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An efficient procedure for transesterification has been developed in a ball-mill in the absence of any sol-
vent, acid/base or metal catalyst. A variety of methyl, ethyl, allyl esters have been transesterified to higher
benzyl and other esters in high yields by this procedure.
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Scheme 1. Transesterification in a ball-mill

Table 1
Standardization of reaction conditions in ball mill

O
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Entry Grinding auxiliary t/h Yield (%)

1 Basic Al2O3 1 61
2 Basic Al2O3 2 76
3 Basic Al2O3 3 76
Transesterification is a useful reaction which has wide applica-
tions in academic as well as industrial research. Usually, methyl
and ethyl esters are readily available and thus they can be used
in transesterification for an easy access to higher homologues
which are of much importance for certain applications. Thus, a
number of procedures have been developed for this useful reac-
tion. Traditionally, a carboxylic ester was transesterified by reac-
tion with an alcohol in the presence of a protic and Lewis base or
acid.1,2 However, these procedures have limited scope due to their
incompatibility with sensitive functional groups and molecules.
Several milder reactions using organometallic catalysts,3 N-hetero-
cyclic carbene4 and indium triiodide5 among others6 have been
developed in recent times. These methods also have drawbacks
involving costly reagents and longer reaction times.

Recently, ball-milling (mechanical grinding) has emerged as a
powerful tool for effecting a chemical reaction in a greener way.7

A variety of reactions such as homocoupling of terminal alkynes,8

Sonogashira,9 Michael10 and aldol reactions11 among others12 have
been performed very efficiently by this technique. As a part of our
continuing activities on green synthetic protocols, we report here
an efficient transesterification over an alumina surface by ball mill-
ing without requirement of any solvent and conventional catalyst
(Scheme 1).

To standardize the reaction conditions several experiments for a
representative reaction of allyl acetate and benzyl alcohol were
carried out in a ball mill with the variation of grinding auxiliary
and reaction time. The results are summarized in Table 1. The reac-
tion over basic alumina gave best yield in 2 h (Table 1, entry 2).
ll rights reserved.
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Reaction for a longer period than 2 h did not give a better result
(Table 1, entry 3). Acidic alumina alone (Table 1, entry 4) failed
to initiate any reaction although Al2O3–KF (Table 1, entry 5) im-
proved the yield marginally (30%). Silica gel (60–120 mesh) (Table
1, entry 6) was also not effective for this reaction.

In a typical experimental procedure13 a mixture of alcohol and
ester (little excess) absorbed in basic alumina was subjected to
ball-milling at 600 rpm for 2–3 h as required for maximum
4 Acidic Al2O3 2 0
5 KF–Al2O3 2 30
6 Silica 2 0
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Table 2
Transesterification of esters with alcohols

R3+O

O
R2 OH

Basic Al2O3
600 rpm, 6 balls,
ball-millingR1 O

O
R3

R1

Entry R1 R2 R3 Time (h) Yielda (%) Ref.

1 Me Allyl Ph-CH2– 2 76 4a
2 Me Allyl (3-Cl)C6H4-CH2– 2 75 14
3 Et Et (3-Cl)C6H4-CH2– 2 71
4 Me Allyl (4-F)C6H4-CH2– 2 70 15
5 n-pr Me (4-OCH3)C6H4-CH2– 2 81 16
6 Ph Benzyl (4-OCH3)C6H4-CH2– 3 80 17
7 Vinyl Me (4-OCH3)C6H4-CH2– 2.5 78
8 n-pr Me (4-NO2)C6H4-CH2– 2 72 18
9 Vinyl Me (4-NO2)C6H4-CH2– 2.5 70 19
10 Me Allyl Ph-(CH2)2– 2 76 3b
11 n-pr Me Ph-(CH2)2– 2 71 20
12 Me Allyl Ph-(CH2)3– 2 73 4b
13 Et Et Ph-(CH2)3– 2 76 21
14 Me Allyl Ph-(CH2)4– 2 75 4b
15 n-pr Me Ph-(CH2)4– 2 70 22
16 Et Et Ph-(CH2)5– 2 72
17 n-pr Me Ph-(CH2)5– 2 75
18 Me Allyl CH3CH(Ph)(CH2)2– 2 72 23
19 n-pr Me CH3CH(Ph)(CH2)2– 2 70

20 n-pr Me
S CH2 3 66

21 Et Et
N C

H2

2.5 71 24

22 n-pr Me O C
H2

2.5 65

23 Et Et 2 76 3c

24 n-pr Me 2 69 3c

25 Ph Benzyl 3 68 3c

26 Et Et Me
(CH2)5 2 74 25

27 Me Allyl

Me
(CH2)5

CH
2.5 67 26

28 Et Et 2.5 66 27

29 Et Et 3 0

a Yields refer to those of purified isolated products characterized by spectroscopic
data (IR, 1H NMR and 13C NMR).
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conversion (TLC/NMR). A quick column chromatography of the
crude reaction mass over alumina (hexane/ether = 95:5) provided
pure product.

A wide range of carboxylic esters underwent transesterification
with several structurally diverse alcohols by this procedure. The
results are reported in Table 2. A variety of alcohols including
substituted benzyl, cinnamyl, heterocyclic, open chain and cyclic
secondary underwent exchange with methyl, ethyl, allyl and ben-
zyl esters to produce the corresponding transesters. The tertiary
alcohols did not participate in this transesterification process. In
general, the reactions are very clean and the products are obtained
in high purity. The yields of transesterified products are reasonably
good considering the reversible nature of the reaction. The reaction
conditions are mild and thus several functional groups and sensi-
tive heterocyclic units like thiophene, pyridine and furan remained
unaffected in this procedure. No solvent was used in the reaction
and the work-up procedure was skipped. Thus, use of organic sol-
vent was considerably reduced. Ball-milling accelerated the pro-
cess substantially and the reactions are complete by 2–3 h.

In conclusion, we have developed a simple and efficient proce-
dure for transesterification over alumina surface in ball-milling.
The notable advantages offered by this procedure are use of no sol-
vent and no acid or base catalyst in the reaction, considerably fast
reaction, tolerance to sensitive functionalities and molecules,
applicability to varied esters and alcohols and greener aspects
using less organic solvents and recyclability of grinding auxiliary.
To the best of our knowledge we are not aware of any earlier report
of transesterification under ball-milling using only a grinding aux-
iliary (alumina). We believe, this will make an important addition
to the existing procedures of transesterification and will find useful
applications in organic synthesis.
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3-Chlorobenzyl propionate (Table 2, entry 3): Colourless liquid; IR 3470, 3066,
2982, 2943, 2831, 1741, 1600, 1577, 1462, 1431, 1377, 1346, 1273, 1176, 1080,
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140.3, 134.5, 129.9, 128.2, 128.1, 126.2, 65.3, 27.6, 9.2; Anal. calcd for
C10H11ClO2: C 60.46, H 5.58%; Found: C 60.32, H 5.66%.
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