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Transition-metal-catalyzed asymmetric hydrogenation of
enamides[1] is a powerful method for the preparation of
chiral amines, which are important building blocks in organic
synthesis.[2] With the development of many effective chiral
ligands,[1] a variety of prochiral enamides such as 1,[3] 2,[3a-c,e,g]

3,[4] and 4,[5] have been hydrogenated with excellent enantio-
selectivities (Figure 1). However, the asymmetric hydrogena-

tion of 5 has received less attention. To our knowledge, the
only result reported for the hydrogenation of 5 employed an
Rh/dipamp (dipamp = 1,2-ethanediylbis[(2-methoxyphenyl)-
phenylphosphine]) complex to give moderate enantioselec-
tivity (50 % ee).[6] Herein, we prepared a series of enamides,
(Z)-5 and (E)-5, and tested them in a rhodium-catalyzed
asymmetric hydrogenation using several chiral ligands. Excel-
lent ee values (up to 99 % ee) were achieved for the Z-config-
ured enamides by using the Rh/tangphos (tangphos = 1,1’-di-
tert-butyl-[2,2’]-diphospholanyl) catalytic system.

A number of methods for the preparation of enamides
have been reported, including rearrangement reactions,[6,7]

the reduction of nitro alkenes[8] or ketoximes,[9] the acylation
of imines,[10] and the direct condensation of a ketone and an
amide.[11] Recently, a Merck group developed an efficient
palladium-catalyzed amidation reaction leading to a diverse
array of enamides.[12] Under the optimized reaction condi-
tions, good selectivity for Z enamides such as 6 was achieved
(Scheme 1). To gain quick access to the desired substrates 5a–

5 i, we chose the direct condensation method because of its
operational simplicity. As shown in Table 1, each isomer of 5
can be isolated by using flash column chromatography; in
most cases, more of the Z enamide was obtained than the
corresponding E isomer. Although the moderate yields
remain to be optimized, we found the present method to be
suitable for the quick syntheses of both (Z)-5 and (E)-5 from
inexpensive starting materials. Additionally, diaryl enamide
5 i was prepared in acceptable yield (Table 1, entry 9), which
complements the palladium-catalyzed amidation for this
bulky substrate.[12b]

Having synthesized a set of enamides 5, we tested the
rhodium-catalyzed asymmetric hydrogenation of (Z)-5a and
(E)-5a by using four widely used chiral ligands, including
(1S,1S’,2R,2R’)-tangphos (L1),[13a] (SC,RP)-duanphos (L2),[13b]

(R,R)-Et-duphos (L3),[13c] and (S)-binapine (L4).[13d] Notably,
under the same reaction conditions each ligand showed a
striking difference in enantioselectiviy toward the two
isomers (Table 2). For (Z)-5a, excellent ee values were
obtained by the use of all ligands except L4,with tangphos
giving the best results. A change in the solvent used had little
effect on the enantioselectivity. In contrast, much lower
ee values were observed for (E)-5a in EtOAc, albeit with the
same sense of product chirality as that obtained from (Z)-5a.
A change in the solvent used gave no improvement in

Figure 1. Prochiral enamide substrates for asymmetric hydrogenation.

Scheme 1. Palladium-catalyzed amidation for the synthesis of Z-enam-
ide 6.[12]
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enantioselectivity for the hydrogenation of (E)-5a (less than
50% ee in other common solvents). Therefore, unlike asym-
metric hydrogenation of an isomeric mixture of b-substituted
a-aryl enamides 2,[3a-c,e,g] the configuration of the double bond
in 5 has a dramatic influence on the enantioselectivity.[14] To
achieve excellent enantioselectivity with the current ligands,
Z-configured substrates need to be used.

We tested substrates (Z)-5b–5 i with the Rh/tangphos
catalytic system under the optimized reaction conditions. As
shown in Table 3, all substrates gave excellent ee values. The

substitution pattern on the phenyl ring generally has no
appreciable effect on the enantioselectivity (Table 3,
entries 2–4). Hindered enamides (Z)-5h and (Z)-5 i were
hydrogenated with excellent results (Table 3, entries 8 and 9).
At reduced catalyst loading (TON = 1000), (Z)-5a was
converted into 8a with 98.7% ee (Table 3, entry 10). Hence
the current hydrogenation route is a practical way for the
preparation of various amines in this category (Figure 2).[15]

For example, deacylation of the chiral product (S)-8a leads
directly to (S)-amphetamine (9), which is a useful stimulant
with strong biological and physiological effects.[16] Additional

Table 1: Preparation of (Z)- and (E)-5 by direct condensation of 7 with
acetamide.[a]

Entry Ketone[b] R1 R2 Enamide Yield [%][c] Z/E

1 7a Ph Me 5a 24.1 1.8:1
2 7b o-MeOPh Me 5b 29.3 2:1
3 7c p-MeOPh Me 5c 29.3 2.8:1
4 7d m-MeOPh Me 5d 35.1 1.3:1
5 7e m-MePh Me 5e 22.2 1.3:1
6 7 f p-MePh Me 5 f 24.0 0.9:1
7 7g o-ClPh Me 5g 15.6 1.7:1
8 7h 1-napthyl-Ph Me 5h 56.3 0.7:1
9 7 i Ph Ph 5 i 44.2 3.7:1

[a] All reactions were carried out by refluxing a toluene solution (50 mL)
of 7 (25 mmol), acetamide (125 mmol), and the catalyst TsOH
(2.5 mmol) in a Dean–Stark apparatus for 24 h. [b] See the Supporting
Information for their preparation. [c] Combined yield of isolated Z and
E products.

Table 2: Rhodium-catalyzed asymmetric hydrogenation of (Z)-5a and
(E)-5a using different ligands.[a]

Entry Substrate Ligand[b] Solvent ee [%][c] Config.[d]

1 (Z)-5a L1 EtOAc 99.3 S
2 (Z)-5a L2 EtOAc 98.1 S
3 (Z)-5a L3 EtOAc 95.7 S
4 (Z)-5a L4 EtOAc 57.5 S
5 (Z)-5a L1 CH2Cl2 98.3 S
6 (Z)-5a L1 acetone 98.6 S
7 (Z)-5a L1 MeOH 98.6 S
8 (Z)-5a L1 THF 98.1 S
9 (Z)-5a L1 toluene 97.5 S
10 (E)-5a L1 EtOAc 31.5 S
11 (E)-5a L2 EtOAc 23.7 S
12 (E)-5a L3 EtOAc 46.8 S
13 (E)-5a L4 EtOAc 26.3 S

[a] All reactions were carried out with a substrate/catalyst ratio of 100:1
at room temperature under 30 bar hydrogen pressure for 20 h. In all
cases, 100% conversion was observed. [b] L1= (1S,1S’,2R,2R’)-tang-
phos, L2 = (SC,RP)-duanphos, L3 = (R,R)-Et-duphos, L4 = (S)-binapine.
[c] Determined by chiral GC methods. [d] The absolute configuration was
assigned by comparison of the observed optical rotation with reported
data. (SC,RP)-duanphos= (1R,1’R,2S,2’S)-2,2’-di-tert-butyl-2,3,2’,3’-tetra-
hydro-1H,1’H-(1,1’)biisophosphindolyl; Et-duphos =1,2-bis(2,5-diethyl-
phospholanyl)benzene; (S)-binapine = (3S,3’S,4S,4’S,11cS,11’bS)-4,4’-
di-tert-butyl-4,4’,5,5’-tetrahydro-3H,3’H-bidinaphtho[2,1-c:1’,2’-e]phos-
phepine.

Table 3: Asymmetric hydrogenation of (Z)-5 with the Rh/tangphos
catalytic system.[a]

Entry Substrate R1 R2 Product ee [%][b] Config.[c]

1 (Z)-5a Ph Me 8a 99.3 S
2 (Z)-5b o-MeOC6H4 Me 8b 99.0 S
3 (Z)-5c p-MeOC6H4 Me 8c 96.6 S
4 (Z)-5d m-MeOC6H4 Me 8d 99.1 S
5 (Z)-5e m-MeC6H4 Me 8e 99.1 S
6 (Z)-5 f p-MeC6H4 Me 8 f 98.8 S
7 (Z)-5g o-ClC6H4 Me 8g >99.9 S
8 (Z)-5h 1-napthyl-C6H4 Me 8h 99.1 S
9 (Z)-5 i Ph Ph 8 i 98.3 S
10[d] (Z)-5a Ph Me 8a 98.7 S

[a] Unless mentioned otherwise, all reactions were carried out with a
substrate/catalyst ratio of 100:1 in EtOAc at room temperature under
30 bar hydrogen pressure for 20 h. In all cases, 100% conversion was
observed. [b] Determined by chiral GC methods. [c] The absolute
configuration was assigned by comparison of the observed optical
rotation with reported data. [d] Substrate/catalyst= 1000:1.

Figure 2. Chiral drugs bearing b-arylisopropylamine units.
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modification of (R)-8a will result in selegiline (10) for the
treatment of Alzheimer�s disease.[17] Asymmetric hydrogena-
tion of (Z)-5c will also provide practical access to important
chiral drugs such as formoterol (11)[18] and tamsulosin (12).[19]

Herein, we have shown that b-arylisopropylamines, an
important class of chiral compounds with valuable pharma-
ceutical applications, can be prepared by using a highly
efficient asymmetric hydrogenation method. Excellent enan-
tioselecitivity was obtained for Z enamides, which were easily
prepared by using the acid-catalyzed condensation of
b-arylketones with acetamide. Alternatively, these substrates
can be synthesized by the palladium-catalyzed amidation
which exhibits better preference for the formation of
Z-configured substrates.[12] Expansion of this methodology
to other structurally relevant enamides is currently in
progress and will be reported in due course.

Experimental Section
General procedure for the substrate preparation: A toluene solution
(50 mL) of 7 (25 mmol), acetamide (125 mmol), and the catalyst
TsOH (2.5 mmol) was charged in a Dean–Stark apparatus and
refluxed for 24 h. After cooling to room temperature, the solvent was
evaporated and the concentrated mixture was passed through a flash
chromatography column filled with silica gel (EtOAc/hexanes 1:1).
The Z- and E-configured products 5 were each isolated either a
colorless oil or white powder.

General procedure for the hydrogenation: A stock solution of
[Rh(cod)2]BF4 (cod = cycloocta-1,5-diene) and tangphos in a 1:1.1
molar ratio was stirred in EtOAc at room temperature for 10 min in a
nitrogen-filled glovebox. The catalyst solution (0.5 mL, 0.001 mmol)
was then transferred by syringe into the vials charged with different
substrates (0.1 mmol) in EtOAc (2.5 mL). All the vials were placed in
a steel autoclave, into which hydrogen gas (30 bar) was introduced.
After stirring at room temperature for 20 h, the hydrogen was
released, the solution was concentrated, and then the crude reaction
mixture was eluted (MeOH) through a short column of silica gel to
remove the metal complex. The purified product mixture was
analyzed by chiral GC methods to determine the ee value.
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