 6, Print: 05 05 2003. Art Id.1437-2096,E;2003,0,06,0885,0887,ftx,en;G03203ST.pdf. © Georg Thieme Verlag Stuttgart · New York

ISSN 0936-5214

allowing the direct addition of various arylmagnesium compounds 1 to various nitrosoarenes 4 leading after reductive workup to the polyfunctional diarylamines 3a-k (Scheme 2 and Table 1).

The reaction mixture of PhMgCl (1a; 1.2 equiv) with nitrosobenzene (4a; 1 equiv) in THF at -20 °C was stirred for 1 h and treated with FeCl₂/NaBH₄ at 25 °C for 2 h affording diphenylamine (3a) in 68% yield (entry 1 of Table 1). Several functionalized arylmagnesium compounds (1b-f) bearing either electron-withdrawing or electron-donating groups add to nitrosobenzene 4a in satisfactory yields (entries 2-6). Functionalized or substituted nitrosobenzenes like 4b-c undergo the addition reaction furnishing the polyfunctional diarylamines 3g-k in 42-74% yield (entries 7-11). This new procedure allows the preparation of polyfunctional diarylamines **3** bearing various functional groups with an optimum atom economy, since only 1.2 equivalents of the Grignard reagent are used compared to 2.3 equivalents, which are required in the reaction with nitroarenes.

Scheme 2

In summary, we have developed a new synthesis of polyfunctional diarylamines by the addition of arylmagnesium halides to nitrosoarenes. The study of the extension of this reaction is currently underway in our laboratories.

Preparation of 4-Iodophenyl-phenylamine (3d); Typical Procedure

A dry, argon-flushed Schlenk-flask equipped with a septum and a magnetic stirring bar was charged with 1,4-diiodobenzene (791 mg, 2.40 mmol, 1.2 equiv) in anhydrous THF (8 mL) and cooled to -20 °C. *i*-PrMgCl (3.30 mL, 2.64 mmol, 1.3 equiv; 0.8 M in THF) was added dropwise via a cannula. The resulting mixture was stirred 0.5 h at -20 °C. When the iodine-magnesium-exchange was complete (as indicated by GC-MS-analysis of a reaction aliquot), nitrosobenzene (**4a**; 214 mg, 2.00 mmol) was added neat as one portion and the mixture was stirred for another 1.5 h at -20 °C. After quenching the reaction mixture by addition of ethanol (1 mL), it was allowed to warm up to room temperature. Iron(II)chloride (507 mg, 4.00 mmol, 2.0 equiv) and sodium borohydride (76 mg, 2.00 mmol, 1.0 equiv) were added. The reaction mixture was stirred for 2 h at

room temperature and poured into brine (30 mL). The aqueous layer was extracted with diethyl ether (3×30 mL), the combined organic extracts were washed with brine (50 mL) and dried (Na₂SO₄). The solvent was removed in vacuo and the crude product was purified by flash chromatography (silica gel, pentane/CH₂Cl₂, 7:1). After chromatographical purification, the product was dried in high vacuum, dissolved again in ether and filtered over cotton wool. Removal of solvent afforded the product (**3d**) as pale yellow, crystalline solid (419 mg, 1.42 mmol, 71% yield).⁹

Table 1	Polyfunctional Diarylamines of Type 3 Obtained by the Reaction of Arylnitroso Compounds 4 with Functionalized Arylmagnesium
Reagents	91

Entry	Ar ² NO 4	Ar ¹ MgX 1	Diarylamines 3	Yield (%) ^a
1	PhNO 4a	PhMgCl 1a	Ja H	68
2	PhNO 4a	<i>p</i> -EtO ₂ C-C ₆ H ₄ -MgCl 1b	EtO ₂ C Bb	73
3	PhNO 4a	<i>p</i> -MeO-C ₆ H ₄ -MgBr 1c	MeO 3c	50
4	PhNO 4a	<i>p</i> -I-C ₆ H ₄ -MgCl 1d	H 3d	71
5	PhNO 4a	<i>p</i> -Br-C ₆ H ₄ -MgCl 1e	Br Br	43
6	PhNO 4a	<i>m</i> -CN-C ₆ H ₄ -MgCl 1f	NC H 3f	58
7	<i>o</i> -Me-C ₆ H ₄ -NO 4b	<i>p</i> -COOEt-C ₆ H ₄ -MgCl 1b	EtO ₂ C 3g	42
8	p- Me ₂ N-C ₆ H ₄ NO 4 c	PhMgCl 1a	Jg H NMe ₂ Jh	73

Ar²NO 4 Ar¹MgX 1 Entry Diarylamines 3 Yield (%)^a p-Me₂N-C₆H₄-NO p-EtO₂C-C₆H₄-MgCl 9 72 4c 1b EtO₂C NMe₂ 3i 10 p-Me₂N-C₆H₄-NO p-MeO-C₆H₄-MgBr 74 4c 1c MeC NMe₂ 3j 11 o-Me2N-C6H4-MgCl 60 p-Me₂N-C₆H₄-NO NMe 4c 1g NMe₂ 3k

 Table 1
 Polyfunctional Diarylamines of Type 3 Obtained by the Reaction of Arylnitroso Compounds 4 with Functionalized Arylmagnesium

 Reagents 1 (continued)
 Polyfunctional Diarylamines of Type 3 Obtained by the Reaction of Arylnitroso Compounds 4 with Functionalized Arylmagnesium

Acknowledgment

We thank the Aventis Pharma (Frankfurt a. M.) for a fellowship to I. S. We thank the Fonds der Chemischen Industrie for the generous support of research. We also thank the BASF AG, Degussa AG, Chemetall GmbH and Bayer AG for generous gifts of chemicals.

References

- (1) *Modern Amination Methods*; Ricci, A., Ed.; Wiley-VCH: Weinheim, **2000**.
- (2) (a) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125. (b) Wolfe, J. P.; Wagan, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
 (c) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046.
 (d) Alcazar-Roman, L. M.; Hartwig, J. F.; Rheingold, A. L.; Liable-Sands, L. M.; Guzei, I. A. J. Am. Chem. Soc. 2000, 122, 4618.
- (3) (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. (b) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803. (c) Shen, R.; Porco, J. A. Org. Lett. 2000, 2, 1333. (d) Kalinin, A. V.; Bower, J. F.; Riebel, P.; Snieckus, V. J. Org. Chem. 1999, 64, 2986.
- (4) For nickel-catalyzed aminations: (a) Lipshutz, B. H.; Ueda, H. Angew. Chem. Int. Ed. 2000, 39, 4492. (b) Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 247.
- (5) Sapountzis, I.; Knochel, P. J. Am. Chem. Soc. 2002, 124, 9390.

- (6) (a) Köbrich, G.; Buck, P. *Chem. Ber.* **1970**, *103*, 1412.
 (b) Yost, Y.; Gutmann, H. R.; Muscoplat, C. C. J. Chem. Soc. C **1971**, 2119.
- (7) (a) Jensen, A. E.; Dohle, W.; Sapountzis, I.; Lindsay, D. M.;
 Vu, V. A.; Knochel, P. *Synthesis* 2002, 265. (b) Rottländer,
 M.; Boymond, L.; Bérillon, L.; Leprêtre, A.; Varchi, G.;
 Avolio, S.; Laaziri, H.; Quéguiner, G.; Ricci, A.; Cahiez, G.;
 Knochel, P. *Chem.-Eur. J.* 2000, *6*, 767.
- (8) Recently, the utility of addition reactions of silyl enol ethers to N=O-bonds has been demonstrated: (a) Momoyama, N.; Yamamoto, H. *Angew. Chem. Int. Ed.* 2002, *41*, 2986.
 (b) Momoyama, N.; Yamamoto, H. *Org. Lett.* 2002, *4*, 3579.
- (9) Analytical data of 3d: Mp: 103–104 °C; ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 5.59 (br s, 1 H, NH), 6.73–6.76 (d, ${}^{3}J$ = 8.48 Hz, 2 H, CH_{arom.}), 6.87–6.99 (m, 3 H, CH_{arom.}), 7.18–7.23 (m, 2 H, CH_{arom}), 7.42–7.45 (d, ³J = 8.48 Hz, 2 H, CH_{arom}); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: δ [ppm] = 82.07, 118.53, 119.25, 121.80, $129.42, 138.06, 142.16, 143.13; \text{ IR (KBr): } [\text{cm}^{-1}] = 3399 \text{ (s)},$ 3054 (w), 3028 (w), 1932 (w), 1603 (s), 1581(vs), 1503(vs), 1482(vs), 1441 (m), 1387 (m), 1338 (w), 1315(vs), 1282 (m), 1238 (m), 1175 (m), 1154 (w), 1106 (w), 1078 (w), 1058 (w), 1027 (w), 1000 (w), 932 (w), 873 (w), 836 (m), 826 (m), 806 (m), 749 (s), 702 (m), 691 (s), 670 (w), 650 (w), 626 (w), 588 (w), 502 (m), 488 (w); MS (EI): m/z (I): 295 (100, M⁺), 167 (31), 139 (2), 84 (8), 77 (2); HRMS: calcd: 294.9858; found: 294.9856; C₁₂H₁₀IN: calcd: C: 48.84; H: 3.42; N: 4.75; I: 43.00; found: C: 48.93; H: 3.40; N: 4.74; I: 42.99.