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ABSTRACT: A catalytic transfer-hydrogenation utilizing a well-
defined Bi(I) complex as catalyst and ammonia-borane as transfer 

agent has been developed. This transformation represents a unique 
example of low-valent pnictogen catalysis cycling between oxida-
tion states I and III, and proved useful for the hydrogenation of 
azoarenes and the partial reduction of nitroarenes. Interestingly, 
the bismuthinidine catalyst performs well in presence of low-
valent transition-metal sensitive functional groups and presents 
orthogonal reactivity compared to analogous phosphorous-based 
catalysis. Mechanistic investigations suggest the intermediacy of 

an elusive bismuthine species, which is proposed to be responsi-
ble for the hydrogenation and the formation of hydrogen. 

  For over half a century, the use of noble metal catalysis has 
revolutionized the way chemists assemble molecules via the 
construction of new bonds.1 The enormous impact of these metals 
at industrial level has led to their exploitation, becoming less 
abundant and hence more expensive. In recent years, an increas-
ing attention has been placed in unlocking the potential of more 

abundant first-row transition metals thus becoming powerful 
sustainable alternatives.2 In parallel, approaches that depart from 
transition metals have also gained momentum; for example the 
use of alkali and alkaline,3 main group,4 and the use of Frustrated 
Lewis Pairs,5 have become promising alternatives to transition 
metals (TM) thus emulating their behavior and reactivity. Howev-
er, despite the wealth of literature in these areas, the quest for 
conferring TM-like catalytic properties to main group elements is 

still in its infancy.6 In this regard, the ability of pnictogens to 
maneuver between distinct oxidation states represents a promising 
approach. Recently, Radosevich reported a variety of P(III)/P(V) 
redox platforms, which show catalytic activity towards a variety 
of transformations (Figure 1A).7 This reactivity is based on highly 
strained P(III) compounds, where the lone pair becomes easily 
oxidizable and thus more prone to nucleophilic attacks and formal 
oxidative additions.8 Such groundbreaking approach opened the 
door to the possibility of performing catalytic redox processes 

beyond the TM block. With the aim of investigating unconven-
tional catalytic redox processes of non-transition metals, we have 
recently started a program which focuses on the exploitation of 
the redox abilities of bismuth (Bi) to be applied in organic synthe-
sis. Bi represents the last stable element in the periodic table,9 
with properties at the interface of metalloids and main group.10 
Importantly, Bi has been considered non-toxic and largely more 
abundant than commonly employed TM such as Pd, Rh or Ir,11 

thus highlighting its potential towards developing truly sustaina-
ble catalytic strategies. Yet, the use of bismuth in organic synthe-
sis has been largely dominated by stoichiometric reactions based 
on Bi(V) or Bi(III) species, and catalytic strategies primarily 
focused on the soft Lewis-acid properties of Bi(III) salts (Figure 
1B).12 In addition, methods beyond the classic reactivity of Bi 
salts have recently attracted increasing attention.13 In contrast to 
the wealth of methods using high-valent Bi species,14 attention to 

its low-valent counterparts has been scarce. Low-valent Bi(I) 
compounds are known in the literature,15 yet seldom monomeric 
Bi species have been isolated.16 Generally, the formation of Bi(I) 
compounds is achieved through a highly unstable Bi(III) dihy-

dride, which rapidly extrudes H2 upon ligand coupling.16,17 In-
spired by these results, herein we present a transfer hydrogenation 
of azoarenes and nitro compounds with ammonia-borane (AB) 
catalyzed by a well-defined and stable Bi(I) complex. Preliminary 

mechanistic investigations point out at a catalytic platform involv-
ing extremely reactive Bi(III) hydride intermediates (Figure 1C).18 
To the best of our knowledge, this is the first example of a catalyt-
ic redox cycle in the pnictogens group maneuvering in a 
Pn(I)/Pn(III) redox cycle.  

Figure 1. (A) Catalytic redox-activity of pnictogens; (B) Typical reactivi-

ty of Bi(III) in catalysis; (C) Bi(I)/Bi(III) redox catalysis. 

 

   Initially, we attempted the transfer hydrogenation using a bis-
muthinidine complex (1)16b as catalyst in THF at 50 °C (Table 1, 

entry 1). To our delight, 2a was completely converted to 3a using 
1.0 equiv of AB as reducing agent. When the catalyst loading and 
the reaction time were reduced, lower yields were obtained (entry 
2), but the addition of 2.0 equiv of AB using 1 mol% of 1 resulted 
in good yields of 3a (entry 3). Yields were substantially dimin-
ished at lower temperatures (entry 4), but the reaction performed 
well in halogenated solvents (entry 5). Such reactivity is in stark 
contrast to the high reactivity of low-valent TM, which react with 

halogenated compounds leading to catalyst deactivation or de-
composition. The use of other polar solvents (entries 6 and 7) was 
not beneficial, but noticeably, the addition of 1.0 equiv of H2O 
improved the yield and reduced reaction times (entry 8). Further-
more, the reaction did not proceed in absence of catalyst (entry 9) 
or AB complex (entry 10). 
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Table 1. Optimization of the Bi(I)-catalyzed transfer hydrogenation. 

 

entry X Y solvent T (°C) t (h) 3a, yield (%)a 

1 4 1 THF 50 24 99 

2 1 1 THF 50 16 57 

3 1 2 THF 50 16 86 

4 1 2 THF 35 16 53 

5 1 2 DCE 50 16 76 

6 1 2 1,4-dioxane 50 16 87 

7 1 2 acetone 50 16 45 

8b 1 1 THF 35 3 99 (99)c 

9b - 1 THF 35 16 traces 

10b 1 - THF 35 16 traces 
aYield calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal 

standard. bWith 1.0 equivalent of H2O. cIsolated yield. 

  With these optimal reaction conditions in hand, we explored the 
influence of different substituents in the azoarene (2). As shown 

in Table 2, the protocol boded well with substrates bearing ester 
groups, without reduction of the carbonyl moiety (3b). Electron-
rich azoarenes can also be reduced (3c), as well as substrates 
containing electron-withdrawing functionalities, such as fluoride 
(3d) and trifluoromethyl (3e). The presence of a bromide group at 
the ortho position of the reactive functionality did not inhibit the 
reactivity (3f). Azoarenes bearing substituents at the meta position 
also reacted smoothly under the optimized conditions (3g). Inter-

estingly, unsymmetrical azoarenes in a push-pull electronic situa-
tion were also tolerated (3h). It is noteworthy that the presence of 
the iodide group did not affect the reaction outcome, further indi-
cating the stability of 1 towards oxidative additions to labile 
bonds. Although cyclic compounds can also be completely re-
duced (3i), aromatic azoarenes has proven.19 

Table 2. Scope of the transfer hydrogenation of azoarenes.a 

 
aIsolated yields. bYield calculated by 1H NMR using 1,3,5-

trimethoxybenzene as internal standard. 

At this point, we decided to expand the protocol to other unsatu-
rated functionalities such as nitroarenes (4, Table 3). Contrarily to 
the majority of TM-catalyzed reductions, this protocol is highly 
selective towards the formation of N-arylhydroxylamines.20 With 
a slight modification from the optimized protocol,21 a variety of 
electronically distinct nitroarenes could be reduced in excellent 
yields. For example, simple nitrobenzene was reduced to N-
phenylhydroxylamine (5a) in 89% yield. Electron-rich nitroarenes 

are also amenable to this reactivity (5b), as well as substrates 
containing carbon-halogen bonds such as bromide (5c) and iodide 
(5d). Compounds bearing unsaturated functionalities such as 
alkyne (5e), nitrile (5f) and alkene (5g) were also obtained in 
excellent yields. Interestingly, when 2-phenylnitrobenzene (4h) 

was subjected to the reaction conditions, excellent yields were 
obtained of the corresponding N-hydroxylamine (5h). This result 
is complementary to P(III) catalysis, with which intramolecular 
Cadogan-type reactions en route to carbazole have been ob-
served.7i Finally, sterically congested nitroarenes delivered the 

corresponding N-hydroxylamines (5i) albeit in lower yields.  

Table 3. Scope of the transfer hydrogenation of nitroarenes.a 

 
aIsolated yields. 

   The unprecedented catalytic activity of such Bi(I) complexes led 
us to explore the operative mechanism governing this homogene-
ous transformation (Scheme 1).22 Firstly, the ability of 1 for cata-
lytic dehydrogenation of AB was tested. Thus, 1.0 equiv of AB 
was mixed with 0.2 equiv of Bi(I) complex in THF-d8 and the 
formation of H2 in solution was monitored (Scheme 1A, red). In 

absence of Bi(I) complex, no H2 was observed after 150 min,23 
indicating that Bi(I) promotes a slow dehydrogenation of AB 
(Scheme 1A, blue and yellow). Furthermore, during our optimiza-
tion studies we noticed a dramatic change in rate when water was 
added (Table 1, entry 8). With this result in mind, we tested the 
effect of H2O in the dehydrogenation of AB catalyzed by Bi(I). 
Indeed, the addition of 1.0 equiv of H2O caused an increase in rate 
for the formation of H2 (Scheme 1A, green). Based on Dostál 

observations,16 we speculated that the formation of H2 is derived 
from a highly unstable bismuthine (6).24 The positive effect of 
H2O is proposed to arise from H-bonding from AB and water, 
thus facilitating a plausible oxidation of 1 to 6, which upon rapid 
H2 extrusion regenerates species 1. Indeed, to further evaluate the 
effect of H2O in the reaction, a series of experiments with alkylat-
ed derivatives of AB were carried out (Scheme 1B). When the 
reaction was performed with NMe3BH3 as reducing agent, only a 

10% of 3a was obtained after 16 h. Moreover, when NH2MeBH3 
and NHMe2BH3 complexes were employed, a 55% and 36% of 3a 
was obtained, respectively. These results clearly indicate protons 
of AB play a key role in the transfer hydrogenation. Subsequently, 
the same reactions were performed in presence of 1.0 equiv of 
H2O. Interestingly, with NMe3BH3 31% of 3a was observed, 
improving the yield of the anhydrous reaction. With NHMe2BH3 
and 1.0 equiv H2O the yield was improved to 90% after 16 h, and 

with NH2MeBH3 complex the reaction time was dramatically 
reduced to fully convert 2a to 3a. These results support the exper-
imental observations in Scheme 1A. As control, the reaction in 
presence of NH3BEt3 did not lead to conversion of the starting 
material even after 16 h, which indicates the relevance of the 
hydride source of AB. 
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Scheme 1. (A) Dehydrogenation of AB with Bi(I) and (B) transfer hydro-

genation using different amine borane complexes. 

 

   To further evaluate the formal oxidation en route to bismuthine 
6, primary kinetic isotope effects were measured using deuterium 
labeled AB (Scheme 2A). When the reaction was performed with 
1.0 equiv ND3BH3 and 1.0 equiv of D2O (rapid D-exchange be-

tween H2O and ND3BH3 would result in misleading KIE values) a 
primary KIE value of 1.63 was obtained. With 1.0 equiv of la-
beled NH3BD3, a higher KIE value of 3.94 is observed. Finally, 
when the reaction was performed with 1.0 equiv ND3BD3, a large 
KIE value of 7.05 was obtained. These results suggest a mecha-
nistic scenario in which both N‒H and B‒H bonds are broken in 
the rate-determining step (RDS).25 Furthermore, a competition 
experiment between two-electronically distinct azoarenes was 

performed (Scheme 2B). When 1.0 equiv of 2a and 1.0 equiv of 
2d were mixed with 1.0 equiv of AB in the presence of 1 mol% of 
1, a 1:1 mixture of 3a and 3d was obtained after 1 h, suggesting 
that azoarenes are not participating in the RDS of this transfor-
mation.26, These experiments point out to an scenario in which 
Bi(I) and AB are both involved in the RDS. However, the rate 
acceleration observed when H2O is present in the system suggests 
that H2O might interact with AB through H-bonding, and also 

participate in the RDS.27 

Bi(III)‒H compounds are known to be highly unstable and reac-
tive, which complicates their characterization as potential inter-
mediates.16a However, a series of experiments were designed to 
elucidate the presence of such elusive species (Scheme 3). Hence, 

when the reaction was performed with fluorobismuthine 7 and 
Ph3SiH, 3a was obtained in 71% yield. Equally, when 8 was 
mixed with 2.0 equiv K-Selectride or NaBH3CN, 3a was obtained 
in 95% and 98% yield respectively, together with Bi(I),19 indicat-
ing that both H in 3a derive from the hydridic sources. Important-
ly, all these reactions afforded Bi(I) (1) and H2 when no azoben-
zene was present in the mixture.16 While efforts to detect these 
intermediates by NMR spectroscopy were unsuccessful, we de-

cided to investigate the dehydrogenation of AB by HRMS tech-
niques. Indeed, when 1 is mixed with 5.0 equiv. of AB, a peak 
corresponding to [6‒H]+ (C16H24BiN2

+, experimental: m/z = 
453.1738; simulated: m/z = 453.1737) was observed (Scheme 
3B), thus suggesting the formation of Bi(III)-hydride species.28 
Similarly, when AB was replaced by its deuterated analog, a mass 
for the Bi(III) deuteride was detected (C16H23DBiN2

+, experi-

mental: m/z = 454.1802; simulated: m/z = 454.1801. Additionally, 
the same Bi(III) hydride species was detected when the transfer 
hydrogenation of 2a was performed under catalytic conditions and 
analyzed by HRMS (Scheme 3C). Taken together, these results 
indicate formation of Bi(III) hydrides in the dehydrogenation of 

AB,16 which further react in presence of azoarene 2a to obtain 3a. 
Although different scenarios could be foreseen from such hydridic 
intermediate, further computational and spectroscopic evidence is 
needed to fully understand its role in the formation of 3a. Indeed, 
these studies are now being pursued in our laboratory.  

Scheme 2. (A) Kinetic Isotope Effect experiments. (B) Competition 

experiment between two electronically different azoarenes. 

 
Scheme 3. (A) Stoichiometric and (B and C) Mass Spectrometry studies. 

a 2.0 equivalents of reducing agent. 

  In conclusion, this work demonstrates the capacity of bismuth 
compounds to be engaged in catalytic redox transformations. The 

described protocol, which is a unique example of Bi(I) catalysis, 
resulted useful for the transfer hydrogenation of azoarenes and 
nitroarenes with AB as hydrogen surrogate. Preliminary mecha-
nistic investigations suggest the intermediacy of highly reactive 
and elusive Bi(III) hydrides. These results constitute a unique 
proof-of-concept of a pnictogen operating between oxidation 
states I and III to mimic transformations typically performed by 
TM-catalysts. 
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