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It has been established that a cationic rhodium(I)/H8-binap
or binap complex catalyzes two different modes of cyclization
of γ-alkynyl aldehydes with carboxylic acid anhydrides to
give cyclic aldehyde gem-dicarboxylates and cyclic alkenyl

Introduction

A number of transition-metal-catalyzed cyclization reac-
tions of γ-alkynyl aldehydes via oxametallacycle inter-
mediates have been developed for the stereoselective synthe-
sis of cyclic allylic alcohol derivatives.[1–6] For example, the
titanium-,[3] nickel-,[4] rhodium-,[5] and ruthenium-cata-
lyzed[6] cyclization reactions of γ-alkynyl aldehydes were
accomplished by using organozincs,[4a] alkenylzirconi-
ums,[4d] organosilanes,[4b,4c,4e,4h,4i,4k–4m,5a,5b] organobor-
anes,[4f,4g,4h,4j] dihydrogen,[5c,5d] and formic acid.[6] Recently,
our research group reported the cationic rhodium(I)/
H8-binap [H8-binap = 2,2�-bis(diphenylphosphanyl)-
5,5�,6,6�,7,7�,8,8�-octahydro-1,1�-binaphthyl] complex cata-
lyzed cyclization reaction of γ-alkynyl aldehydes with het-
eroatom-substituted acetaldehydes.[7] In this cyclization re-
action, the heteroatom-substituted acetaldehyde acts as a
reducing agent through cleavage of the aldehyde C–H
bond.[7] Subsequently, we extended the above reaction to
the cyclization of γ-alkynyl aldehydes with an acyl phos-
phonate leading to cyclic allylic ester A through cleavage of
the acyl phosphonate C–P bond via oxarhodacycle interme-
diate B bearing the chelating acyl phosphonate
(Scheme 1).[8] We anticipated that the cyclization of the γ-
alkynyl aldehyde with a carboxylic acid anhydride would
proceed to give cyclic allylic ester C through cleavage of the
carboxylic acid anhydride C–O bond via rhodacycle inter-
mediate D bearing the chelating carboxylic acid anhy-
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esters through cleavage of the carboxylic acid anhydride C–
O bond. The reaction of a terminal γ-alkynyl aldehyde with
diethyl pyrocarbonate afforded a cyclic allylic carbonate with
a high ee value.

dride,[9,10] although the chelation mode of the carboxylic
acid anhydride to rhodium would be different from that of
the acyl phosphonate (six- vs. five-membered chelation,
Scheme 1). Unexpectedly, we found that the use of carbox-
ylic acid anhydrides in place of heteroatom-substituted
acetaldehydes or acyl phosphonates promoted different
modes of cyclization reactions. Herein, we disclose the rho-
dium-catalyzed cyclization reactions of γ-alkynyl aldehydes
with carboxylic acid anhydrides to produce cyclic allylic
gem-dicarboxylates and cyclic dienyl esters through cleavage
of the carboxylic acid anhydride C–O bond.

Scheme 1. Rhodium-catalyzed expected cyclization of γ-alkynyl al-
dehydes with carboxylic acid anhydrides.

Results and Discussion
We first examined the reaction of tosylamide-linked ter-

minal γ-alkynyl aldehyde 1a with benzoic anhydride (2a) at
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80 °C in the presence of the cationic rhodium(I)/H8-binap
catalyst. Unexpectedly, not cyclic allylic ester C but cyclic
allylic gem-dibenzoate 3aa was obtained in low yield
(Table 1, entry 1). Various biaryl bisphosphane ligands
(Figure 1) were then screened, which revealed that decreas-
ing the dihedral angle of biaryl bisphosphane ligands de-
creased the yield of 3aa (dihedral angles:[11] H8-binap �
binap � segphos, yield of 3aa: H8-binap � binap �
segphos; Table 1, entries 1–3). Non-biaryl bisphosphane li-
gands were also tested, but 3aa was not obtained at all
(Table 1, entries 4 and 5). Increasing the amount of 2a in-
creased the yield of 3aa (Table 1, entries 6 and 7). This un-
expected structure of 3aa was unambiguously confirmed by
X-ray crystallographic analysis.[12] Next, the reaction of in-
ternal γ-alkynyl aldehyde 1b with 2a was examined. Inter-
estingly, not cyclic allylic gem-dibenzoate 3ba but cyclic di-
enyl benzoate 4ba was obtained in good yield (Table 1, en-
try 9). Screening of biaryl bisphosphane ligands (Table 1,
entries 9–11) revealed that the use of binap furnished 4ba
in the highest yield (Table 1, entry 10). Contrary to the for-
mation of 3aa, increasing the amount of 2a decreased the
yield of 4ba (Table 1, entry 12).

Table 1. Optimization of reaction conditions for the rhodium-cata-
lyzed cyclization of 1a and 1b with 2a.[a]

Entry 1 Ligand 2a [equiv.] Yield [%][b]

3 4ba

1 1a H8-binap 1.1 3aa / 36 –
2 1a binap 1.1 3aa / 33 –
3 1a segphos 1.1 3aa / 11 –
4 1a dppb 1.1 3aa / 0 –
5[c] 1a dppe 1.1 3aa / 0 –
6 1a H8-binap 2.0 3aa / 42 –
7 1a H8-binap 3.0 3aa / 59 –
8 1a H8-binap 5.0 3aa / 37 –
9 1b H8-binap 1.1 3ab / 0 67
10 1b binap 1.1 3ab / 0 73
11 1b segphos 1.1 3ab / 0 41
12 1b binap 2.0 3ab / 0 66

[a] Reaction conditions: [Rh(cod)2]BF4 (0.010 mmol, cod = 1,5-cy-
clooctadiene), ligand (0.010 mmol), 1 (0.10 mmol), 2a (0.11–
0.30 mmol), and (CH2Cl)2 (2.0 mL). [b] Isolated yield. [c] [Rh-
(nbd)2]BF4 was used (nbd = 2,5-norbornadiene).

Thus, we explored the scope of the cyclic allylic gem-
dicarboxylate synthesis[13] by using the cationic rhodium(I)/
H8-binap catalyst at 80 °C (Table 2, entries 1–6). Not only
a tosylamide-linked terminal γ-alkynyl aldehyde (i.e., 1a;
Table 2, entry 1) but also a readily removable nosylamide-
linked[14] one (i.e., 1c; Table 2, entry 2) could participate in
this reaction. However, the reaction of phenyl-substituted
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Figure 1. Structures of bisphosphane ligands.

γ-alkynyl aldehyde 1d with 2a led to a complex mixture of
products (Table 2, entry 3). The use of substituted benzoic
anhydrides was also examined. The reactions of sterically
less-demanding anhydrides 2b and 2c with 1a proceeded in
significantly higher yields (Table 2, entries 4 and 5) than
sterically demanding anhydride 2d (Table 2, entry 6). Inter-
estingly, the reaction of 1a with diethyl pyrocarbonate (2e)
did not afford the expected cyclic allylic gem-dicarbonates
but instead unexpected cyclic allylic carbonate 5ae with a
high ee value (Table 2, entry 7). We subsequently explored
the scope of the cyclic dienyl ester synthesis by using the
cationic rhodium(I)/binap catalyst at 80 °C (Table 2, en-
tries 8–20). Tosylamide- (i.e., 1b; Table 2, entry 8), nosyl-
amide- (i.e., 1e; Table 2, entry 9), and malonate-linked (i.e.,
1f; Table 2, entry 10) methyl-substituted γ-alkynyl aldehydes
participated in this reaction. In the reaction of 1f with 2a,
olefin isomerization product 6fa was generated along with
4fa (Table 2, entry 10). The use of substituted benzoic anhy-
drides was also examined. Their electronic and steric nature
appeared to have a small impact on the product yields
(Table 2, entries 11–14). The reactions of 2e with 1b and 1e
afforded expected cyclic dienyl carbonates 4be and 4ee in
good yields (Table 2, entries 15 and 16). The use of substi-
tuted γ-alkynyl aldehydes was next examined. The reactions
of α-methyl and γ-phenyl-substituted γ-alkynyl aldehydes
1g and 1h with 2b proceeded in high yields (Table 2, en-
tries 17 and 18). Ethyl- and butyl-substituted γ-alkynyl al-
dehydes 1i and 1j reacted with 2a to give the corresponding
cyclic dienyl benzoates 4ia and 4ja, respectively, with com-
plete stereoselectivity, although their yields were low
(Table 2, entries 19 and 20).

Scheme 2 depicts a possible mechanism for the formation
of 3, 4, and 5, although this proposal is speculative and a
precise mechanism cannot be concluded at the present
stage.[15] γ-Alkynyl aldehyde 1 reacts with the rhodium(I)
catalyst to afford oxarhodacyclopentene D with chelating
acid anhydride 2. σ-Bond metathesis between the C–O and
Rh–O bonds affords intermediate E.[16] In the case of a ter-
minal γ-alkynyl aldehyde (R1 = H), reductive elimination
proceeds to afford diester F, which undergoes rhodium-cat-
alyzed acyloxy migration to afford cyclic allylic gem-dicarb-
oxylate 3. In contrast, if diethyl pyrocarbonate (2e) is em-
ployed, decarboxylation[17] from intermediate E proceeds to
afford intermediate G. β-Hydride elimination affords rho-
dium hydride H, and subsequent reductive elimination af-
fords cyclic allylic carbonate 5. In the case of an internal
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Table 2. Rhodium-catalyzed cyclization reactions of γ-alkynyl alde-
hydes 1a–j with carboxylic acid anhydrides 2a–f.[a]

[a] Reactions were conducted with [Rh(cod)2]BF4 (0.010 mmol),
H8-binap (entries 1–7) or binap (entries 8–20) (0.010 mmol), 1
(0.10 mmol), 2 (0.11–0.30 mmol), and (CH2Cl)2 (2.0 mL) at 80 °C
for 24 h. [b] Isolated yield. [c] Ns = SO2(2-NO2C6H4). [d] At 60 °C
for 40 h. [e] γ-Alkynyl aldehyde 1 (0.20 mmol) and 2a (0.22 mmol)
were used.
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γ-alkynyl aldehyde (R1 = Me), β-hydride elimination from
intermediate E proceeds to afford allene I, which undergoes
acyloxy migration to afford cyclic dienyl ester 4. This mi-
gration step might also be catalyzed by the cationic rho-
dium through activation of the allene moiety, as shown in
intermediate J.[18]

Scheme 2. Possible reaction mechanism.

In the mechanism shown in Scheme 2, the chelation of
the acid anhydride to the cationic rhodium may be neces-
sary to promote the reactions. Indeed, the reaction of 1a
with nonchelating cyclic carboxylic acid anhydride 2h did
not afford cross-reaction products including cyclic allylic
gem-dicarboxylate 3ah (Scheme 3).

Scheme 3. Rhodium-catalyzed reaction of 1a with cyclic carboxylic
acid anhydride 2h.

Transformations of the cyclization products were briefly
examined. 2,5-Dihydropyrrole 3aa could be readily aroma-
tized by treatment with DDQ (2,3-dichloro-5,6-dicyano-p-
benzoquinone) to give corresponding pyrrole 7 possessing
the gem-dicarboxylate moiety (Scheme 4).[19]

Annulated heterocycle libraries, structures of which are
shown in Figure 2, includes antimigratory agents.[20] We
were pleased to find that the rhodium-catalyzed cyclization
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Scheme 4. Aromatization of cyclization product 3aa.

reaction of 1b with 2b leading to diene 4bb and the Diels–
Alder reaction of 4bb with N-phenylmaleimide (8) and tet-
racyanoethylene (9) proceeded in one-pot to give analogous
annulated heterocycles 10bb and 11bb in moderate yields
(Scheme 5). An aliphatic carboxylic acid anhydride [hep-
tanoic anhydride (2g)] could also be employed for the pres-
ent cyclization reaction, while the products 4 could not be
isolated in a pure form due to partial hydrolysis during iso-
lation on a silica gel.[21] Pleasingly, the one-pot reaction in-
volving 2g proceeded to give the corresponding stable annu-
lated heterocycle 10bg in moderate yield (Scheme 5).

Figure 2. Annulated heterocycle libraries including antimigratory
agents.

Scheme 5. One-pot rhodium-catalyzed cyclization and Diels–Alder
reaction.

Finally, kinetic resolution of racemic γ-substituted alk-
ynal 1h with 2b followed by a Diels–Alder reaction with 8
proceeded by using the [Rh(cod)2]BF4/(R)-binap catalyst to
give corresponding enantioenriched annulated heterocycle
(–)-10hb with a moderate ee value (Scheme 6).
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Scheme 6. One-pot reaction of (�)-1h with 2b through kinetic reso-
lution.

Conclusions

In conclusion, we have established that a cationic rhodi-
um(I)/H8-binap or binap complex catalyzes two different
modes of cyclization of γ-alkynyl aldehydes with carboxylic
acid anhydrides to give cyclic allylic gem-dicarboxylates and
cyclic dienyl esters through cleavage of the carboxylic acid
anhydride C–O bond. In contrast, the reaction of a terminal
γ-alkynyl aldehyde with diethyl pyrocarbonate afforded a
cyclic allylic carbonate with a high ee value. Future studies
will focus on further utilization of chelating carbonyl com-
pounds for this process.

Experimental Section
Representative Procedure for the Rh-Catalyzed Cyclization Reac-
tions of Terminal γ-Alkynyl Aldehydes with Carboxylic Acid Anhy-
drides: H8-binap (6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1 mg,
0.010 mmol) were dissolved in CH2Cl2 (2.0 mL), and the mixture
was stirred at room temperature for 10 min. H2 was introduced
to the resulting solution in a Schlenk tube. After stirring at room
temperature for 45 min, the resulting mixture was concentrated to
dryness. To a solution of the residue in (CH2Cl)2 (0.5 mL) was
added a solution of 1a (25.1 mg, 0.100 mmol) and 2a (67.9 mg,
0.300 mmol) in (CH2Cl)2 (1.5 mL). The mixture was stirred at
80 °C for 24 h. The resulting solution was concentrated and puri-
fied by preparative TLC (hexane/EtOAc/toluene = 6:1:2), which
furnished 3aa (28.2 mg, 0.0591 mmol, 59% yield; Table 2, entry 1)
as a colorless oil.

Representative Procedure for the Rh-Catalyzed Cyclization Reac-
tions of Internal γ-Alkynyl Aldehydes with Carboxylic Acid Anhy-
drides: The binap ligand (6.2 mg, 0.010 mmol) and [Rh(cod)2]BF4

(4.1 mg, 0.010 mmol) were dissolved in CH2Cl2 (2.0 mL), and the
mixture was stirred at room temperature for 10 min. H2 was intro-
duced to the resulting solution in a Schlenk tube. After stirring at
room temperature for 45 min, the resulting mixture was concen-
trated to dryness. To a solution of the residue in (CH2Cl)2 (0.5 mL)
was added a solution of 1b (26.5 mg, 0.100 mmol) and 2a (24.9 mg,
0.110 mmol) in (CH2Cl)2 (1.5 mL). The mixture was stirred at
80 °C for 24 h. The resulting solution was concentrated and puri-
fied by preparative TLC (EtOAc/toluene = 1:5), which furnished
4ba (28.7 mg, 0.0733 mmol, 73% yield; Table 2, entry 8) as a color-
less oil.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data, and copies of
the 1H NMR and 13C NMR spectra.
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