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A simple and efficient preparation of a novel chiral derivative of (S)-proline containing a 1,2,4-triazolyl
moiety is described. The high-yielding synthetic protocol includes the use of microwave irradiation to
afford new chiral pyrrolidine derivatives in high yield. Our triazolyl-containing heterocycle was evalu-
ated as organocatalyst (10 mol% load, under neat reaction conditions) in the enantioselective aldol reac-
tion between four different types of ketones and a variety of aryl aldehydes. Good results in terms of
enantioselectivity and chemical yield were observed under solvent-free reaction conditions and in the
absence of any additive. Evidence is provided for the involvement of the water molecule generated upon
enamine formation in the transition state of the aldol reaction.

� 2019 Elsevier Ltd. All rights reserved.
Introduction

The high efficiency exhibited by (S)-proline, (S)-1, in CAC bond-
forming reactions [1] has attracted the attention of a significant
number of chemists who have demonstrated the enormous poten-
tial of organocatalysis in asymmetric synthesis. Nevertheless, the
low solubility of (S)-proline in most organic solvents is a practical
limitation that has led to the incorporation of diverse functional
groups aimed to improve proline’s solubility while maintaining
high stereoselectivity and catalytic efficacy [2].

The asymmetric aldol reaction is a versatile synthetic tool for
the construction of CAC bonds with the generation of at least
one stereogenic center [3a]. This reaction still proves to be chal-
lenging, particularly because it is of great present interest to per-
form aldol reactions under more sustainable reaction conditions,
such as in water [3b–e], in brine [3f], or in the absence of solvent
[3g]. Furthermore, several research groups have developed useful
aldol methodologies employing supported catalysts or supported
organocatalysts [4].

Recently, our group has made several contributions in the area
of asymmetric organocatalysis such as in the development of
monoterpene-based (S)-proline derivatives [5a], the design,
synthesis and application of (S)-proline-containing chiral phospho-
ramides for enantiodivergent aldol reactions [5b] and the prepara-
tion of diamine derivatives of a,a-diphenyl-(S)-prolinol that
proved efficient in asymmetric Michael and Mannich reactions
[5c]. In addition, several pyrrolidinic camphor- and cinchona-based
derivatives have been shown by others groups to be effective in
catalyzing various asymmetric transformations [6].

Relevantly, a significant number of privileged bifunctional
organocatalysts that exhibit excellent performance incorporate
heterocyclic substituents [7]. In a particularly interesting example,
Ley et al., Yamamoto et al., and Arvidsson et al. reported that so-
called (S)-proline-2-tetrazole ((S)-2 in Scheme 1) is rather effective
in the organocatalytic aldol reaction as well as in asymmetric Man-
nich and Michael reactions [8].

The seminar work reported by Yamamoto, Ley and Arvidsson
[8] inspired us to develop the synthesis of a novel organocatalytic
system derived from (S)-proline that incorporates a 1,2,4-triazolyl-
5-benzylthio heterocyclic substituent, (S)-3a (Scheme 1). It is
anticipated that the benzylthio group on the triazole substituent
will increase its lipophilicity, so that organocatalysis should readily
take place both in organic and aqueous media.

The efficiency of our novel organocatalyst was evaluated in
asymmetric aldol reactions. It became apparent that the lipophilic
heterocyclic ring as well as the benzylthio- substituent do help
increase the solubility of (S)-proline-derived organocatalyst in
organic system because the reaction media were notably
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Scheme 1. Emblematic organocatalysts (S)-proline, (S)-1, (S)-proline-2-tetrazole,
(S)-2, and novel pyrrolidinic 1,2,4-triazole derivative (S)-3a described in the present
work.

Fig. 1. Single crystal X-ray diffraction analysis of N-Boc-(2S)-(5-(benzylthio)-4-
phenyl-(1,2,4-triazol)-3-yl)-pyrrolidine, (S)-9a.
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Scheme 2. N-Deprotection of (S)-9a-c under acidic conditions to afford the
hydrochloride salts (S)-3a-c�HCl.
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homogenous. Furthermore, theoretical evidence will be provided
below that the triazole ring does indeed participate in the stereoin-
ducing transition state via hydrogen bonding interaction with the
water molecule that is produced during enamine formation. Such
activation by water is in line with the proposal advanced by Naka-
shima and Yamamoto in their study of (2S)-pyrrolidine-tetrazole
(S)-2 as organocatalyst in asymmetric aldol reactions [8e].

Results and discussion

Synthesis of novel organocatalysts (S)-3a-c

The synthesis of the novel 2-(1,2,4-triazol-5-thioeter)-(S)-pro-
line derivatives (S)-3a-c was carried out as described in the ‘refer-
ences and notes’ section [9]. The structure of the pyrrolidinic 1,2,4-
triazol-5-thione (S)-8 precursor was confirmed by single-crystal X-
ray diffraction analysis (Fig. S-85, ESI) [11]. Most relevant is the
distance between carbon and sulfur, 1.66 Å, that fits well with
anticipation for a C@S double bond [12]. In this regard, the length
calculated theoretically at the DFT M06 6-311G* level of theory is
1.65 Å (Fig. S-65, ESI, Section 5.1).

In order to obtain the desired alkylthio derivatives (S)-9a-c,
thione (S)-8 was treated with KOH and the resulting thioenolate
was treated with the corresponding halide to yield the five-mem-
bered heterocycles (S)-9a-c in good yields (Table 1).

Compound (S)-9a provided adequate crystals for X-ray diffrac-
tion analysis (Fig. 1) [13]. Most salient, it could be corroborated
that benzylation is highly regioselective and took place at the sul-
fur atom. Furthermore, retention of the (S) configuration of the
proline ring is also confirmed by consideration of the Flack param-
eter, F = 0.061 (Fig. S-89, ESI).

Finally, compounds (S)-9a-c were N-deprotected under acidic
conditions to obtain organocatalysts (S)-3a-c as hydrochloride
salts (Scheme 2).

Evaluation of organocatalysts (S)-3a-c.

The potential efficiency of novel (S)-proline derivatives (S)-3a-c
in organocatalysis, either in free form (after treatment with
NaHCO3) or as hydrochloride salts, and in presence or absence of
Table 1
Preparation of N-Boc-(2S)-(5-(thioalkyl)- and N-Boc-(2S)-(5-(thiobenzyl)-4-phenyl-
(1,2,4-triazol)-3-yl)-pyrrolidines (S)-9a-c.

N

Boc

N
N
H

S
N

Ph

(S)-9a-c

N N N

SN

Ph

1 equiv. KOH
+

Boc

MW
MeCN.

R

(S)-8

alkyl/aryl
halide

Product R-X Yield (%)

(S)-9a benzyl bromide 82
(S)-9b 2-iodopropane 85
(S)-9c 1-bromo-2-chloroethane 70
water as additive was evaluated in the asymmetric aldol reaction
between cyclohexanone and 4-nitrobenzaldehyde. Table 2 summa-
rizes our observations, which indicate that best results in terms of
yield and stereoselectivity are obtained with 10 mol% of the cata-
lyst (S)-3a in its free form, under solvent-free (neat) reaction con-
ditions (entry 1). Quite similar results were obtained with (S)-3b,
anticipated to present similar solubility in organic media (compare
entries 1 and 3).

By contrast, with (S)-3c�HCl the yield and selectivity were
rather low, probably as consequence of its diminished solubility
(Table 2, entry 4, see also ESI). The use of the protonated form of
organocatalysts (S)-3a and (S)-3b results in decreased yield and
stereoselectivity (entries 2 and 4). On the other hand, while addi-
tion of water to the reaction medium was detrimental (entries 5
to 8), thorough water removal with molecular sieves (entry 9)
led to a drastic decrease in yield and stereoselectivity. This latter
result indicates that water is an essential component for the effi-
cient progress of the aldol reaction [14].

The reaction’s scope was then examined with a variety of alde-
hydes and under the conditions indicated in entry 1 of Table 2
(Table 3).

Organocatalyst (S)-3a was also evaluated in asymmetric aldol
reactions with acetone, cyclopentanone and cycloheptanone,
maintaining 4-nitrobenzaldehyde as electrophile. Best results were
observed with cyclopentanone (Table 4). As anticipated by the
introduction of the lipophilic triazole substituent in proline (see
Introduction) miscibility of the organocatalyst with organic part-
ners such as the cyclohexanone, acetone, cyclopentanone and
cycloheptanone is remarkably high.

As it was already mentioned, Nakashima and Yamamoto [8e]
reported a study on the asymmetric aldol reaction with acetone,



Table 2
Asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde in the presence of organocatalysts (S)-3a-c, and in the presence or absence of water.

O

+

10 mol % (S)-3a-c
OH

NO2
(2S,1´R)-10

rt, neat, 36 h

NO2

H

OO

Entry Organocatalyst Additive Yield (%)b dr (anti/syn)c erd

1 (S)-3a None 96 85:15 96:4
2 (S)-3a�HCl None 85 86:14 84:16
3 (S)-3b None 90 80:20 90:10
4 (S)-3c�HCl None 22 80:20 60:40
5 (S)-3a 1 mol % H2O 50 90:10 87:13
6 (S)-3a H2Oa 42 82:18 89:11
7 (S)-3a 50 mol % H2O 35 75:25 80:20
8 (S)-3a 100 mol % H2O 24 70:30 55:45
9 (S)-3a MS 3Åe 18 60:40 60:40

a The value corresponds to 10 mol % of additives.
b Determined after column purification Hexane-EtOAc, 9:1.
c Determined by 1H NMR spectroscopy.
d Determined by HPLC analysis with chiral columns (see SI). eMS: Molecular Sieves.

Table 3
Scope of the asymmetric aldol reaction catalyzed with (S)-3a.

O O

+
10% mol (S)-3ad

OH

(2S,1´R)-11-21

rt, neatR R
H

O

Product R Time (h) Yield (%)a dr (anti/syn)b er (anti)c

11 2-nitro 36 94 80:20 90:10
12 3-nitro 36 96 80:20 91:9
13 1-naphth 72 68 70:30 60:40
14 -H 96 63 75:25 70:30
15 2-CF3 48 92 96:4 60:40
16 4-CN 36 94 80:20 76:24
17 2-Cl 36 93 60:40 65:35
18 4-Cl 36 94 80:20 75:25
19 3-Br 36 92 60:40 60:40
20 4-CF3 24 92 70:30 70:30
21 4-F 48 90 60:40 65:35

a Determined after column purification Hexane-EtOAc, 9:1.
b Determined by 1H NMR spectroscopy.
c Determined by HPLC analysis. dIn free form.

Table 4
Evaluation of the catalyst (S)-3a with other ketones.

O
O

+
10% mol (S)-3ad

OH

rt, neat
N
H N N

SN
Ph

Bn

(S)-3a

O

H

(CH2)n
(CH2)n

n = 0,1,2n = 0, 1,2
NO2 NO2

Entry Ketone Time (h) Yield (%)a dr (anti/syn)b erc

1 Acetone 24 96 – 83:17
2 Cyclopentanone 36 92 93:7 92:08
3 Cycloheptanone 36 85 65:35 96:04

d In free form.
a Determined after column purification hexane-EtOAc, 9:1.
b Determined by 1H NMR spectroscopy.
c Determined by HPLC analysis.
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catalyzed by so-called (S)-proline tetrazole (S)-2. Comparison with
our catalytic system, indicates comparable yields and stereoselec-
tivities, although reactions catalyzed by (S)-3a seem to proceed in
shorter times. In this context, Nakashima and Yamamoto have pro-
posed activation by a water molecule of the reaction catalyzed by
tetrazole derivative (S)-2 [14]. Suspecting that similar activation is
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Scheme 3. Calculated equilibrium geometry (DFT M06 6-31G*) for isomeric species
of hydrated (S)-3a�H2O.

Fig. 2. Modeling of the transition state where organocatalyst (S)-3a activates the
electrophilic aldehyde by hydrogen bonding between the catalyst [N(2) at the
triazole ring], water, and the carbonyl substrate.
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Scheme 4. Plausible reaction mechanism proposed with base on both experimental
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operative with the triazole analogs (S)-3a and (S)-3b, it was deem
important to carry out a preliminary computational study of the
reaction mechanism involving catalyst (S)-3a. In a first approxima-
tion, the structure of organocatalyst (S)-3a in the presence of one
water molecule was optimized at the Spartan DFT at M06 6-31G*
level of theory. Calculations (cf. Scheme 3) suggest that hydrated
structure 22-A with water hydrogen-bonded to N(2) is more stable
relative to alternative adducts 22-B (water coordinated to N(1) or
22-C (water molecule bound to the exocyclic sulfur).

The above theoretical evidence, together with Yamamoto’s pro-
posed activation by hydrogen bonding between water and tetra-
zolyl nitrogens of electrophilic aldehydes during the aldol
reaction catalyzed with (S)-2 [8e] support similar activation of
the electrophile by hydrogen bonding between the catalyst (S)-3a
[N(2) at the triazole ring], water, and the carbonyl substrate. Thus,
such proposed transition state was modelled using Spartan 16
(DFT-M06-6-31G*) (Fig. 2) [15]. Indeed, calculations converged to
the energy minimum and reveal a 2.037 Å distance between atom
N(2) of the triazole ring and a hydrogen in the water molecule. The
distance between the second hydrogen of the water molecule with
the oxygen atom of the aldehyde was estimated as 1.449 Å. These
data are in line with the participation of a supramolecular aggre-
gate in the transition state of the asymmetric aldol reaction.

It is then proposed that the equimolar amount of water gener-
ated upon enamine formation gets involved in the suggested tran-
sition state. A plausible reaction mechanism that is in line with the
experimental (Cf. Table 2) and theoretical observations (Cf. Fig. 2)
involves enamine formation in the first step, with the formation
of 1 equivalent of water. Such water molecule is then involved in
the supramolecular complex that leads to the aldol product and
subsequent liberation of the organocatalyst that will enter in a
new cycle (Scheme 4).

In conclusion, novel organocatalyst (S)-3a proved to be effective
in asymmetric aldol reactions, offering the desired products in
good enantio- and diastereoselectivities. Some advantages offered
by organocatalyst (S)-3a include the fact that it does not require
the presence of acidic or basic additives. Experimental and theoret-
ical observations suggest that a water molecule is involved in the
transition state.
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