Tetrahedron Letters 53 (2012) 5243-5247

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

AuCl₃/AgSbF₆-catalyzed rapid epoxide to carbonyl rearrangement

Vanajakshi Gudla, Rengarajan Balamurugan*

School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India

ARTICLE INFO

Article history: Received 14 June 2012 Revised 11 July 2012 Accepted 13 July 2012 Available online 20 July 2012

Keywords: Epoxides Rearrangement Meinwald rearrangement Gold catalysis

Epoxides are versatile and valuable synthetic building blocks for the synthesis of complex organic structures due to their ready availability in both racemic and enantiomerically pure forms and their high reactivity to undergo different organic transformations. Epoxide to carbonyl rearrangement which is also called as Meinwald rearrangement is a synthetically useful protocol to obtain carbonyl compounds in an atom-economical way. Different catalytic systems have been developed which include Lewis acids and Brønsted acids for the epoxide rearrangement.^{1,2} For the synthesis of various bioactive natural products, this epoxide rearrangement has been applied widely.³ Even several tandem reactions have been reported which exploit the synthetic efficiency of Meinwald rearrangement to generate in situ aldehyde or ketone intermediates from epoxides for further transformations.⁴ These tandem processes are particularly valuable when the carbonyl compounds are sensitive or unstable or difficult to handle. Mainly Lewis acid mediated epoxide rearrangement became an attractive approach for the carbon-skeletal reorganization of epoxide. The yields and regioselectivity of the rearrangement are sensitive to reaction conditions (Lewis acid employed and solvent) and migrating aptitude of substituents attached to the ring. For example, Pd,^{1b-d} In,^{1e} V,^{1f} Bi,^{1g,h} Ir,¹ⁱ Fe,^{1j-m} Er,¹ⁿ and Cu^{10,p} favor the hydro-gen migration, while Al,^{1a,2a} B,^{2b} Cr,^{2c,d} Ga,^{2e} and Si^{2f} promote the alkyl migration. Among these systems only a few are both regioselective and truly catalytic in nature. However they pose poor substrate scope. Hence, there is significant scope for the development of better catalyst which would address the factors like efficiency, regioselectivity, good substrate scope, and less catalyst amount.

ABSTRACT

An efficient epoxide to carbonyl rearrangement using catalytic $AuCl_3/AgSbF_6$ has been presented. The reactions are fast and high yielding. β -Hydrogen migration takes place exclusively when hydrogen and methyl or substituted methyl groups are present at β -carbon of epoxide. When phenyl/acetyl/benzoyl and hydrogen are available at same carbon atom, migration of the former is preferred over the latter. © 2012 Published by Elsevier Ltd.

> In recent years, several gold-catalyzed reactions have been reported, where gold in +1 or +3 oxidation states catalyzes a variety of organic transformations with high efficiency in chemo, regio, and stereoselective ways.⁵ In some of the gold catalyzed reactions epoxides have been used as nucleophiles to attack gold-activated alkyne or alkene bond.^{6,7} Gold can also activate oxirane ring towards nucleophiles as it possesses oxophilicity in addition to carbophilicity.⁸⁻¹¹ Liang et al. investigated the rearrangement of α -hydroxy epoxides into 1,5 or 1,6-diketones and monoketones where gold(III) activates oxirane ring.⁸ Stratakis et al. recently reported the isomerization of epoxides into allyl alcohols mediated by TiO₂-supported gold nano particles in which cationic Au(I) is stabilized by the surface of TiO₂.⁹ Hashmi et al. in the conversion of 2-alkynylaryl epoxides into 3-acylindenes, observed the gold(I) catalyzed isomerization of oxirane ring to a carbonyl compound as a minor side product.⁷ In our study of opening of gold activated epoxides with acetone for subsequent transformation into cyclic acetals, we observed the epoxide to carbonyl rearrangement product in minor amount from stilbene oxide. Here the oxidation state of gold was +3.¹⁰ Based on these reports, we became interested to study the gold-catalyzed epoxide rearrangement to carbonyl compounds. Moreover, gold being capable of promoting a variety of reactions, the intermediate or product of the reaction could be exploited for further synthetic manipulations. We wished to use gold(III) salts for this transformation because it is more oxophilic compared to gold(I).¹¹ The reaction is expected to proceed faster as gold does not have strong affection to oxyanion (generated during the reaction) like the other trivial Lewis acid catalysts have.¹² As believed gold(III) catalyzed oxirane rearrangement occurred with high efficiency as the reactions completed faster even with 0.1 mol % catalyst at room temperature.

^{*} Corresponding author. E-mail address: rbsc@uohyd.ernet.in (R. Balamurugan).

^{0040-4039/\$ -} see front matter \odot 2012 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.tetlet.2012.07.056

Optimization of the reaction was carried out using the substrate 1a which has both H and alkyl groups available for migration. Several reactions were carried out using AuCl₃ by changing the solvent and adding co-catalyst AgSbF₆. Our first attempt with 2 mol % of AuCl₃ in CH₂Cl₂ resulted in 56% of ketone **2a**, formed by hydrogen migration and 13% of aldehyde **3** resulting from alkyl migration along with 31% of the unreacted starting material in the crude mixture. In fact there was no progress in the reaction after 15 min due to the catalyst precipitation (Table 1, entry 1). Since the aldehyde 3 decomposed during the silica gel column purification of the crude mixture, the isolated yield of **3** could not be presented in Table 1. When 2 mol % of AuCl₃ in combination with 6 mol % of AgSbF₆ was used in CH₂Cl₂, 82% of **2a** and 18% of **3** were obtained with complete consumption of the starting material **1a** (entry 2). In dioxane, while there was no reaction with AuCl₃ alone (entry 5), the reaction proceeded nicely when AgSbF₆ was used along with AuCl₃ (entry 6). The reaction was fast and completed in less than 15 min resulting the product 2a in 92% along with 8% of 3. Then the reaction was carried out with 1 mol % of AuCl₃/3AgSbF₆ which was found to be equally efficient as that of the reaction with 2 mol % of AuCl₃/3AgSbF₆ (entry 7). These results led us to perform the reaction with a mixture of 0.1 mol % of AuCl₃ and 0.3 mol % of AgSbF₆. The reaction worked well and completed in 20 min to yield 2a in 93% (entry 8). Interestingly, there was no reaction when AuCl₃ or AgSbF₆ alone were used as catalysts in dioxane. Perhaps the cationic gold species generated in AuCl₃/AgSbF₆ mixture might be the active catalyst responsible for the reaction in dioxane. Also NaAuCl₄ in dioxane did not catalyze the reaction (entry 11). Other solvents like CH₃CN, toluene, and THF were not found to be suitable solvents.

After finding that the rearrangement is highly efficient at room temperature using 0.1 mol % of AuCl₃/3AgSbF₆ in dry dioxane, the generality of AuCl₃/3AgSbF₆ catalytic system was examined in the reactions of various substituted and structurally diverse epoxides. Table 2 represents the outcome of these experiments. As explicit from Table 2, the reactions were faster and clean. For

Table 1

Catalyst and solvent screening for the epoxide rearrangement

Entry	Catalyst	Solvent	Time	Yield (%) ^h		
				2a ⁱ	3	1a ⁱ
1	AuCl ₃ ^a	CH ₂ Cl ₂	24 h ^g	56(48)	13	31(27)
2	AuCl ₃ ^a /AgSbF ₆ ^b	CH_2Cl_2	15 min	82(74)	18	0
3	AuCl ₃ ^a	CH ₃ CN	24 h	No reaction		
4	AuCl ₃ ^a /AgSbF ₆ ^b	CH ₃ CN	24 h	No reaction		
5	AuCl ₃ ^a	Dioxane	24 h	No reaction		
6	AuCl ₃ ^a /AgSbF ₆ ^b	Dioxane	15 min	92(84)	8	0
7	AuCl ₃ ^c /AgSbF ₆ ^d	Dioxane	15 min	92(83)	8	0
8	AuCl ₃ ^e /AgSbF ₆ ^f	Dioxane	20 min	93(83)	7	0
9	AuCl ₃ ^a	THF	30 min	42(41)	9	49(47)
10	AuCl ₃ ^a /AgSbF ₆ ^b	Toluene	24 h	No reaction		
11	NaAuCl ₄ ^a	Dioxane	24 h	No reaction		
12	AgSbF ₆ ^b	Dioxane	24 h	No reaction		

^a 2 mol %.

^b 6 mol %.

^c 1 mol %.

^d 3 mol %. ^e 0.1 mol %.

^f 0.3 mol %.

0.5 mor //.

^g After 15 min there was no progress in reaction.

^h % derived from ¹H NMR spectrum of crude reaction mixture.

ⁱ Value in parenthesis refers to isolated yield.

comparison, selected best literature data available for the conversion are presented along the corresponding entries in Table 2. 1-Aryl substituted epoxides rearranged exclusively by β-hydrogen migration to give the corresponding aryl-substituted acetaldehydes or arylmethyl ketones. In the case of *trans*-stilbene oxide 1d which is a 1,2-diaryl substituted epoxide, phenyl migration dominated exclusively over hydrogen migration which lead to the formation of diphenylacetaldehyde 2d as the sole product (entry 4). However, cis-stilbene oxide 1d resulted in a mixture of rearranged products due to both phenyl and hydrogen migrations. Still, diphenylacetaldehyde 2d was the major product and the hydrogen migrated product, phenylacetophenone was being 11% only from ¹H NMR of the mixture (entry 5). The reactions of epoxides bearing electron withdrawing groups were also studied. β-Acetyl styrene oxide **1e** and β -benzoyl styrene oxide **1f** lead to the formation of acetyl and benzovl migrated products, respectively, 2e and 2f (entries 6 and 7). Same migration pattern has been reported in the reactions involving InCl₃^{1e} or Bi(OTf)₃·xH₂O.^{1h} Even, the substituent -CO₂Me on epoxide ring did not affect the reaction as it yielded the hydrogen migrated product, as observed with BF₃ in the rearrangement of ethyl β-phenylglycidate.¹³ As we were unable to isolate the pure product due to its decomposing nature in silica gel,¹⁴ the crude reaction mixture was treated with NaBH₄ to reduce the keto group to get the hydroxyl ester derivative 4 (entry 8). It is interesting to note that InCl₃ did not promote the rearrangement in this case but cleaved the epoxide ring to result in the formation of chlorohydrin by nucleophilic attack of Cl⁻ from InCl₃.^{1e} However epoxides bearing cyano or nitro group at β-carbon are resistant to the reaction conditions as the starting materials were recovered. It is worth mentioning that these substrates do not undergo rearrangement with other Lewis acid catalysts also. When there is competition between hydrogen and methyl or substituted methyl, selectively hydrogen migration is preferred to produce methyl ketones (entries 1, 9-14, and 16). In the case of silyl (TBS) protected epoxy alcohol 1h, reaction worked well and resulted in the product **2h** corresponding to hydrogen migration without damaging the silyl protection (entry 9). Aryl epoxides attached to propyl, isopropyl, and tertiary butyl group were also treated with gold catalyst (entries 11-14). In all the cases reaction worked through hydrogen migration selectively. Only when tertiary butyl group is attached to oxirane ring, very small amount (3%) of alkyl group migrated product was observed (entry 14). If there are two methyl groups attached to the same carbon of the epoxide ring as seen in **1n**, methyl migration occurred because of unavailability of hydrogen for migration (entry 15). It is pleasing to note that epoxide derived from cinnamyl alcohol 10 resulted in the hydrogen migrated product 20 in 76% yield in just 10 min (entry 16). The same conversion took 60 h with Pd(PPh₃)₄ and heating in toluene at 140 °C.^{1b}

The rearrangement of non-aromatic epoxides was also checked with the present catalytic system. Compared to aromatic epoxides, these required longer reaction times and comparatively more catalyst (2 mol % of AuCl₃/3AgSbF₆). Cyclohexene oxide **1p** rearranged by hydrogen migration and resulted in cyclohexanone 2p in good yield although it has to proceed via the formation of secondary carbocation which does not form as readily as benzylic/tertiary carbocation (entry 17). This observation is special as the reaction of cyclohexene oxide with IrCl₃·xH₂O yielded only 4% of cyclopenetene carboxaldehyde,¹ⁱ with InCl₃ resulted in chlorohydrin by the nucleophilic attack of Cl⁻,^{1e} with BiOClO₄·xH₂O,^{1g} or Bi(OTf)₃·x-H₂O^{1h} there were no reaction and with mixed-valent iron catalyst polymerization happened.^{1m} These results show the superiority of gold catalyst over other catalysts known for epoxide rearrangement. Epoxide 1q derived from allyl benzene on treatment with AuCl₃/3AgSbF₆ resulted in the formation of hydrocinnamaldehyde 2q (entry 18). In this case also the reaction proceeded through a secondary carbocation intermediate.

V Cudla R Balamurugan / Tetrahedron Letters 53 (2012) 5243-5247	
v. Guala, K. Balamurugan/ Tetrahearon Letters 53 (2012) 5243-5247	

Table 2 Applicability of gold catalyst in epoxide rearrangement^a (see below-mentioned references for further information)

Entry	Epoxide (1)	Time (min)	Product (2)	Yield ^b (%)	Selected literature data for comparison and comments
1	Ph OMe	15	Ph OMe O 2a (ref 1e)	83	InCl ₃ (1.0 equiv, 65% ^b) ^{1e}
2	Ph 1b	5	Ph CHO 2b	98	$ \begin{array}{l} Cu(BF_4)_2 \cdot nH_2O \ (25 \ mol \ \%, \ 90\%^b);^{10,1p} \ Bi(OTf)_3 \cdot xH_2O \ (0.1 \ mol \ \%, \ 73\%^b);^{1h} \ lnCl_3 \\ (0.6 \ equiv, \ 85\%^b);^{1e} \ VO(OR)Cl_2 \ (0.5 \ equiv, \ 90\%^b);^{1f} \ lnCl_3 \cdot xH_2O \ (1 \ mol \ \%, \ 100\% \ conversion)^{1i}; \ LPDE \ (1.0 \ equiv, \ 85\%^b);^{1q} \ mesoporous \ aluminosilicates \ (100\% \ conversion, \ 5\% \ polymeric \ material)^{1s} \end{array} $
3	MeO 1c	10	MeO 2c (ref. 1e)	89	$InCl_3 (0.6 \text{ equiv}, 90\%^b);^{1e} VO(OR)Cl_2 (0.5 \text{ equiv}, 90\%^b)^{1f}$
4	Ph rans-1d	5	Ph Ph CHO 2d	98	$ \begin{array}{l} Cu(BF_4)_2 \cdot nH_2O \ (25 \ mol \ \%, \ 95\%^b);^{1o.1p} \ Bi(OTf)_3 \cdot xH_2O \ (0.1 \ mol \ \%, \ 92\%^b);^{1h} \\ BiOClO_4 \cdot xH_2O \ (20 \ mol \ \%, \ 90\%^b);^{1g} \ IrCl_3 \cdot xH_2O \ (1 \ mol \ \%, \ 100\% \ conversion);^{1i} \ InCl_3 \\ (0.6 \ equiv, \ 90\%^b);^{1e} \ Mesoporous \ aluminosilicates \ (65\% \ conversion);^{1s} \ LPDE \\ (1.0 \ equiv, \ 60\%^b);^{1q} \ Mixed-valent \ iron \ (2 \ mol \ \%, \ 86\%^b)^{1m} \end{array} $
5	Ph cis-1d	5	Ph CHO 2d	98 ^c	$ \begin{array}{l} \label{eq:BiOTf} Bi(OTf)_3\cdot xH_2O \ (0.1\ mol\ \%,\ 89\%^b); {}^{\mathbf{1h}}\ BiOClO_4\cdot xH_2O \ (20\ mol\ \%,\ 90\%^b); {}^{\mathbf{1g}}\ IrCl_3\ xH_2O \ (1\ mol\ \%,\ 100\%\ conversion); {}^{\mathbf{1i}}\ Cu(BF_4)_2\cdot nH_2O \ (25\ mol\ \%,\ 95\%^b) {}^{\mathbf{1p}} \end{array} $
6	Ph le	10	Ph OH	89	Bi(OTf) ₃ ·xH ₂ O (0.1 mol %, 89% ^b); ^{1h} 5 mol dm ⁻³ LiClO ₄ -diethylether (78% ^b); ^{1r} InCl ₃ (1.0 equiv, 72% ^b) ^{1e}
7	Ph Th Ph	5	Ph Ph O 2f (ref. 1h)	95	Bi(OTf) ₃ ·xH ₂ O (0.1 mol %, 89% ^b); ^{1h} No reaction with 5 mol dm ⁻³ LPDE and along with 10% Yb(OTf) ₃ resulted in 73% yield ^{1r}
8	Ph	10	O Ph OMe OH 4 (ref. 15)	76 ^d	$InCl_3$ (1.0 equiv, No rearrangement; resulted in chlorohydrin) ^{1e}
9	Ph J. TOTBS	15	Ph OTBS O 2h (ref. 1j)	93	Fe(tpp)ClO ₄ (2 mol %, 99% ^b) ^{1j}
10	0 Ii	5	2i (ref. 1d)	96	Pd(OAc) ₂ /3PBu ₃ (5 mol %, 98% ^b): ^{1d} InCl ₃ (0.6 equiv, 88% ^b) ^{1e}
11	CI 1i	5	CI 2j	92	
12	Ph 1k	5	Ph O 2k (ref. 16)	83	
13	Ph 11	5	Ph O 21 (ref 17)	88	
14	Ph 1m	5	Ph O 2m (ref. 17)	95 ^e	
15	Ph O In	10	Ph 0 2n (ref. 18)	89	No reaction with $Pd(OAc)_2/PPh_3$ or PBu_3 ^{1d}

(continued on next page)

Table 2 (continued)

Entry	Epoxide (1)	Time (min)	Product (2)	Yield ^b (%)	Selected literature data for comparison and comments
16	Ph 10 OH	10	Ph OH O 20 (ref. 1b)	76	Pd(PPh ₃) ₄ (4 mol %, 62% ^b) ^{1b}
17	D 1p	75 ^f	O 2p	88	IrCl ₃ (1 mol %, 4% of cyclopentane carboxaldehyde); ¹ⁱ BiOClO ₄ :xH ₂ O (no reaction); ^{1g} Bi(OTf) ₃ :xH ₂ O (no reaction); ^{1h} InCl ₃ (1.6 equiv, no rearrangement: resulted in cholohydrin); ^{1e} LiClO ₄ (no reaction); ^{1q} Mixed-valent iron (2 mol %, polymerization) ^{1m}
18	Ph 1q	180 ^f	Ph CHO 2q	73	Fe(tpp)OTf (2 mol %, 94% ^b) ^{1k}

 a All the reactions were carried out with 0.1 mol % AuCl₃ and 0.3 mol % AgSbF₆ in dioxane at rt unless otherwise stated.¹⁹

^b Yields refer to pure isolated products.

 c ~11% of hydrogen migrated product also present as revealed from ¹H NMR of the column purified material.

^d After NaBH₄ reduction of crude reaction mixture.

 e ~3% tert-butyl migrated product was also observed in 1 H NMR of crude reaction mixture.

f 2 mol % of AuCl₃ and 6 mol % of AgSbF₆ were used.

This study reveals that the gold-catalyzed rearrangement of substituted epoxides is regioselective through C–O bond cleavage which will lead to the formation of more stable carbocation. Also the rearrangement follows hydrogen migration mainly, that is, if there are two groups at β -position, hydrogen migration is preferred over methyl or substituted methyl group. However, when there is a competition between phenyl/acetyl/benzoyl and hydrogen the migration of phenyl/acetyl/benzoyl is preferred.

Based on these results a plausible mechanism for this epoxide rearrangement could be drawn as shown in Scheme 1. Cationic gold species coordinates to oxygen of oxirane 1, which leads to the C-O bond cleavage to generate stable carbocation intermediate II regioselectively. Migration of R³ generates carbocation III. When phenyl is in the β-position as in stilbene oxide, it will migrate preferentially through well-established phenonium ion. The intermediate **III** is stabilized when R⁴ is alkyl by hyperconjugation effect. In the case of substrates **1e** and **1f** which bear, respectively, acetyl and benzoyl groups at the β -position, intermediate III is destabilized if hydrogen migration takes place. This could be the reason for the preference of acetyl or benzoyl migration over hydrogen migration. In the reaction of substrate 1g, the ester group might not destabilize the intermediate **III** to the extent that a carbonvl group of acetyl and benzoyl could do. Eventually hydrogen migration is preferred in 1g. The intermediate III which is stabilized by

Scheme 1. Plausible mechanism.

the lone pair on oxygen as depicted in oxonium ion **IV** generates final carbonyl compound **2** by releasing gold catalyst back into the catalytic cycle.

AuCl₃/3AgSbF₆ catalyzed epoxide to carbonyl rearrangement takes place very efficiently in dioxane to result carbonyl compounds in high yields in a short span of time. Unlike other promoters used for the epoxide to carbonyl rearrangement, this catalytic system has wider substrate scope. The migrating aptitude of different substituents has been evaluated. Since gold catalysts can perform a variety of conversions, this rearrangement can be coupled with such reactions to find new tandem reactions. Studies in this direction are currently under process.

Acknowledgments

The authors thank the Department of Science and Technology (DST), India for financial support. VG thanks the Council of Scientific and Industrial Research (CSIR), India for a fellowship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012. 07.056.

References and notes

1. (a) Maruoka, K.; Murase, N.; Bureau, R.; Ooi, T.; Yamamoto, H. Tetrahedron 1994, 50, 3663-3672; (b) Vankar, Y. D.; Chaudhuri, N. C.; Singh, S. P. Synth. Commun. 1986, 16, 1621–1626; (c) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1994, 59, 7195-7196; (d) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1997, 62, 6547-6561; (e) Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212-8216; (f) Martínez, F.; del Campo, C.; Llama, E. F. J. Chem. Soc., Perkin Trans. 1 2000, 1749-1751; (g) Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527–1530; (h) Bhatia, K. A.; Eash, K. J.; Leonard, N. M.; Oswald, M. C.; Mohan, R. S. Tetrahedron Lett. 2001, 42, 8129-8132; (i) Karamè, I.; Tommasino, M. L.; Lemaire, M. Tetrahedron Lett. 2003, 44, 7687 7689; (j) Takanami, T.; Hirabe, R.; Ueno, M.; Hino, F.; Suda, K. Chem. Lett. 1996, 1031-1032; (k) Suda, K.; Baba, K.; Nakajima, S.-i.; Takanami, T. Tetrahedron Lett. 1999, 40, 7243-7246; (l) Suda, K.; Baba, K.; Nakajima, S.-i.; Takanami, T. Chem. Commun. 2002, 2570-2571; (m) Ertürk, E.; Göllü, M.; Demir, A. S. Tetrahedron 2010, 66, 2373-2377; (n) Procopio, A.; Dalpozzo, R.; De Nino, A.; Nardi, M.; Sindona, G.; Tagarelli, A. Synlett 2004, 2633-2635; (o) Robinson, M. W. C.; Pillinger, K. S.; Graham, A. E. Tetrahedron Lett. 2006, 47, 5919-5921; (p) Robinson, M. W. C.; Pillinger, K. S.; Mabbett, I.; Timms, D. A.; Graham, A. E. Tetrahedron 2010, 66, 8377-8382; (q) Sudha, R.; Narasimhan, K. M.; Saraswathy, V. G.; Sankararaman, S. J. Org. Chem. 1996, 61, 1877–1879; (r) Sankararaman, S.; Nesakumar, J. E. J. Chem. Soc. Perkin Trans. 1 1999, 3173-3175; (s) Robinson, M. W. C.; Davies, A. M.; Buckle, R.; Mabbett, I.; Taylor, S. H.; Graham, A. E. Org. Biomol. Chem. 2009, 7, 2559–2564; (t) Kita, Y.; Matsuda, S.;

Inoguchi, R.; Ganesh, J. K.; Fujioka, H. J. Org. Chem. **2006**, *71*, 5191–5197; (u) Smith, K.; El-Hiti, G. A.; Al-Shamali, M. Catal. Lett. **2006**, *109*, 77–82.

- (a) Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 6431–6432;
 (b) Ishihara, K.; Hanaki, N.; Yamamoto, H. Synlett 1995, 721–722; (c) Suda, K.; Kikkawa, T.; Nakajima, S.; Takanami, T. J. Am. Chem. Soc. 2004, 126, 9554–9555;
 (d) Suda, K.; Nakajima, S.; Satoh, Y.; Takanami, T. Chem. Commun. 2009, 1255– 1257; (e) Deng, X.-M.; Sun, X.-L.; Tang, Y.J. Org. Chem. 2005, 70, 6537–6540; (f) Hrdina, R.; Müller, C. E.; Wende, R. C.; Lippert, K. M.; Benasi, M.; Spengler, B.; Schreiner, P. R. J. Am. Chem. Soc. 2011, 133, 7624–7627.
- (a) Wilson, M. S.; Woo, J. C. S.; Dake, G. R. J. Org. Chem. 2006, 71, 4237–4245; (b) Vital, P.; Tanner, D. Org. Biomol. Chem. 2006, 4, 4292–4298; (c) Srikrishna, A.; Satyanarayana, G.; Prasad, K. R. Synth. Commun. 2007, 37, 1511–1516.
- (a) Kodama, T.; Harada, S.; Tanaka, T.; Tachi, Y.; Morimoto, Y. Synlett **2012**, 458–462; (b) Albert, B. J.; Koide, K. J. Org. Chem. **2008**, 73, 1093–1098; (c) Lautens, M.; Ouellet, S. G.; Raeppel, S. Angew. Chem., Int. Ed. **2000**, 39, 4079–4082; (d) Banerjee, M.; Roy, U. K.; Sinha, P.; Roy, S. J. Organomet. Chem. **2005**, 690, 1422–1428; (e) Wang, L.; Maddess, M. L.; Lautens, M. J. Org. Chem. **2007**, 72, 1822–1825; (f) Donald, J. R.; Taylor, R. J. K. Synlett **2009**, 59–62; (g) Nokami, J.; Maruoka, K.; Souda, T.; Tanaka, N. Tetrahedron **2007**, 63, 9016–9022.
- For recent selected reviews see: (a) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448–2462; (b) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657–1712; (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239– 3265.
- 6. Garayalde, D.; Nevado, C. Beilstein J. Org. Chem. 2011, 7, 767–780. and the references cited there in..
- Hashmi, A. S. K.; Bührle, M.; Salathé, R.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 2059–2064.

- Xiao, H.-Q.; Shu, X.-Z.; Ji, K.-G.; Qi, C.-Z.; Liang, Y.-M. Catal. Commun. 2009, 10, 1824–1827.
- 9. Raptis, C.; Garcia, H.; Stratakis, M. Angew. Chem., Int. Ed. 2009, 48, 3133–3136.
- 10. Balamurugan, R.; Kothapalli, R. B.; Thota, G. K. Eur. J. Org. Chem. 2011, 1557– 1569.
- 11. Yamamoto, Y. J. Org. Chem. 2007, 72, 7817-7831.
- 12. Tsai, H.; Hu, E.; Perng, K.; Chen, M.; Wu, J.-C.; Chang, Y.-S. Surf. Sci. 2003, 537, L447–L450.
- House, H. O.; Blaker, J. W.; Madden, D. A. J. Am. Chem. Soc. **1958**, 80, 6386–6388.
 Braña, M. F.; García, M. L.; López, B.; Pascual-Teresa, B. d.; Ramos, A.; Pozuelo, J.
- M.; Domínguez, M. T. Org. Biomol. Chem. **2004**, *2*, 1864–1871. Maki T. Ishihara K. Yamamoto H. Org. Lett. **2005**, 7, 5047–5050.
- 15. Maki, T.; Ishihara, K.; Yamamoto, H. Org. Lett. **2005**, *7*, 5047–5050. 16. Li, L.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem. **2008**, *73*, 3516–3522.
- Angle, S. R.; Neitzel, M. L. J. Org. Chem. 2000, 65, 6458–6461.
- Genna, D. T.; Posner, G. H. Org. Lett. 2011, 13, 5358–5361.
- Representive procedure for the rearrangement of **1a**: To a solution of the epoxide
- 19. Representive proceedine for the rearrangement of **1a**: 10 a solution of the epoxide **1a** (100 mg, 0.61 mmol) in dry dioxane (3 mL) freshly prepared AuCl₃ (0.2 mg, 0.1 mol %) and AgSbF₆ (0.6 mg, 0.3 mol %) solutions in dry dioxane were added and the reaction mixture was allowed to stir at room temperature. The reaction was monitored by TLC and found to complete in 20 min. Dioxane was evaporated. The residue was loaded on a silica gel column and was eluted with EtOAc/hexanes (7/93) mixtures to obtain pure compound **2a** in 83% yield as colorless liquid. *R*_f = 0.27 in 1:10 EtOAc/hexanes. ¹H NMR (400 MHz, CDCl₃): δ 3.38 (s, 3H), 3.75 (s, 2H), 4.06 (s, 2H), 7.22–7.35 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 46.0, 59.1, 76.8, 127.0, 128.6, 129.3, 133.3, 205.7.