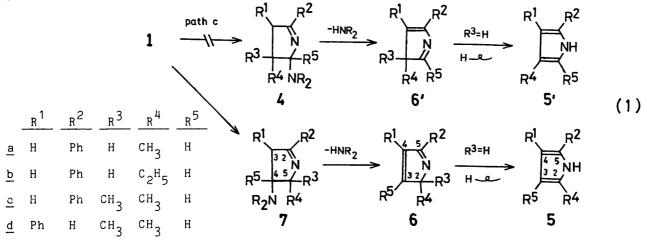

FORMATION OF UNUSUAL PYRROLES BY PHOTOLYSIS OF 1-VINYL-4,5-DIHYDRO-1H-1,2,3-TRIAZOLES

Masato M. ITO, Yujiro NOMURA, Yoshito TAKEUCHI, and Shuji TOMODA Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

Photolysis of 4-alkyl-5-amino-l-vinyl-4,5-dihydro-1H-1,2,3-triazoles gave not 3-alkylpyrroles but unexpected 2-alkylpyrroles in 80-83 % yields. Similarly 4,4-dimethyltriazole derivatives gave 2,2-dimethyl-2Hpyrroles in 70-74 % yields. 1-Vinylaziridines were assumed as a possible intermediate of this anomalous reaction.


Three reaction paths are expected in the decomposition of 1-vinyl-4,5-dihydro-1H-1,2,3-triazoles (1) after the elimination of nitrogen as shown below: the first is direct ring closure to form 1-vinylaziridines (2) (path a), the second is 1,2alkyl (hydrogen) shift to N-vinylimines (3) (path b), and the third is formation of a C-C bond between C-4 of the dihydrotriazole and  $\beta$ -position of the vinyl group to give 1-pyrrolines (4) (path c).

Actually, thermolysis of 4,4-dimethyl-1-(1-phenylvinyl)-5-(1-pyrrolidinyl)-4,5-dihydro-1<u>H</u>-1,2,3-triazole (<u>1c</u>:  $R^1 = R^5 = H$ ,  $R^2 = Ph$ ,  $R^3 = R^4 = CH_3$ ,  $NR_2 = C_4H_8N$ ) in dimethyl sulfoxide is known to give the corresponding  $\underline{N}^2$ -vinylamidine (3) via path



b,  $^{1)}$  in accord with the general trends of 5-aminotriazolines.  $^{2)}$ 

In the present letter we wish to report the photolysis of the 1-vinyl-4,5dihydro-1<u>H</u>-1,2,3-triazoles  $(\underline{1a}-\underline{d})$ ,<sup>3)</sup> which afforded unexpected pyrrolines and pyrroles.



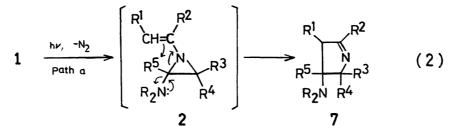
A solution of 4-methyl-1-(1-phenylvinyl)-5-(1-pyrrolidinyl)-4,5-dihydro-1<u>H</u>-1,2,3-triazole (<u>1a</u>) in methanol was irradiated with a 100 W high pressure mercury lamp through a pyrex vessel at 0  $^{\circ}$ C for 45 min, until <u>1a</u> was completely consumed. After removal of the solvent in vacuo, the residue was purified through alumina column by eluting with dichloromethane to give 2-methyl-5-phenylpyrrole (<u>5a</u>) in 83 % yield. No 4-methyl-2-phenylpyrrole (<u>5'a</u>) was formed, strongly indicating that the product was not derived from direct 1,5-ring closure of possible intermediate <u>1'</u> (path c).

The structure of the pyrrole  $\frac{5a}{2}^{4a}$  was determined by spectral and analytical results. In <sup>1</sup>H NMR, a singlet at  $\delta$  2.28 (3H) and the signals at  $\delta$  7.3-7.8 (5H)

| and the second s | and the second |            |     |            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|-----|------------|------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>C-2</u>                                                                                                       | <u>C-3</u> |     | <u>C-4</u> | <u>C-5</u> |
| <u>5a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.9                                                                                                            | (106.2     | and | 108.0)     | 130.8      |
| <u>5b</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 136.1                                                                                                            | (106.5     | and | 106.6)     | 131.0      |
| <u>6c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.5                                                                                                             | 162.6      |     | 123.1      | 169.6      |
| <u>6d</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.3                                                                                                             | 153.6      |     | 138.1      | 161.3      |
| <u>7a</u> b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170.1                                                                                                            | 40.2       |     | 72.2       | 69.5       |
| <u>7c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 167.8                                                                                                            | 40.7       |     | 73.5       | 73.1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |            |     |            |            |

Table 1. <sup>13</sup>C NMR data of the pyrroles 5, 6, and pyrrolines  $7^{a}$  ( $\delta$ ; CDCl<sub>3</sub>).

<sup>a)</sup> Signals other than the pyrrole ring are omitted.


Measured as a mixture with 5a.

## Chemistry Letters, 1981

indicated the existence of one methyl and one phenyl groups, and it was unequivocally demonstrated by <sup>13</sup>C NMR that the product was 2,5-disubstituted pyrrole (Table 1). There are two doublet signals<sup>5)</sup> at  $\delta$  106.2 and 108.0, corresponding to the methyne carbon of the pyrrole ring. These two signals are assigned to the  $\beta$ -carbon of the pyrrole ring by two reasons; a)the signal of  $\beta$ -carbon of pyrrole itself appears at  $\delta$  108,<sup>6)</sup> and b) alkyl and aryl substituted ring carbons.<sup>7)</sup> Thus, it was demonstrated that the product was 2-methyl-5-phenylpyrrole (<u>5a</u>).

Photolysis of the dihydrotriazoles  $(\underline{1b}-\underline{d})$  were carried out in a similar manner as described above to give the corresponding pyrrole derivatives in 70-80 % yields. Spectral data of the products were compatible with the pyrrole  $(\underline{5b})^{4b}$  and 2Hpyrroles (6c,d).<sup>2b</sup>

In the case of <u>1c</u>, when the reaction product was purified through alumina column (Woelm N, 02084, Akt. II) by eluting with hexane-ethyl acetate (1:1), 5,5-dimethyl-2-phenyl-4-(1-pyrrolidinyl)-1-pyrroline (<u>7c</u>) was isolated. Its structure was determined by the spectroscopic results<sup>8</sup> and from the fact that it was readily converted into <u>6c</u> by elimination of pyrrolidine, although combustion analysis was impossible because of its lability. An attempt to isolate the pyrroline <u>7a</u> from the reaction of <u>1a</u> in a similar manner gave a 2:1 mixture of <u>7a</u> and <u>5a</u>. <sup>13</sup>C NMR spectra were measured as the mixture. The signals corresponding to the pyrroline were compatible with the structure <u>7a</u> (Table 1). These results, together with the fact that no pyrroles were detected in the <sup>1</sup>H NMR of the crude products, suggests that 1-pyrrolines were formed by photolysis of <u>1</u>, and they were converted into pyrroles (5,6) on elution through alumina column.



Formation of the 1-pyrroline  $\underline{7}$  may be most simply rationalized by the following reaction path: after evolution of nitrogen, the vinylaziridine  $\underline{2}$  would be formed via the path a (Scheme 1). Then, selective ring cleavage of  $\underline{2}$  at one of the C-N bonds followed by ring closure would give  $\underline{7}$  as depicted in Eq. 2.

Photolysis of 4,5-dihydro-1 $\underline{H}$ -1,2,3-triazoles is known to give aziridines,<sup>9)</sup>

1521

but the above path contradicts the general trends in the ring cleavage of aziridines in two respects: first, both 1-vinylaziridines and 2-aminoaziridines are known to be rather stable under the similar reaction conditions,  $^{9b,10)}$  and second, thermal or photochemical ring cleavage of aziridines usually occurs at its C-C bond.<sup>11)</sup>

Attempts to elucidate the actual path of the present unusual reaction as well as to detect the intermediate(s) are in progress.

REFERENCES

- a) Y. Nomura, Y. Takeuchi, S. Tomoda, and M. M. Ito, Chem. Lett., <u>1979</u>, 187.
   b) <u>Idem</u>., Bull. Chem. Soc. Jpn., <u>54</u>, No. 10 (1981), in press.
- 2) R. Fusco, G. Bianchetti, and D. Pocar, Gazz. Chim. Ital., <u>91</u>, 933 (1961).
- Y. Nomura, Y. Takeuchi, S. Tomoda, and M. M. Ito, Bull. Chem. Soc. Jpn., <u>54</u>, 261 (1981).
- 4) The new pyrroles gave satisfactory results in elemental analysis.
  a) 2-Methyl-5-phenylpyrrole (5a): Mp. 92.5-94 <sup>o</sup>C.
  b) 2-Ethyl-5-phenylpyrrole (5b): Mp. 47-48.5 <sup>o</sup>C.
- 5) Splitting patterns were obtained by off-resonance decoupling.
- 6) F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., <u>90</u>, 3543 (1968);
   R. J. Pugmire and D. M. Grant, J. Am. Chem. Soc., <u>90</u>, 4232 (1968).
- J. B. Stothers, "Carbon-13 NMR Spectroscopy" Academic Press, New York (1972), Chap. 6 and 7.
- 8) 5,5-Dimethyl-2-phenyl-4-(1-pyrrolidinyl)-1-pyrroline (<u>7c</u>): MS: <u>m/e</u> 242 (M<sup>+</sup>); IR (CH<sub>2</sub>Cl<sub>2</sub>): 1615 cm<sup>-1</sup> (C=N); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 6 1.22 (3H, s), 1.49 (3H, s), 1.8 (4H, m), 2.6 (5H, m), 3.0 (2H, m), 7.4 (3H, m), and 7.8 (2H, m).
- 9) a) P. Scheiner, J. Am. Chem. Soc., <u>88</u>, 4759 (1966).

b) M. De Poortere and F. C. De Schryver, Tetrahedron Lett., 1970, 3949.

- c) M. S. Ouali, M. Vaultier, and R. Carrie, Bull. Soc. Chim. Fr., <u>1979</u>, II-633.
- 10) Y. Nomura, N. Hatanaka, and Y. Takeuchi, Chem. Lett., 1976, 901.
- H. W. Heine, R. Deavy, and A. T. Durbetaki, J. Org. Chem., <u>31</u>, 3924 (1966);
  R. Huisgen, W. Scheer, and H. Huber, J. Am. Chem. Soc., <u>89</u>, 1753 (1967);
  A. Padwa, D. Dean, and T. Oine, J. Am. Chem. Soc., <u>97</u>, 2822 (1975);
  M. Vaultier, R. Danion-Bougot, D. Danion, J. Hamelin, and R. Carrie, Bull. Soc. Chim. Fr., <u>1976</u>, 1537; and references therein.

(Received August 6, 1981)

1522