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An Efficient and Green Oxidation of Vicinal Diols to Aldehydes Using 
Polymer-Supported (Diacetoxyiodo)benzene as the Oxidant
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Abstract: An operationally simple and clean oxidation of a variety
of vicinal diols to aldehydes using polymer-supported (diacetoxy-
iodo)benzene (PSDIB) has been developed in high to excellent
yields. Protecting groups such as OAc, OR, OBn, OBz and iso-
propylidene in the substrates were found to be stable under these re-
action conditions. The regenerated PSDIB could be reused for the
same reaction, affording oxidation products in high yield and purity.
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It is well known that oxidative cleavage of vicinal diols
using periodic acid1 and lead tetraacetate2 are the most
classical methods for the preparation of aldehydes in
organic synthesis. The use of these two highly selective
oxidants is strongly restricted by periodic acid’s insolubil-
ity in organic solvents, and lead tetraacetate is difficult to
store and handle for large scale utilization in industry.
Several oxidants, such as ceric ammonium nitrate,3 Ph3Bi/
NBS/K2CO3,

4 CrO3,
5 NIS,6 thallium nitrate,7 xenic acid,8

ammonium chlorochromate (ACC),9 pyridinium chloro-
chromate (PCC),10 and MnO2

11 have been reported to
serve this purpose, but many of these methods still suffer
from some drawbacks, including the need to employ a
stoichiometric amount of reagents, long reaction time,
producing a large amount of waste, and give unsatisfacto-
ry yields. Recently, an improved procedure using silica
gel supported sodium metaperiodate for oxidative cleav-
age of vicinal glycols12 was reported. However, the use of
excess NaIO4 makes this procedure impractical for indus-
trial application. In addition, there are two reports wherein
various vicinal diols were cleaved into the corresponding
aldehydes with O2-catalyzed iron–porphyrin complex13

and Ru(PPh3)3Cl/C,14 but the low chemoselectivity of
these two oxidation systems rendered them defective. (Di-
acetoxyiodo)benzene was also used for oxidative cleav-
age of glycols forming carbonyl compounds,15 though
suffering the difficulty of removing the byproduct iodo-
benzene from the products. As a result, there is still room
for the development of efficient, highly selective and
environmentally benign methods for this transformation
under mild reaction conditions from both industrial and
green chemistry perspectives.

Polymer-supported hypervalent iodine reagents have been
used in a wild variety of oxidation and radical reactions in
organic synthesis due to their versatility, low toxicity and
high reactivity.16 The reaction products can be obtained by
simple filtration to remove the polymer-supported
reagent, and regeneration and reuse of the recovered poly-
mer-supported reagents are possible, thus providing an
environmentally benign system. However, to the best of
our knowledge there has been no report so far describing
the use of polymer-supported hypervalent iodine reagents
to oxidize vicinal diols into the aldehydes. Herein, we
report the successful development of an efficient, simple
and synthetically useful procedure for the highly selective
oxidative cleavage of vicinal diols to aldehydes using
polymer-supported (diacetoxyiodo)benzene (PSDIB).

Scheme 1 Oxidative cleavage of 1a, regeneration and recycling of
used PSDIB

The PSDIB-mediated oxidative cleavage of benzyl 2,3-O-
isopropylidene-a-D-mannofuranoside (1a) was initially
chosen as a representative vicinal diol for the discovery of
the appropriate conditions (Scheme 1). The loading of
PSDIB was 1.98 mmol/g as determined by elemental
analysis. We were pleased to observe that when a mixture
of 1a and 1.2 equivalents of PSDIB in CH2Cl2 was stirred
at room temperature for seven hours, the oxidation took
place smoothly and the corresponding aldehyde was
successfully isolated in 90% yield (Table 1). The choice
of solvents in this oxidation was crucial for the success.
Acetonitrile was good for the reaction (Table 1, entry 2).
The yield of 2a dropped dramatically in the case of
CH2Cl2–toluene mixture and reaction did not proceed at
all in the toluene, THF, dioxane, acetone, or DMF.
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Next, regeneration and recycling of the used PSDIB was
investigated based on this oxidation reaction. After the
first run, the polymer was recovered in almost quantitative
yield by simple filtration, washed with diethyl ether. 

The recovered polymer was re-oxidized with peracetic
acid following literature precedent17 and the oxidations
were repeated without loss of activity.

With these observations in hand, we decided to broaden
its field of application by looking at the scope and limita-
tion of this oxidation. As depicted in Table 2, all the tested
substrates were smoothly oxidized into the corresponding
aldehydes in excellent yields (entries 1–13). This proce-
dure is highly chemoselective allowing oxidation of
vicinal diols without affecting such functionalities as OBn
(entries 1, 13), OBz (entry 2), OAc (entry 4), OR (entries
3, 9, 11), OH (entry 5), isopropylidene (entries 1–8).

In conclusion, we have developed a simple and environ-
mentally benign protocol for the chemoselective oxida-
tion of a range of vicinal diols into the corresponding
aldehydes with high yields.29,30 Moreover, the PSDIB
consumed in this reaction can be regenerated efficiently
and repeatedly used for the same reactions with no loss of
activity. This procedure is characterized by mild condi-
tions, non-toxic byproducts and easy reaction work-up,
making it ideal for both laboratory and large-scale prepa-
rations.

Table 1 Oxidation of Vicinal Diol 1a with PSDIB in Different 
Solventsa

Entry Solvent Time (h) Yield (%)b

1 CH2Cl2 7 90

2 MeCN 8.5 80

3 CH2Cl2–toluene (1:1) 13 43

4 toluene 50 nrc

5 THF 50 2

6 acetone 50 nr

7 DMF 45 nr

8 dioxane 50 nr

a All reactions were carried out according to typical procedure.
b Yield of isolated and fully characterized products.
c nr = no reaction.

Table 2 Oxidation of Vicinal Diols with PSDIBa 

Entry Vicinal diols Time (h) Products Yield (%)b
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6.5

2b

9019

3

1c

7

2c

8520

4

1d

7

2d

8421

R

OH

I
OAc

OAc

CH2Cl2,  r.t.
R CHO

(1.2 equiv)

1 2

OH

OO

O

OH

BnO OH

OO

O CHOBnO

OO

O OH

OH

BzO

OO

O CHOBzO

OO

O OH

OH

EtO

OO

O CHOEtO

OO

O OH

OH

AcO

OO

O CHOAcO

D
ow

nl
oa

de
d 

by
: K

ar
ol

in
sk

a 
In

st
itu

te
t. 

C
op

yr
ig

ht
ed

 m
at

er
ia

l.



LETTER Oxidation of Vicinal Diols Using Polymer-Supported (Diacetoxyiodo)benzene 621

Synlett 2007, No. 4, 619–622 © Thieme Stuttgart · New York

5
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7
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7
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7
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13
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a All reactions were performed according to the typical procedure.
b Yield of isolated and fully characterized products.

Table 2 Oxidation of Vicinal Diols with PSDIBa  (continued)

Entry Vicinal diols Time (h) Products Yield (%)b
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