This article was downloaded by: [Universitaets und Landesbibliothek] On: 08 September 2013, At: 07:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Oxidative Conversion of Aldoximes into Carboxylic Acid Esters

Samy B. Said^a, Jacek Skaržewski^a & Jacek Młchowski^a

^a Institute of Organic and Physical Chemistry, Technical University of Wroclaw, Wyb.Wyspianskiego 27, 50-370, Wroclaw, Poland Published online: 23 Sep 2006.

To cite this article: Samy B. Said , Jacek Skaržewski & Jacek MŁchowski (1992) Oxidative Conversion of Aldoximes into Carboxylic Acid Esters, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 22:13, 1851-1862

To link to this article: http://dx.doi.org/10.1080/00397919208021316

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with

primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

OXIDATIVE CONVERSION OF ALDOXIMES INTO CARBOXYLIC ACID ESTERS

Samy B. Said, Jacek Skarżewski, Jacek Młochowski⁷ Institute of Organic and Physical Chemistry, Technical University of Wroclaw, Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland

and Abstract: Aromatic aliphatic aldoximes or their O-methyl ethers can be efficiently converted into the corresponding carboxylic acid esters by treatment with an alcoholic solution of 30% hydrogen peroxide in the presence of catalytic amounts of 2-nitrobenzeneseleninic acid. Primary alcohols give excellent to good yields, secondary ones - good to moderate, but with tertiary alcohols no esterification is obserwed.

convenient to handle derivatives Aldoximes, of aldehydes, are useful synthetic intermediates¹ and their oxidative transformations are also known². Thereas the direct synthesis of esters from aldehydes via oxidation of in situ formed hemiacetals is well established³, the direct conversion of aldoximes into carboxylic acid been realized. esters has not Our interest in the oxidation of aza derivatives of carbonyl compounds by activated hydrogen peroxide⁴ prompted us to study the possibility of the title transformation.

Aldoximes 2, prepared in an usual way from the parent aldehydes (in 83-98% yield) are efficiently transformed

^{*} To whom correspondence should be addressed

into the corresponding carboxylic acid esters <u>3</u> by oxidation with 30% aqueous hydrogen peroxide in the presence of catalytic amounts of 2-nitrobenzeneseleninic acid (2-NBSeA) using the respective alcohol as a solvent. The reaction was carried out for 1-5 days at 20[°]C or refluxing for 1-6 h.

R-CHO +H₂NOH HCl
$$\xrightarrow{i}$$
 R-CH=N-OH \xrightarrow{ii} R-COOR¹
1 2 3 R¹=Me
4 R¹=Et
i = AcONa, MeOH, 4h, reflux
ii = H₂O₂/catalyst, R¹OH, 20^oC or reflux
catalyst = 2-NBSeA or SeO₂

1,2,3,4	R	1,2,3,4	R
<u>a</u>	с ₆ н ₅	a	^{3-NO} 2 ^C 6 ^H 4
<u>b</u>	4-BrC ₆ H ₄	h	4-NO ₂ C ₆ H ₄
<u>c</u>	4-FC ₆ H ₄	<u>i</u>	p-phenylene
<u>d</u>	$3-C1C_6H_4$	Ĺ	1-naphthyl
<u>e</u>	$2-\text{MeC}_{6}\text{H}_{4}$	<u>k</u>	n-C ₅ H ₁₁
f	$3, 4, 5-(MeO)_{3}C_{6}H_{2}$	<u>1</u>	n-C ₇ H ₁₅

It should be noted that there were no oxidation of oximes <u>2a, b, f</u> and <u>g</u> upon the treatment with methanolic 30% hydrogen peroxide without catalyst at 20°C even for but the addition of catalytic amounts 30 days, of selenium dioxide to this system activated the oxidant and brought about the formation of methyl esters. Regardless of the catalyst used at 20°C, the esters were obtained exclusively whereas at elevated temperature they were accompanied with minor amounts (less than 15% yield by GLC) of the parent aldehydes. Moreover,

oxidation of aldoximes with 30% hydrogen peroxide in the presence of 2-NBSeA in methylene dichloride, chloroform, tetrahydrofuran, acetonitrile, or acetic acid as а solvent gave the corresponding carboxylic acids in high yields. When the parent aldehydes <u>la,b,e,g,j</u>, or <u>l</u> were in methanol, left with the same oxidation system the found corresponding carboxylic acids were also as the only products formed, except for la where and j, the acids were obtained along with 11 i 18% of the corresponding methyl esters, respectively. The obtained results ensure us that this is aldoxime, not aldehyde - a product of its possible hydrolysis, which undergoes the oxidative esterification. Furthemore, the O-methyl were also ethers of aldoximes oxidized in boiling methanol or ethanol to yield the corresponding esters as the only products.

 $\begin{array}{c|c} R-CH=N-OH & \underline{iii} & R-CH=N-OMe & \underline{iv} & R-COOR^{1} \\ \hline \underline{2b}, \underline{q} & \underline{5b}, \underline{q} & \underline{3b}, \underline{q}; \\ \hline \underline{4b}, \underline{q} & \end{array}$

iii = MeONa, MeOH, MeI, 20^oC iv=H₂O₂/catalyst, R¹OH,reflux catalyst = 2-NBSeA or SeO₂

We believe that the catalyzed oxidation of aldoximes and its O-ethers proceeds through an intermediate which alcohol. subsequently reacts with Meanwhile, the reaction mechanism remains essentially unclear and possible intermediates are to be considered and verified. In order to learn about the scope of the transformation, we examined other primary and secondary alcohols and in all cases the corresponding carboxylic acid esters were obtained in good to moderate yields. Tertiary alcohols did not give the esters and the acids were isolated in these cases.

 $R-CH=N-OH \xrightarrow{V} R-COOR^{2}$ $\underline{2b}, \underline{d} \qquad \underline{6} R=4-BrC_{6}H_{4}; \underline{7} R=3-C1C_{6}H_{4}$ $v = H_{2}O_{2}/2-NBSeA (cat.), R^{2}OH, 20^{\circ}C \text{ or } 70-100^{\circ}C$ $6 P^{2} \qquad 6.7 P^{2}$

<u>6</u>	R-	<u>6,7</u>	R ⁻
<u>a</u>	n-C3H7	đ	PhCH ₂ -
b	n-C4H9	<u>e</u>	$-CH(CH_3)CH(CH_3)_2$
c	iso-C4H9	<u><u>f</u></u>	cyclohexyl

We conclude that all aldoximes of type $\underline{2}$ and their O-methyl ethers $\underline{5}$ can be converted directly into carboxylic acid esters of primary and secondary alcohols by oxidation with 2-NBSeA or SeO₂ activated hydrogen peroxide.

The results are summarized in Tables 1-3.

EXPERIMENTAL

Melting points (uncorrected) were determined on а Kofler hot-stage apparatus. TLC was performed on silica gel-60 precoated plates (Merck). Silica gel 60 Merck was used for column chromatography. Analytical GLC was carried out on a Perkin-Elmer F-11 apparatus equipped with FID using: (a) 2% Dexil on Chromosorb G, 1 m-glass column, (b) 10% Dexil on Chromosorb P, 3 m-metal column, (c) 15% Dexil on Chromosorb P, 3 m-metal column, or (d) 6% QF-1 on Gas-Chrom Q, 1 m-metal column, N_2 flow rate 50 mL/min. IR spectra were recorded on a Specord IR-75 spectrophotometer. ¹H-NMR spectra were recorded on a Tesla 100 MHz spectrometer.

CARBOXYLIC ACID ESTERS

Table 1. Esters 3 Prepared from Aldoximes 2 and Their Ethers 5

Pro-	Reaction	Condi	tions	Yield	• • • • •	
duct	Catalyst	Temp	. Time		GLC Retention	Time (min) ⁶
		(°C)		(%)	Found	Reported
<u></u>	2-NBSeA	20	2 đ	85	83-85/21	96-98/24 ⁸
24	2 hbben	65	1 h	72	4.6(180 [°] C)	JU JU/24
		00		, 2	15% Dexil	
<u>3b</u>	2-NBSeA	20	2 đ	88	7 9-8 0	81 ⁸
_,		65	1 h	70		
		65	36 h	87	(from Ether <u>5b</u>)
	SeO2	20	4 d	65		
<u>3c</u>	2-NBSeA	20	2 đ	71	2.8(200 ⁰ C)	195-197/760 ⁹
					10% Dexil	
<u>3d</u>	2-NBSeA	20	3 đ	78	5.6(200 ⁰ C)	114/18 ⁸
					15% Dexil	
<u>3e</u>	2-NBSeA	20	3 đ	76	6.2(180 ⁰ C)	207-208/760 ⁷
		65	3 h	58	15% Dexil	_
<u>3f</u>	2-NBSeA	20	1 đ	71	80-81	82-84 ⁷
<u>3q</u>	2-NBSeA	20	2 đ	80	80	78-80
		65	2 h	63		
		65	2 d	79	(from Ether <u>5</u> g)
	SeO2	20	5 đ	57		-
<u>3h</u>	2-NBSeA	20	5 đ	79	95	94-96 ⁷
	SeO2	20	6 đ	55		0
<u>3i</u>	2-NBSeA	20	4 d	84	140-141	141-142 ⁸
<u>3j</u>	2-NBSeA	20	2 đ	65	10.4(160 ⁰ C)	167-169/20 ⁸
	SeO2	20	3 d	46	2% Dexil	7
<u>3k</u>	2-NBSeA	20	1 d	72	3.2(160 ⁰ C)	151/760 ⁷
					15% Dexil	7
<u>31</u>	2-NBSeA	20	2 d	81	4.5(180 ⁰)	194-195/760 ⁷
	SeO2	20	3 d	65	15% Dexil	

^O C/Torr), or	mp (^O C), bp	Yield	Conditions ¹⁰	Reaction	Pro-
on Time (min) ⁶	GLC Retentio		Time	Temp.	duct
Reorted	Found	98		°c	
87/10 ⁸	5.8(180 ⁰)	90	5 d	20	<u>4a</u>
	15% Dexil	70	1 h	78	
125/15 ⁸	8.3(110 ⁰)	72	5 đ	20	<u>4b</u>
	6% QF-1	65	2 h	78	
<u>5b</u> ;	(from Ether	82	50 h	78	
142/12 ⁹	3.4(200 ⁰)	57	2 h	78	<u>4c</u>
	10% Dexil				
121/20 ⁸	4.5(220 ⁰)	81	4 đ	20	<u>4d</u>
	15% Dexil				
220-221/731 ⁷	8.0(180 ⁰)	75	2 đ	20	<u>4e</u>
	15% Dexil				
53-55 ¹¹	51-53	88	2 đ	20	<u>4f</u>
47 ⁸	46	66	3 h	78	<u>4</u> 9
	(from Ether	76	6 h	78	
57 ⁸	55-56	64	6 h	78	<u>4h</u>
44 ⁸	42	62	2 h	78	<u>4i</u>
184/70 ⁸	11.6(160 ⁰)	60	1 h	78	<u>4</u> j
168/760 ⁷	2% Dexil 3.4(160 ⁰)	76	24 h	20	<u>4k</u>
206-208/760 ⁷	15% Dexil 5.8(180 ⁰) 15% Dexil	85	24 h	20	<u>41</u>

.

Table 2. Esters <u>4</u> Prepared from Aldoximes <u>2</u> and Their Ethers <u>5</u>

CARBOXYLIC ACID ESTERS

Pro- duct	Reaction Temp.	Conditions ¹⁰ Time	Yield	mp (^O C) or GLC Retention ⁶
	(°C)		(%)	Time (min) ⁶
<u>6a</u>	98	3 h	61	9.0(200 ⁰)
				10% Dexil
<u>6b</u>	20	4 a	69	13.0(200 ⁰)
				10% Dexil
<u>6c</u>	20	3 dì	67	30-32
<u>6d</u>	100	6 h	78	oil ¹²
<u>6e</u>	100	4 h	53	13.2(200 ⁰)
				10% Dexil
<u>6f</u>	100	6 f	41	28-30
<u>7e</u>	100	4 h	47	9.0(200 ⁰)
				10% Dexil
<u>7f</u>	100	6 h	40	7.1 (160 ⁰)
				2% Dexil

Table 3. Esters <u>6</u> and <u>7</u> Prepared from Aldoximes <u>2b,d</u> and Various Primary and Secondary Alcohols

Aldoximes 2; General Procedure

Anhydrous sodium acetate (0.62 g, 7.5 mmol) is added to solution or the aldehyde 1 (5 mmol) a in methanol (30 ml) followed by the addition of hydroxylamine hydrochloride (0.52 g, 7.5 mmol) and the mixture іs refluxed for 4 h and then filtered while hot. The crude oxime is obtained filtration of by the solid the case of precipitate. In nonprecipitation, the mixture is left overnight at 4° C and if the product does not crystallize, it is extracted with CH_2Cl_2 (50 mL), dried over $MgSO_4$, and the extract is evaporated to leave

the crude oxime. This product is recrystallizedo from the mixture of n-hexane - benzene (5:1 v/v) to give the E-isomer of oxime predominantly, as confirmed by ¹H-NMR.

1-Naphthaldehyde Oxime (2j).

solution of hydroxylamine hydrochloride (5.2)Å g, 75 mmol) in water (50 mL) is added to 1-naphthaldehyde (7.8 g, 50 mmol) in pyridine (70 mL) and the mixture is refluxed for 8 h and then poured into the mixture of ice and conc. HCl (10 mL). The filtrated crude oxime is 98⁰C. recrystallized from n-hexane, yield: 87%, mp A11 aldoximes are known compounds and their physical data (mp, ^{1}H NMR, IR) are in agreement with those reported in literature^{7,8,13-17}

Aldoxime O-methyl Ethers 5; General Procedure:

Metallic sodium (0.23 g, 10 mmol) is reacted with vigrously stirred EtOH (30 mL) and oxime 2 (5 mmol) is added to this solution. The mixture is left at room temperature for 30 min and then methyl iodide (1.42)g, 10 mmol) is added. The mixture is stirred for 4 h, then poured into water (100 mL). The product is isolated by extraction with CH_2Cl_2 (40 mL), the extract is dried over MgSO4. Evaporation of the solvent leaves the product, which is purified by recrystallization from the appropriate solvent.

4-Bromobenzaldoxime O-methyl Ether (5b): Yield 93%, mp 29-31^OC (n-hexane).

C_oH_oBrNO calc. C 44.88, Ħ 3.77, N 6.54, Br 37.33 (214.1) found 45.16 3.42 6.61 37.18 IR (KBr): $\nu = 1590 \text{ cm}^{-1}$ (C=N). ¹H-NMR (CDCl₂/TMS): $\delta = 3.88$ (s, 3H, CH₂); 7.33 (s,1H, CH=N-); 7.43 - 8.20 (m, 4H, ArH). 3-Nitrobenzaldoxime O-methyl Ether (5g): Yield 97%, mp 52-53^OC (n-hexane/benzene).

calc. С 53.33, Н 4.47, C₈H₈N₂O₃ N 15.55 53.72 (180.2) 4.60 found 15.79 $\nu = 1610 \text{ cm}^{-1} (\text{C=N}).$ IR (neat): ¹H-NMR (CDCl₃/TMS): $\delta = 3.98$ (s, 3H, CH₃); 7.60 (d, 1H, J=8 Hz, ArH); 7.85 (s, 1H, CH=N); 8.00 - 8.28 (m, 2H. ArH); 8.38 (s, 1H, ArH). Carboxylic Acid Esters 3, 4, 6, 7; General Procedure. 2-NBSeA¹⁸ (0.03 g, 0.13 mmol) SeO₂ (0.015 g, or 13 mmol) is added to a solution of aldoxime 2 (5 mmol) or aldoxime O-methyl ether 5 (5 mmol) in the appropriate alcohol (30 mL) and then an aqueous 30% H_2O_2 solution (2 mL, 17.7 mmol) is added. The mixture is stirred at temperature and for the time given in Tables 1-3. Excess of H₂O₂ is decomposed by adding a strip of Pd asbestos and the alcohol is distilled off under reduced pressure. The residue is dissolved in CH_2Cl_2 or $CHCl_3$ saturated NaHCO₂ (140 mL), washed with solution (3 x 30 mL) (catalyst: 2-NBSeA) or with H_2O (3 x 30 mL) (catalyst: SeO₂) and dried over Na_2SO_4 or K_2CO_3 . The solvent is evaporated and the product is purified by <u>f-i</u>, <u>4f</u>-i) recrystallization (<u>3b</u>, or column chromatography or, in the case of the increased reaction bp 83-85⁰C/21 scale (90 mmol), distilled (3a, Torr). Yields, mp's, bp's and other data are reported in Tables 1-3. n-Propyl 4-Bromobenzoate (6a); yield: 61%; oil. C 49.40, H 4.56, C₁₀H₁₁BrO₂ calc. Br 32.87 (243.1)49.20 4.83 found 32.50 $\nu = 1724 \text{ cm}^{-1} (C=0).$ IR (neat): ¹H-NMR (CDCl₃/TMS): $\delta = 0.98$ (t, 3H, J=8 Hz, -CH₃); 1.58-2.00 (m, 2H, $-CH_2-$); 4.24 (t, 2H, J=6 Hz, $-OCH_2-$); 7.54 and 7.88 (two d, 2 x 2H, J=8 Hz, A_2X_2 system, ArH). n-Butyl 4-Bromobenzoate (6b); yield 69; oil. calc. C 51.38, H 5.09, Br 31.08 $C_{11}H_{13}BrO_2$ (257.1)found 51.09 5.25 31.26

IR (neat): $v = 1722 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCL₃/TMS): $\delta = 1.03$ (t, 3H, J=6 Hz, -CH₃); 1.25-1.83 (m, 4H, -CH₂-); 4.38 (t, 2H, J=6 Hz, -OCH₂-); 7.50-7.98 (m, 4H, ArH). iso-Butyl 4-Bromobenzoate (6c); yield 67%, mp 30-32⁰C (n-hexane). C₁₁H₁₃BrO₂ calc. C 51.38, H 5.09, Br 31.08 (257.1) 51.42 4.80 found 31.21 IR (neat): $\nu = 1724 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCl₃/TMS): $\delta = 1.03$ (d, 6H, J=4 Hz, -CH₃); 1.58-2.28 (m, 1H, CH); 4.09 (d, 2H, J=6 Hz, -OCH₂-); 7.54 and 7.89 (two d, 2 x 2H, J=6 Hz, A_2X_2 system, ArH). Benzyl 4-Bromobenzoate 6d); yield 78%; oil. $C_{14}H_{11}BrO_2$ calc. C 57.75, H 3.81, Br 27.45 (291.1). No satisfactory elemental analysis can be obtained due to the thermal unstableness of this product. IR (neat): $\nu = 1723 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCl₂/TMS): $\delta = 4.60$ (s, 2H, -OCH₂-); 7.24-7.62 (m, 9H, ArH). 1,2-Dimethylpropyl 4-Bromobenzoate (6e); yield 53%; oil. C₁₂H₁₅BrO₂ calc. C 53.25, H 5.58, Br 29.47 (271.2)found 53.01 5.61 29.30 IR (neat): $\nu = 1718 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCl₂)/TMS): $\delta \approx 0.96$ (d, 6H, J=7 Hz, -CH₂); 1.26 (d, 3H, J=6 Hz, -CH₃); 1.74-2.02 (m, 1H, -CH); 4.84-5.10 (m, 1H, -OCH); 7.49-7.96 (m, 4H, ArH). Cyclohexyl 4-Bromobenzoate (6f): yield 41%; mp 28-30^oC (n-hexane). $C_{13}H_{14}BrO_2$ calc. C 55.43, H 5.00, H Br 28.32 (282.2)found 55.10 5.26 28.68 IR (neat): $\nu = 1714 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCl₃/TMS): $\delta = 1.22-2.04$ (m, 10H, -CH₂-); 4.82-5.14 (m, 1H, -OCH); 7.52 and 7.87 (two d, 2 x 2H, J=8 Hz, A₂X₂ system, ArH.

1,2-Dimehylpropyl 3-Chlorobenzoate (7e): yield 47%; oil. $C_{12}H_{15}ClO_2$ calc. C 63.50, H 6.67, Cl 15.64 found 63.90 7.08 (226.7)15.33 IR (neat): $\nu = 1722 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCl₃/TMS: $\delta = 0.90$ (d, 6H, J=8 Hz, -CH₃); 1.21 (d, 3H, J=6 Hz, -CH₂); 1.60-1.96 (m, 1H, -CH); 4.80-5.04 (m, 1H, -OCH); 7.20-7.48 (m, 3H, ArH); 7.94 (s, 1H, ArH). Cyclohexyl 3-Chlorobenzoate (7f): yield 40% oil. C₁₃H₁₄ClO₂ С 65.49, Н 5.94, Cl 14.92 calc. (237.7)found. 65.10 5.72 15.08 IR (neat): $v = 1722 \text{ cm}^{-1}$ (C=O). ¹H-NMR (CDCl₃/TMS) $\delta = 1.00-2.00$ (m, 10H, -CH₂-); 4.84-5.10 (m, 1H, -OCH); 7.21-7.96 (m, 4H, ArH).

REFERENCES AND NOTES

- Tennant, G., in: Comprehensive Organic Chemistry, Barton, D., Ollis, W.D., (eds.), Vol. 2, Pergamon Press,Oxford, 1979, chapt. 8; Metzger, H., in: Houben--Weyl, Vol. X/4, Georg Thieme Verlag, Stuttgart, 1968.
- Henry, P.M., Lange G.L., in: The Chemistry of Double--bonded Functional Group, Patai, S., (ed.) Suppl. A, Part 2, Interscience, New York 1977, p. 1067; Freeman, J.P., Chem. Rev., 1973, 73, 283, and references citedtherein.
- 3. For recent examples of the oxidation of aldehydes to esters, see: Lichtenthaler, F.W., Jarglis, P., Lorenz, K., Synthesis, 1988, 790; Williams, D.R., Klinger D.F., Allen, E.E., Lichtenthaler, W.F., Tetrahedron Lett. 1988, 29, 5087; McDonald, C., Holcomb,H., Kennedy, K., Kirkpatrick, E., Leathers,T. Vanemon, P., J. Org. Chem., 1989, 54, 1213; Al Neirabeyeh, M., Pujol, M.D., Tetrahedron Lett., 1990, 31, 2273.

- Said, S.B., Skarzewski, J., Mlochowski, J., Synthesis, 1989, 223.
- 5. Shriner, R.L., Fuson, R.C., Curtin, D.Y., The Systematic Identification of Organic Compounds, 4th ed., John Wiley, New York, 1956, p. 254; Vogel, A., Textbook of Practical Organic Chemistry, 4th ed., Longman, London, 1980, p. 1113.
- GLC retention times are allowed by temperatures and columns used.
- 7. Aldrich Cataloque of Fine Chemicals, 1990-1991.
- CRC Handbook of Chemistry and Physics, Weast R.C., (ed.) 65th ed., CRS Press, Boca Raton, Fl., 1984.
- Bowden, S., Watkins, T.F., J. Chem. Soc., 1940, 1249.
- 10. 2-NBSeA used as a catalyst.
- 11. Herzig, J., Monatsh. Chem., 1912, 33, 846.
- 12. TLC: Rf 0.78, hexane/EtOAc (3:1).
- 13. Arndt, F., Rose, J.D., J. Chem. Soc., 1953, 5.
- 14. Bardy, O.L., McHught, G.P., J. Chem. Soc. 1924, 551.
- Wuyts, H., Koeck, H., Bull. Soc. Chim. Belg., 1932, 41, 196.
- 16. Mauthner, F., Ber. Dtsch. Chem. Ges., 1908, 41, 2530.
- 17. Bengelsdorf, I.S., J. Org. Chem., 1958, 23, 242.
- 18. 2-NBSeA was prepared according to the procedure reported in Kloc, K., Mlochowski, J., Syper, L., Liebigs Ann. Chem., 1989, 811.

(Accepted in The Netherlands 20 February, 1992)