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Identification and Counting of Carbonyl and
Hydroxyl Functionalities in Protonated
Bifunctional Analytes by Using Solution
Derivatization Prior to Mass Spectrometric
Analysis Via Ion-Molecule Reactions
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A mass spectrometric method has been developed for the identification of carbonyl and hydroxyl
functional groups, as well as for counting the functional groups, in previously unknown
protonated bifunctional oxygen-containing analytes. This method utilizes solution reduction
before mass spectrometric analysis to convert the carbonyl groups to hydroxyl groups. Gas-phase
ion-molecule reactions of the protonated reduced analytes with neutral trimethylborate (TMB) in
a FT-ICR mass spectrometer give diagnostic product ions. The reaction sequence likely involves
three consecutive steps, proton abstraction from the protonated analyte by TMB, addition of the
neutral analyte to the boron reagent, and elimination of a neutral methanol molecule. The number
of methanol molecules eliminated upon reactions with TMB reveals the number of hydroxyl
groups in the analyte. Comparison of the reactions of the original and reduced analytes reveals the
presence and number of carbonyl and hydroxyl groups in the analyte. (J Am Soc Mass Spectrom
2010, 21, 773–784) © 2010 American Society for Mass Spectrometry
One of the major research areas in mass spec-
trometry (MS) is the development of better
methods for the identification of unknown

compounds directly in mixtures. Techniques that are
currently utilized for these analyses, such as NMR
and X-ray crystallography [1], are powerful but time-
consuming, and often require high-purity samples
and relatively large quantities of the analytes. Tan-
dem mass spectrometry (MS/MS) is ideally suited for
obtaining structural information on species present in
mixtures because it does not require pure samples,
consumes a minimal amount of sample, and is fast,
highly sensitive, and has a high specificity of detec-
tion [2, 3]. Typically, MS/MS experiments involve the
generation of protonated analytes that are mass-selected
and characterized by techniques such as exact mass mea-
surements [4], collision-activated dissociation [5] (CAD),
and H/D exchange reactions [6]. Though a wealth of
information can be obtained from these experiments,
unambiguous identification of the functional groups in
unknown compounds is difficult to achieve.
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Gas-phase ion-molecule reactions present a powerful
approach for obtaining structurally informative data for a
variety of compounds, from simple organic molecules to
complex biomolecules, because they occur at low energies
and can lead to a diagnostic product ion that affords
functional group identification [7]. In some cases, ion-
molecule reactions combined with collision-activated dis-
sociation have provided structurally informative fragment
ions [8]. Past work on ion-molecule reactions has focused
mainly on obtaining functional group information for
neutral analytes by using ionic reagents [9, 10]. These
reagents include boron compounds. For example, gas-
phase reactions of dimethoxyborenium ion, a major frag-
ment ion of protonated trimethylborate (TMB), and the
TMB molecular ion, have been demonstrated to allow the
identification of functional groups present in neutral alco-
hols, aldehydes, ethers, ketones, and some biologically
active molecules containing hydroxyl groups [9]. Few
studies have also appeared wherein neutral reagents were
used to identify the functional groups present in ionized
analytes [11]. Identification of functional groups in ionic
analytes is of special interest since this approach is needed
for the identification of analytes evaporated and proton-
ated by the widely used techniques MALDI and ESI.

A previous study from our laboratories resulted in

an ion-molecule reaction-based method for the partial
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identification of functional groups in protonated bifunc-
tional oxygen-containing compounds, including diols,
hydroxyethers. and hydroxyketones [11i]. However, the
less basic functional group in protonated hydroxy-
ketones, the hydroxyl group, could not be identified in the
presence of the keto group. We report here a method
combining solution derivatization [12–14] and mass spec-
trometric ion-molecule reactions that allows the identifi-
cation and counting of both hydroxyl and keto function-
alities in protonated bifunctional compounds.

Experimental

The experiments were performed in two different FT-
ICR instruments, an Extrel (Madison, WI, USA) model
FTMS 2001 and a Finnigan (San Jose, CA, USA) model
FTMS 2001, each equipped with an Odyssey data sta-
tion. These instruments contain a dual cell consisting of
two identical cubic 2-in. cells separated by a conduc-
tance limit plate. Each dual cell is aligned collinearly
with the magnetic field of a superconducting magnet.
The conductance limit plate has a 2-mm hole in the
center for the transfer of ions from one side into the
other. The conductance limit plate and the two end
trapping plates were maintained at �2.0 V in both the
instruments unless otherwise stated. The Extrel FTMS
2001 mass spectrometer contains a 3 T superconducting
Scheme
magnet operated at �2.7 T, and two Balzers (Amherst,
NH, USA) turbomolecular pumps (330 L/s), each
backed by an Alcatel (Hingham, MA, USA) 2012 me-
chanical pump. Finnigan FTMS 2001 mass spectrometer
contains a 3 T superconducting magnet, and two Ed-
wards (Tewksbury, MA, USA) Diffstak 160 diffusion
pumps (700 L/s), each backed by an Alcatel 2012
mechanical pump. A nominal baseline pressure of less
than 1 � 10�9 Torr was measured in both instruments
by Bayard-Alpert ionization gauges located on each
side of the dual cell. Liquid samples were introduced
into the instruments either by using a batch inlet system
equipped with Andonian (New Bedford, MA, USA) leak
valves or via a Varian leak valve (Palo Alto, CA, USA). A
manual solids probe was used to introduce solid samples
into the Extrel FTMS 2001 instrument, whereas an auto-
matic solids probe was used to introduce solid samples
into the Finnigan FTMS 2001 instrument.

All chemicals were purchased from the Sigma-
Aldrich Co. (St. Louis, MO, USA) and used without
further purification. The analytes were protonated by
self-chemical ionization (self-CI). This was achieved by
allowing the fragment ions of the neutral analytes
generated upon electron ionization (EI) to react with the
neutral analyte for a certain period of time (1–10 s).
Typical electron ionization parameters were 0.05–3.0 s
electron beam time, 25–70 eV electron energy, and 8.0
1



Reference [11i].
(1o) � primary product; (2o) � secondary product.
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Table 1. Derivatization products (m/z values and formation reactions) of reactions between protonated carbonyl compounds and
TMB, and the SORI-CAD fragment ions and H/D exchange (D2O) products of the singly derivatized carbonyl compounds

Protonated analyte
(m/z of (M � H)�)

Proton
affinity

(kcal/mol)

Singly derivatized analyte
(adduct - CH3OH) and other

productsa (m/z)
SORI-CAD fragments of
adduct - CH3OH (m/z)

H/D exchange of
adduct - CH3OH

(m/z)

Propanaldehyde (59) 187.9c (1o) Adduct - CH3OH (131) B(OCH3)2
� (73) No H/D exchange

product(1o) TMB � H� (105)
(2o) 2TMB � H� - CH3OH (177)

3-Hydroxy-2-propanone (75) 198d Adduct - CH3OH (147) Adduct - 2CH3OH (115) H/D exchange
product (148)

Adduct - 2CH3OH
(115)

2,2-Dimethyl-3-hydroxypropanal
(103)

Adduct - CH3OH (175) Adduct - 2CH3OH (143) No H/D exchange
product

5-Hydroxy-2-pentanone (103) �221d No reaction N/Ab N/Ab

3-Ethyl-2,4-pentanedione (129) Adduct - 2CH3OH (169) N/Ab No H/D exchange
product

1,4-Cyclohexanedione (113) 194.2c (1o) Adduct - CH3OH (185) Adduct - H2O (167) No H/D exchange
product(1o) TMB � H� (105) Adduct - 2CH3OH (153)

(2o) 2TMB � H� - CH3OH (177) Adduct - HOB(OCH3)2 (95)
B(OCH3)2

� (73)

aOnly derivatization products containing the most abundant 11B isotope are listed (all products observed also contain a 10B isotope present in an
abundance of 25% relative to the most stable isotope).
bN/A � Singly derivatized analyte was not observed and hence SORI-CAD was not performed.
cReference [22].
d

Scheme 2
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�A filament current. Nominal base pressure of the
neutral reagents varied between 4.0 � 10�8 and 6.0 �
10�8 Torr, as measured by the ion gauges. All the ions
in the other side of the dual cell were removed before
ion transfer by changing the remote trapping plate
voltage from �2.0 V to �2.0 V for 12 ms. The proton-
ated analyte was transferred into the other cell by
grounding the conductance limit plate (75–140 �s). The
transferred ions were cooled for about 1 s via IR
emission [15] and by collisions with Ar present at about
10�5 torr. The protonated analyte was isolated by using
a stored-waveform inverse Fourier transform [16]
(SWIFT) excitation pulse to eject all unwanted ions, and
allowed to react with TMB (reaction times were from
0.05 to about 500 s).

Some of the reaction product ions were further
probed by SWIFT isolation and subjecting them to
either sustained off-resonance irradiated collision-
activated dissociation [17] (SORI-CAD) or H/D ex-
change reactions. In these experiments, the ion of
interest was generated in one cell and then transferred
into the other cell fur further studies. SORI-CAD exper-
iments utilized off-resonance excitation of the isolated ion
at a frequency �1000 Hz off the cyclotron frequency of the
ion. This experiment was carried out for about 1 s in the
Scheme
presence of an inert gas (�10�5 Torr of argon). H/D
exchange reactions were carried out by allowing the ions
to react with D2O (reaction times varied from 0.1 to about
50 s).

During the ion-molecule reactions, the neutral reagent
(TMB) was present at a constant pressure and its concen-
tration was in excess of that of the ion of interest. Hence,
these reactions follow pseudo-first-order kinetics. The
reaction efficiencies (Eff. � kreaction/kcollision; the fraction of
ion-molecule collisions that results in the formation of
products) were determined by using the measured rate
of the highly exothermic electron-transfer reaction be-
tween argon radical cation and the neutral reagent. As-
suming that this exothermic electron-transfer reaction
proceeds nearly at the collision rate (with the rate constant
kcollision that can be calculated [18–20]), efficiencies of the
ion-molecule reactions can be obtained by using the
equation shown below. This equation is based on the ratio
of the slopes (kreaction � [TMB] � slope (IM) and kcollision �
[TMB] � slope (ET)) of plots of the natural logarithm of
the relative abundance of the reactant ion versus time
determined for the ion-molecule (IM) and exothermic
electron-transfer (ET) reactions (thus eliminating the need
to know [TMB]), masses of the ion (Mi), neutral reagent
(Mn), and argon (M(ET)), and the pressure measured for
3
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the neutral reagent during the ion-molecule reaction
(Pn(IM)) and the electron-transfer reaction (Pn(ET)). The
accuracy of the efficiencies is estimated to be �50%, but
their precision is better than �10%.

Efficiency �
slope (IM)

slope (ET)
*�Mi(M(ET) � Mn)

M(ET)(Mi � Mn)�
1⁄2

* �Pn(ET)

Pn(IM)
� * 100

Table 2. Derivatization products (m/z values and formation reac
and TMB, and H/D exchange (D2O) products of the singly deriv

Analyte (MW)
Reduced analyte
(m/z of (M � H)�)

Propanaldehyde (58) Propanol (61)

3-Hydroxy-2-propanone (74) 1,2-Propanediol (77)

5-Hydroxy-2-pentanone (102) 1,4-Pentanediol (105)

1,4-Cyclohexanedione (112) 1,4-Cyclohexanediol (117)

3-Ethyl-2,4-pentanedione (128) 3-Ethyl-2,4-pentanediol (13

2,2-Dimethyl-3- hydroxypropanal
(102)

2,2-Dimethyl-1,3-propaned
(105)

aOnly derivatization products containing the most abundant 11B isotop
abundance of 25% relative to the most stable isotope).
(1o) � primary product; (2o) � secondary product.

Table 3. Derivatization products (m/z values and formation reac
with TMB, and H/D exchange (D2O) products of the singly deriv

Authentic alcohol
(m/z of (M � H)�)

Singly boron deriva
CH3OH) and oth

Propanol (61) (1o) Adduct - CH3OH
(1o) TMB � H� (105)

(2o) 2TMB � H� -
1,2-Propanediol (77) (1o) Adduct - CH3OH

(2o) Adduct � TM
(1o) TMB � H� (105)

(2o) 2TMB � H� -
1,4-Pentanediol (105) (1o) Adduct - CH3OH

(2o) Adduct � TM
1,4-Cyclohexanediol (117) (1o) Adduct - CH3OH

(2o) Adduct � TM
(2o) Adduct � TM

2,2-Dimethyl-1,3-propanediol (105) (1o) Adduct - CH3OH
(2o) Adduct � TM

aOnly derivatization products containing the most abundant 11B isotop

abundance of 25% relative to the most stable isotope).
(1o) � primary product; (2o) � secondary product.
After reactions, all ions were excited for detection by using
chirp excitation at a bandwidth of 2.7 MHz, amplitude of
124 Vp-p and a sweep rate of 3200 Hz �s�1. Background
spectra were recorded by removing the ion of interest by
SWIFT ejection before reaction or SORI-CAD. All the
spectra were background corrected by subtracting the
background spectra from the reaction spectra. The spectra
were recorded as 128 k data points and by using one
zero-fill before Fourier transform.

All theoretical energies were calculated with the
Gaussian 98 suite of programs [21]. Geometry opti-

) of reactions between protonated reduced carbonyl compounds
reduced carbonyl compounds

Singly boron derivatized analyte
(adduct - CH3OH) and other

productsa (m/z)
H/D exchange of

adduct - CH3OH (m/z)

1o) Adduct - CH3OH (133) H/D exchange product
(134)1o) TMB � H� (105)

(2o) 2TMB � H� - CH3OH (177)
1o) Adduct - CH3OH (149) Two H/D exchange

products (150,151)(2o) Adduct � TMB - 2CH3OH (221)
1o) TMB � H� (105)

(2o) 2TMB � H� - CH3OH (177)
1o) Adduct - CH3OH (177)) Two H/D exchange

products (178,179)(2o) Adduct � TMB - 2CH3OH (249)
1o) Adduct - CH3OH (189) Two H/D exchange

products (190,191)(2o) Adduct � TMB - 2CH3OH (261)
(2o) Adduct � TMB - 3CH3OH (229)

1o) Adduct - CH3OH (205) Two H/D exchange
products (206,207)(2o) Adduct � TMB - 2CH3OH (277)

(2o) Adduct � TMB - 3CH3OH (245)
1o) Adduct - CH3OH (177)

(2o) Adduct � TMB - 2CH3OH (249)
Two H/D exchange

products (178,179)

listed (all products observed also contain a 10B isotope present in an
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d alcohols

analyte (adduct -
oductsa (m/z)
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mizations and vibrational frequency calculations
were performed using density functional theory at
the B3LYP/6-31G(d) level. All theoretical energies are
presented at 0 K and include zero-point vibrational
energy corrections.

Derivatization Procedure for the Reduction of
Carbonyl Compounds to the Corresponding
Hydroxyl Compounds (Scheme 1)

To one mmol of the carbonyl compound, about 3 ml
of methanol was added and stirred for about 5 min.
The mixture was placed in an ice bath, and about 1.2
equivalent of NaBH4 was added. Once H2 evolution
ceased, the reaction mixture was brought to room-
temperature and stirring continued under N2 atmo-
sphere for about 2 h. The reaction mixture was then

Figure 1. Reaction of TMB with protonated di
ions of m/z 241, 273, 281, and 313 are chemical im

189, and 229 with TMB diffusing into this cell from t
exposed to vacuum to remove methanol, followed by
addition of water to the resultant solid. The product
was extracted by using diethyl ether. Anhydrous
NaHSO3 was added to the ether layer followed by
filtration. The ether was removed by evaporation and
the product was vacuum dried to remove any resid-
ual solvent.

Results and Discussion

Partial Derivatization of the Functional Groups in
Protonated Carbonyl Compounds Upon Reaction
with TMB

The reactions of protonated monofunctional hydroxyl
and carbonyl compounds with TMB in the mass spec-
trometer have been reported to lead to diagnostic

e, its reduced form, and an authentic diol. The
ities formed in reactions of the ions of m/z 117,
keton
pur
he other cell.



779J Am Soc Mass Spectrom 2010, 21, 773–784 ID OF CARBONYL AND HYDROXYL FUNCTIONALITIES
derivatization of the oxygen-containing functional
group [11i]. However, derivatization of only the car-
bonyl functional group was found to take place for
hydroxyketones [11i]. These findings were verified by
examining the reactions of several protonated model
compounds (Table 1). All but one of the protonated
bifunctional carbonyl compounds studied react with
only one molecule of TMB (instead of the expected two)
by addition followed by elimination of a methanol
molecule. The reason for this partial derivatization of
the bifunctional carbonyl compounds may be the lack of
generation of an acidic hydrogen upon derivatization
of the first (more basic) functional group, the keto
group. In sharp contrast, derivatization of the first
functionality in protonated diols generates an acidic
hydrogen [11i], which is transferred to another boron
reagent molecule and ultimately leads to derivatiza-
tion of the second functional group. When the singly-
derivatized bifunctional carbonyl containing analytes
studied here were subjected to SORI-CAD, derivati-
zation of the second functional group took place via
Scheme
elimination of a second methanol molecule (Table 1,
Scheme 2).

An exceptional case among the ketones studied is
3-ethyl-2,4-pentanedione. This protonated diketone
reacts with TMB by elimination of two methanol
molecules, thus undergoing derivatization of both the
functional groups, just like protonated diols. Scheme
3 illustrates a possible mechanism for the observed
reactivity, based on the expectation that this ketone
can exist in the enol form in the collision complex. An-
other exception is protonated 5-hydroxy-2-pentanone that
does not undergo any derivatization with TMB. This
lack of derivatization has been attributed [11i] to the
substantially higher PA of this ketone (PA 220 –222
kcal/mol; calculated at B3LYP/6-31G(d) level of the-
ory) than that of TMB (195 kcal/mol [22]. The differ-
ence in PA between the two is much higher than the
solvation energy that can be gained during the for-
mation of the ion-molecule collision complex. Hence,
the initial proton transfer step of the derivatization
reaction is hindered.
4
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Complete Derivatization of Functional Groups
Upon Reaction of Solution-Reduced Protonated
Carbonyl Compounds with TMB

The above reactivity studies suggest that the presence
of a carbonyl group hinders the derivatization of
another oxygen-containing functional group in a pro-
tonated analyte via ion-molecule reactions with TMB.
On the other hand, our previous studies demonstrate
that polyols are among the easiest compounds to
analyze by reactions with boron reagents [11i, 23].
The number of hydroxyl groups in polyols can be
identified by simply counting the total number of
methanol molecules lost upon the reaction of the
protonated polyols with TMB, or by counting the
total number of TMB molecules added. Hence, con-
version of the problematic carbonyl groups to hy-
droxyl groups before mass spectrometric analysis
should facilitate the identification of polyfunctional
analytes containing keto groups.

NaBH4 reduction was used to reduce the carbonyl
groups of the analytes to hydroxyl groups in solution
before mass spectrometric analysis. The reactions of
the protonated reduced analytes with TMB were
found to lead to derivatization of all the functional
groups, as expected (Table 2). The same products
were obtained for the commercially available, au-
thentic alcohols and diols (Table 3). Figure 1 shows
Scheme
typical mass spectra obtained upon reaction of TMB
with protonated 1,4-cyclohexanone, protonated re-
duced 1,4-cyclohexanone, and protonated commer-
cially available 1,4-cyclohexanediol. The results ob-
tained for the reduced ketones are similar to those
obtained earlier for reactions of protonated diols with
TMB and protonated polyols with diethylmethoxybo-
rane [11i, 23]. The derivatization of the first hydroxyl
group generates an acidic hydrogen, which is ab-
stracted by a second boron reagent molecule, result-
ing in the derivatization of the second functionality.
This consecutive reaction continues until all the hy-
droxyl groups are derivatized.

Apart from the above mentioned derivatization
products, protonated 3-ethyl-2,4-pentanediol (Scheme
4) and protonated 1,4-cyclohexanediol (Scheme 5) un-
dergo an additional (misleading) intramolecular meth-
anol loss from the doubly-derivatized analyte, forming
ions of m/z 245 and 229, respectively. The reaction likely
involves the migration of the acidic hydrogen from an
oxygen atom of the doubly-derivatized analyte to one
of the methoxy groups bonded to the boron center. This
intramolecular proton transfer is then followed by uni-
molecular fragmentation (Scheme 5) or by nucleophilic
addition at the boron atom by a methoxy oxygen
attached to the other boron atom, followed by a meth-
anol loss (Scheme 4). Similar observations of intramo-
5



781J Am Soc Mass Spectrom 2010, 21, 773–784 ID OF CARBONYL AND HYDROXYL FUNCTIONALITIES
lecular replacement reactions have been reported in
earlier studies [11i, 23, 24].

Thus, using the above approach, the number of
carbonyl groups present in a polyfunctional analyte can
be determined based on (1) differences in reactivity
toward TMB between the protonated reduced and
unreduced analyte, and (2) differences in the m/z values
of the protonated reduced and unreduced analyte.

Reaction Kinetics

The efficiencies were measured for the reactions of
some of the protonated diols with TMB. Protonated
1,2-propanediol was found to react with TMB at an
efficiency of 50%, 1,4-pentanediol nearly at 40%, and
3-ethyl-2,4-pentanediol at about 50%. These reaction
efficiencies are high, which suggests that these ion-
molecule reactions are fast enough for practical ap-
plications.

Figure 2. H/D exchange mass spectrum of the

CH3OH).
H/D Exchange Reactions of Singly Boron-
Derivatized Analytes (Adduct–CH3OH) with D2O
for the Identification of the Functional Groups

Further structural information on the analytes was
obtained by examining their H/D exchange reactions
with deuterium oxide. This experiment also allows
sorting out the misleading elimination of three metha-
nol molecules upon reactions of TMB with protonated
3-ethyl-2,4-pentanediol and 1,4-cyclohexanediol that
only contain two hydroxyl groups. When allowed to
react with deuterium oxide, the singly TMB-derivatized
alcohols and diols undergo either one or two H/D
exchanges depending on the number of hydroxyl
groups present (Tables 2 and 3, Figure 2). Accordingly,
singly-derivatized 3-ethyl-2,4-pentanediol and 1,4-
cyclohexanediol undergo two H/D exchanges, which
reveals the presence of two hydroxyl groups. In con-
trast, singly-derivatized carbonyl compounds do not

ly-derivatized 3-ethyl-2,4-pentanediol (adduct-
sing
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undergo H/D exchange reactions, with the exception of
3-hydroxy-2-propanone (Table 1). The singly-derivatized
3-hydroxy-2-propanone undergoes one H/D exchange.
This unique reactivity may be attributed to a favor-
able 1,2-hydride shift, which leads to the forma-
tion of an acidic hydrogen (Scheme 6).

Thus, the hydroxyl groups in the above analytes can
be counted by performing H/D exchange reactions. The
number of H/D exchange products is equivalent to the
number of hydroxyl groups present in the analyte.
Further H/D exchange studies allow the differentiation
of carbonyl functionalities from hydroxyl functional
groups.

Conclusions

Protonated monofunctional carbonyl compounds and
alcohols react with TMB in an FT-ICR mass spectrom-
eter by proton transfer to TMB followed by addition of
the neutral analyte to the protonated TMB and elimina-
tion of a methanol molecule. However, the reactions of
protonated hydroxyketones with TMB were found to
lead to only partial derivatization of the functional
groups, with a few exceptions. Since the number of
hydroxyl groups in polyols are readily determined by
simply counting the total number of methanol mole-
cules lost upon the reaction of protonated polyols with
TMB or by counting the total number of TMB molecules
added, solution reactions were used to convert the
carbonyl groups to hydroxyl groups before mass spec-
trometric analysis. Gas-phase ion-molecule reactions of
the resulting protonated hydroxyl compounds with
TMB lead to complete derivatization of all the func-
tional groups. Thus, using this approach, the number of
carbonyl groups present in the unreduced analyte can
be determined based on (1) differences in reactivity

Sc
between the protonated reduced and unreduced ana-
lyte toward TMB in the gas phase, and (2) differences in
the m/z values of the protonated reduced and unre-
duced analyte. The number of hydroxyl functionalities
in an analyte can be unambiguously determined by
examining H/D exchange reactions of the singly-deri-
vatized analyte.

In summary, the current approach has been shown to
be successful in the identification and counting of car-
bonyl and hydroxyl groups in some simple organic com-
pounds (with one exception, the 5-hydroxy-2-pentanone,
which has an exceptionally high PA for an oxygen-
containing analyte). Hence, this method should be
applicable to most small analytes containing oxygen
functionalities, including sugars and many steroids.
Future work will involve adopting this approach for the
identification and counting of functional groups in
multifunctional compounds.
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