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Abstract: An efficient nickel-catalyzed removal of alkene protection group under mild condition 
with high functional group tolerance through chain walking process has been established. Not only 
phenolic ethers, but also alcoholic ethers can be tolerated with the retention of stereocenter adjacent 
to hydroxyl group. The new reaction brings the homoallyl group into a start of new type of 
protecting group. 
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1. Introduction 

Functional group protecting and deprotecting is a common strategy widely used in organic 
chemistry especially in total synthesis [1]. The most conventional masking of phenols and alcohols 
are allylethers derived from facile base-promoted substitution of allyl halides [2]. Meanwhile, 
allylethers are easily removed under acidic, basic, reductive, or oxidative conditions with or without 
the aid of transition metals (Scheme 1a) [3–11]. On the other hand, it means allylethers are not stable 
in these conditions which diminished its usage in application. Long-chain alkene ethers such as 
homoallylethers are significantly steadier than allylethers which have been serving as a protecting 
group for decades [12–18], but lack of utility in practice due to the few deprotection methods. 
Ozonolysis of homoallylic carboxylic esters was reported by Barrett [19]. Cossy [20] and Lipshutz [21] 
reported removal of homoallyl group by Grubbs-Hoveyda catalyst through isomerization or 
metathesis. These reports are encountered from harsh reaction conditions. Meanwhile, chain walking 
strategy in bond construction has been emerging as a powerful tool utilizing alkene as feedstock in 
synthetic chemistry [22–25]. Hu [26,27], Martin [28–30], Zhu [31–36], and Hartwig [37] recently 
demonstrated that nickel was a prominent catalyst in chain walking chemistry. Streuff reported a 
zirconium catalyzed deallylation through chain walking mechanism [38]. Inspired by these reports 
and our interest in group transfer reactions [39] and nickel-catalyzed reactions [40], we envisaged 
that the nickel-hydride complex I formed through en route nickel-boryl [41–43] water or methanol 
addiction intermediate σ-bond metathesis would trigger the chain walking process (III, Scheme 1c). 
Low valent Nickel(I) was reported to go through oxidative addition to allyl C-O bond [44–46], which 
made the formation of intermediate V possible. The alkene (VI) was released after reductive 
elimination and regenerated the catalyst. Free phenols or alcohols would be retrieved by simple acid 
workup of VIII. Herein, we report the nickel-catalyzed removal of alkene protection group of phenols 
and alcohols under mild condition with high functional group tolerance through chain walking 
process. 
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Scheme 1. Different removal of alkene protecting group and new mechanistic rationale. 

2. Results 

In order to testify our proposal, we began our study by optimizing the reaction conditions using 
4-(but-3-enyloxy)biphenyl (1a) as the model substrate (Table 1). Investigation of a range of 
parameters, we found that the combination of nickel(II) chloride ethylene glycol dimethyl ether 
complex (NiCl2∙DME, 5 mol%), 6,6′-dimethyl-2,2′-bipyridine (L1) as ligand, Bis(pinacolato)diboron 
(B2pin2, 1.5 equiv) as the reductant, Lithium tert-butoxide as the base, in N,N-dimethylacetamide 
(DMA) (0.1M) with methanol and water as additives gave excellent isolated yield (92%) (entry 1, 
Table 1). Other nickel sources such as zero valent Bis(1,5-cyclooctadiene)nickel (Ni(COD)2, entry 2, 
Table 1) or less soluble NiCl2 (entry 3, Table 1) diminished the yield. Similar to the previous reports 
[31–36], more bulky ligand was critical for the reaction and probably facilitate the chain walking 
process (entry 4–5, Table 1). Other common phosphine ligands such as triphenylphosphine (entry 6, 
Table 1) and tricyclohexylphosphine (entry 7, Table 1) were all low efficient. Nickel(I) was proposed 
as the active spices in the chain walking reactions [31–36], so we tested some reductant to generate of 
nickel(I) spices. B2pin2 in combination of base was reported as efficient reductant in nickel-catalyzed 
reductive reactions [47], to our pleased moderated yield was observed (entry 8, Table 1). Other widely 
used metal reductants in nickel-catalyzed cross reductive reaction such as Zn and Mn gave very few 
product (entry 9–10, Table 1) [48–52]. Next, we surveyed some additives to accelerate the reaction. 
We found that a certain amount of methanol greatly prompted the yield (entry 11, Table 1). Water 
was added to further boost the efficiency of the reaction. Both water and methanol might serve as a 
hydride donor in σ-bond metathesis. Considering both Lithium tert-butoxide and water were added, 
in situ lithium hydroxide might be formed. Directly using lithium hydroxide as base did not have a 
similar result (entry 13, Table 1). Switching reaction solvent from DMA to less polar solvent such as 
tetrahydrofuran (THF) resulted in lower yields (entries 15, Table 1). Finally, control experiments 
showed that both nickel and B2pin2 were indispensable for the reaction. In order to demonstrate its 
possibility in large scale synthesis, a 20 mmol scale reaction was done (entry 18, Table 1). The yield 
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was lower but still outstanding. The attempt to lower the loading of nickel catalyst and ligand greatly 
diminished the yield with substantial starting material left (entry 19, Table 1). 

Table 1. Optimization of removal homoallyl group. 

 

entry Deviation from standard conditions Yield of 2 (%)a 

1 None 96(92)b 

2 Ni(COD)2 84 

3 NiCl2 instead of NiCl2(DME) 53 

4 L2 instead of L1 37 

5 L3 9 

6 L4 42 

7 L5 45 

8 B2pin2 w/o additives 61 

9 Zn instead of B2pin2  5< 

10 Mn instead of B2pin2  5< 

11 No CH3OH  73 

12 No H2O  78 

13 LiOH instead of LiOtBu  71 

14 KOH instead of LiOtBu 68 
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15 THF instead of DMA 56 

16 No Ni 0 

17 No B2pin2 0 

18 20 mmol scale 86 

19 1% loading of nickel, 2% L1 52(42)c 

a Conditions: 1a (0.2 mmol), Amine (1.5 equiv), Determined by dibromomethane as an internal 
standard by 1H NMR. b Isolated yield. c 1a remained in reaction. 

With the optimized condition in hand, the scope of substrate of the reaction was examined (Table 
2). First, we tested the phenol scope. Ortho methyl group of phenol (1d) gave good yields, although 
ortho position was more hindered. Electron effect of the substitution groups did not play great roll on 
the yield. Strong electron-donating (benzyloxy, 1m) as well as strong electron-withdrawing 
(trifluoromethyl, 1p) groups were all tolerated. More strikingly, fragile groups in basic conditions 
such as aldehyde (1o), ester (1i), even free carboxylic acid (1l) were all tolerated in the reaction 
conditions, although the yield of aldehyde (1o) was low Furthermore, different halides (1e–1h) even 
iodide were untouched during the reactions which could be used in the further elaborating reactions, 
for instance, Suzuki reactions. It is worth highlighting that heteroaromatics (1q, 1r), which are 
prevalent structure motifs in medicinal molecular, did not corrupt the efficiency of the reaction. 
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Table 2. Scope of phenol. Conditions: See Supplementary Materials for details. 

Next, different alkene protecting groups of phenol were tested (Table 3). Interestingly, vinyl (3a–
3c) was removed at the comparable yield without nickel catalyst indicated another mechanism might 
be involved. Except for the homoallyl group, the allyl group also could be easily removed under 
existing conditions (3d–3i). Interestingly, not only the acyclic alkene protecting groups, but also the 
cyclic alkene was smoothly detached in outstanding yield (3i). Longer alkene protecting group 
(pentenyl) afforded products albeit in relatively lower yields (3j–3m). Control experiments showed 
that nickel catalyst was indispensable for alkene protecting groups longer than vinyl. 
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Table 3. Scope of alkene protecting groups. Conditions: a Without Ni catalyst and ligand. See 
Supplementary Materials for details. 

We tried to expand the scope from phenols to aliphatic alcohols (Scheme 2). To our delight, allyl 
protected alcohols were easily removed to give both aminoalcohol (5) and cholesterol (7) in moderate 
yield. More importantly, the stereocenter adjacent to hydroxyl of 7 was preserved after the reaction. 
For the homoallyl ether analogs the yield dropped to around 40% which was not practical in synthetic 
view. 
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Scheme 2. Removal of alcohol protecting groups. Conditions: See Supplementary Materials for 
details. 

Taking further advantage of our new reaction (Scheme 3, Method B), we compared it with the 
classic palladium deprotection protocol (Scheme 3, Method A). These two methods were about the 
same efficiency when the alkene protecting groups were closed to the oxygen atom (n < 1). In contrast, 
Method A drastically lost its activity when the interval between the alkene and oxygen is prolonged 
(n > 2), meanwhile, Method B still maintained medium yield even at n = 4. Through this comparison, 
it is possible to remove allyl and homoallyl protecting groups sequentially by utilizing these methods. 

 
Scheme 3. Comparison with previous method. 

Although the clear panorama of the catalytic cycle was still under pursuing, the control 
experiments were designed to unveil the reaction mechanism (Scheme 4). First, butoxybenzene (8) 
was put into the optimized condition, no product was detected. It means the coordination of the 
nickel catalyst of the substrate was necessary. Second, ((2,2-dimethylbut-3-en-1-yl)oxy)benzene (9) 
was subjected to optimal condition, similarly no desire product was observed (3), which means the 
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chain walking was intercepted with the quaternary carbon to stop the formation of key allyl ether. 
When we analyzed the byproduct of the reaction 3j by GC-MS, the borylated alkene 10 was not 
detected which means the reaction might not be initiated by Ni-Bpin. Due to the low boiling point of 
pentene (30 °C), we did not see pentene signal on the GC-MS. Substrate (11) was synthesized to get 
more information of the fate of deprotected group. Allylbenzene (12) was detected as equivalent to 
the product instead of the corresponding borylation product (13) indicating the alkene was formed 
after the deprotection. The combination of B2pin2 and water/methanol might serve as a hydride donor 
to form the Ni-H species. A preliminary survey with silane to generate Ni-H in situ [11] was done 
and a great amount of product was also found which supported the possibility of Ni-H as the true 
catalyst in the reaction. 

 
Scheme 4. Mechanistic studies. Conditions: See Supplementary Materials for details. 

3. Discussion 

To summarize, we reported the nickel-catalyzed removal of alkene protecting groups of phenols 
and alcohols through chain walking process. The facile and mild reaction condition as well as high 
functional tolerance highlight its utilization in the future. More importantly, the nonconventional 
homoallyl may rival as protecting group with this report that is complementary to existing protocols. 
Future efforts are directed toward expanding this type of new transformation in practice as well as 
understanding the mechanism of the reaction. 

4. Experimental Section 

4.1. Representative General Procedure for Nickel-Catalyzed Deprotecting Reaction 

In glovebox, B2pin2 (76.17 mg, 0.3 mmol, 1.5 equiv), NiCl2(DME) (2.20 mg, 0.01 mmol, 0.05 equiv), 
6,6-dimethyl-2,2-dipyridyl (3.68 mg, 0.02 mmol, 0.10 equiv), LiOtBu (32 mg, 0.4 mmol, 2.0 equiv), and 
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protected phenol (if solid) (0.2 mmol) were added to an oven-dried tube. The reaction tube was 
equipped with a magnetic stir bar and sealed with Teflon-lined cap, refilled the system with argon 
and performed two more evacuation-backfill cycles, protected phenol was added by syringe under 
argon flow (if liquid). DMA (2.00 mL), H2O (50 µL), MeOH (25 µL) were added to the tube 
sequentially. The reaction mixture turned dark and was stirred at 30 °C for 24 h. When the reaction 
was finished, 10 mL aqueous HCl (0.1 M) was added to the mixture and extracted with CH2Cl2 (2 × 
10 mL), dried over anhydrous MgSO4, and concentrated in vacuo. The resulting residue was purified 
by silica gel flash chromatography to give the product. 

4.2. Characterization Data for Products 2a–2s, 5 and 7 (Table 2, 3 and Scheme 2) 

4-Phenylphenol (2a): White solid. IR (cm−1, KBr): 3434, 3367, 3130, 1662, 1611, 1522, 1477, 1459, 1401, 
1257, 1139, 1069, 998, 954, 862, 833, 758, 686, 555, 517. 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.4 Hz, 
2H), 7.51 (d, J = 8.1 Hz, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.35 (d, J = 7.1 Hz, 1H), 6.94 (d, J = 8.1 Hz, 2H), 4.95 
(s, 1H). 13C NMR (101 MHz, CDCl3) δ 155.0, 140.7, 134.0, 128.7, 128.4, 126.7, 115.6. m.p.: 163–164 °C. 

Phenol (2b): White solid. IR (cm−1, KBr): 3440, 3134, 1659, 1624, 1401, 1075, 989, 951, 858, 538. 1H NMR 
(400 MHz, CDCl3) δ 7.31 (t, J = 7.7 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.93 (d, J = 8.2 Hz, 2H), 6.04 (s, 1H). 
13C NMR (101 MHz, CDCl3) δ 155.2, 129.9, 121.2, 115.6. m.p.: 103–104 °C. 

3-Methoxyphenol (2c): Brown liquid. IR (cm−1, KBr): 3439, 3133, 1671, 1609, 1401, 1163, 1073, 991, 946, 
856, 769, 689, 541. 1H NMR (400 MHz, CDCl3) δ 7.16 (t, J = 8.0 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 6.47 (d, 
J = 7.9 Hz, 2H), 5.65 (s, 1H), 3.80 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.8, 156.7, 130.3, 108.1, 106.6, 
101.7, 55.3. 

o-Cresol (2d): Brown liquid. IR (cm−1, KBr): 3439, 3134, 1661, 1401, 1075, 993, 952, 858, 536. 1H NMR 
(400 MHz, CDCl3) δ 7.28 (d, J = 7.2 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 
8.0 Hz, 1H), 5.70 (s, 1H), 2.40 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 153.7, 131.3, 127.3, 124.4, 121.1, 
115.3, 15.9. 

3-Fluorophenol (2e): Light yellow liquid. IR (cm−1, KBr): 3441, 3134, 1666, 1627, 1131, 1074, 993, 952, 
857, 774, 531. 1H NMR (400 MHz, CDCl3) δ 7.22 (dd, J = 15.2, 7.9 Hz, 1H), 6.74–6.57 (m, 3H), 5.76 (s, 
1H). 13C NMR (101 MHz, Chloroform-d) δ 163.7 (d, J = 245.6 Hz), 156.3 (d, J = 11.3 Hz), 130.7 (d, J = 
10.0 Hz), 111.3 (d, J = 2.9 Hz), 108.2 (d, J = 21.3 Hz), 103.3 (d, J = 24.7 Hz). 

3-Chlorophenol (2f): Yellow liquid. IR (cm−1, KBr): 3439, 3134, 1664, 1623, 1401, 1250, 1138, 1074, 996, 
952, 857, 771, 682, 530. 1H NMR (400 MHz, CDCl3) δ 7.19 (t, J = 8.1 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 
6.89 (s, 1H), 6.75 (dd, J = 7.2, 0.9 Hz, 1H), 5.35 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 155.9, 135.0, 130.6, 
121.3, 116.0, 113.8. 

2-Iodophenol (2g): Brown solid. IR (cm−1, KBr): 3440, 3133, 1658, 1624, 1401, 1050, 1075, 991, 951, 858, 
535. 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 7.9 Hz, 1H), 7.27 (t, J = 6.4 Hz, 1H), 7.03 (d, J = 8.1 Hz, 
1H), 6.75–6.63 (m, 1H), 5.36 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 154.8, 138.3, 130.2, 122.5, 115.2, 85.7. 
m.p.: 41–42 °C. 

2-Bromophenol (2h): Brown liquid. IR (cm−1, KBr): 3439, 3132, 1663. 1619, 1401, 1160, 1077, 993, 946, 858, 
744, 539. 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 7.7 Hz, 1H), 7.06 (d, J = 8.1 
Hz, 1H), 6.84 (t, J = 7.7 Hz, 1H), 5.59 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 152.3, 132.1, 129.2, 121.8, 
116.2, 110.3. 

Methyl 4-hydroxybenzoate (2i): White solid. IR (cm−1, KBr): 3305, 2963, 2846, 2806, 1919, 1684, 1372, 1114, 
954, 851, 691. 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.33 (s, 1H), 
3.92 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 167.3, 160.2, 131.9, 122.3, 115.2, 52.0. m.p.: 130–131 °C. 

Ethyl 3-hydroxybenzoate (2j): Colorless liquid. IR (cm−1, KBr): 3350, 2385, 2581, 1692, 1597, 1512, 1459, 
1415, 1311, 1232, 1163, 1108, 1074, 926, 881, 760, 670, 565, 522. 1H NMR (400 MHz, DMSO) δ 9.83 (s, 
1H), 7.43–7.35 (m, 2H), 7.31 (t, J = 7.8 Hz, 2H), 7.03 (d, J = 7.9 Hz, 1H), 4.28 (q, J = 7.0 Hz, 2H), 1.30 (t, J 
= 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 167.6, 156.3, 131.3, 129.7, 121.6, 120.5, 116.4, 61.6, 14.1. 
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4-tert-Butylphenol (2k): White solid. IR (cm−1, KBr): 3144, 2962, 2868, 1608, 1513, 1447, 1399, 1269, 1175, 
822, 543. 1H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 5.53 (s, 1H), 1.36 
(s, 9H). 13C NMR (101 MHz, CDCl3) δ 152.9, 143.7, 126.5, 115.0, 34.1, 31.6. m.p.: 97–99 °C. 

4-Hydroxybenzoic acid (2l): White solid. IR (cm−1, KBr): 3382, 3130, 3013, 1676, 1600, 1402, 1321, 1286, 
1238, 1160, 1096, 1000, 929, 848, 611, 541. 1H NMR (400 MHz, DMSO) δ 12.41 (s, 1H), 10.21 (s, 1H), 
7.79 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 167.6, 162.0, 132.0, 121.8, 
115.5. m.p.: 213–215 °C. 

4-Benzyloxyphenol (2m): White solid. IR (cm−1, KBr): 3429, 3132, 1659, 1614, 1510, 1401, 1236, 1164, 1086, 
1012, 818, 734, 520. 1H NMR (400 MHz, CDCl3) δ 7.48–7.39 (m, 4H), 7.38–7.33 (m, 1H), 6.89 (d, J = 8.8 
Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 5.04 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 153.0, 149.7, 137.2, 128.5, 
127.9, 127.5, 116.1, 116.1, 70.8. m.p.: 122–124 °C. 

2-Naphthol (2n): White solid. IR (cm−1, KBr): 3501, 3190, 1628, 1590, 1510, 1459, 1401, 1277, 1215, 1168, 
955, 845, 813, 741, 476. 1H NMR (400 MHz, CDCl3) δ 7.84–7.77 (m, 2H), 7.71 (d, J = 8.2 Hz, 1H), 7.48 (t, 
J = 7.5 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.21–7.11 (m, 2H), 5.52 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 
153.3, 134.6, 129.9, 129.0, 127.8, 126.6, 126.4, 123.7, 117.8, 109.6. m.p.: 120–122 °C. 

p-Hydroxybenzaldehyde (2o): White solid. IR (cm−1, KBr): 3144, 2962, 1608, 1513, 1399, 1239, 1176, 821, 
543. 1H NMR (400 MHz, DMSO) δ 10.59 (s, 1H), 9.79 (s, 1H), 7.76 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 
2H). 13C NMR (101 MHz, DMSO) δ 191.3, 163.7, 132.5, 128.9, 116.3. m.p.: 116–118 °C. 

3-Trifluoromethylphenol (2p): Yellow liquid. IR (cm−1, KBr): 3440, 3132, 1662, 1622, 1401, 1160, 1076, 946, 
858, 538. 1H NMR (400 MHz, CDCl3) δ 7.38 (t, J = 7.9 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.12 (s, 1H), 7.04 
(d, J = 8.1 Hz, 1H), 5.36 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 155.3, 132.4 (q, J = 32.7 Hz), 130.3, 123.8 
(q, J = 271.3 Hz), 117.9 (q, J = 4.1 Hz), 112.3 (q, J = 4.1 Hz). 

tert-Butyl 4-hydroxy-1H-indole-1-carboxylate (2q): Corlorless liquid. IR (cm−1, KBr): 3449, 3135, 1664, 
1626, 1400, 1136, 1074, 962, 855. 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 3.5 
Hz, 1H), 7.18 (t, J = 8.1 Hz, 1H), 6.68 (dd, J = 10.2, 5.8 Hz, 2H), 5.40 (s, 1H), 1.70 (s, 9H). 13C NMR (101 
MHz, CDCl3) δ 149.8, 148.7, 136.9, 125.1, 124.7, 119.6, 108.3, 107.7, 103.5, 83.8, 28.2. 

6-Hydroxyflavone (2r): White solid. IR (cm−1, KBr): 3437, 3128, 3013, 1621, 1569, 1402, 1255, 1077, 835. 
1H NMR (400 MHz, DMSO) δ 10.02 (s, 1H), 8.08 (d, J = 6.9 Hz, 2H), 7.66 (d, J = 9.0 Hz, 1H), 7.59 (d, J = 
6.5 Hz, 3H), 7.34 (d, J = 2.2 Hz, 1H), 7.27 (dd, J = 9.1, 2.3 Hz, 1H), 6.95 (s, 1H). 13C NMR (101 MHz, 
DMSO) δ 177.4, 162.6, 155.3, 149.8, 132.0, 131.8, 129.5, 126.7, 124.7, 123.5, 120.3, 107.9, 106.4. m.p.: 238–
240 °C. 

4-Cyanophenol (2s): White solid. IR (cm−1, KBr): 3283, 2229, 1603, 1505, 1441, 1391, 1283, 1221, 1159, 834, 
696, 534. 1H NMR (400 MHz, DMSO) δ 10.63 (s, 1H), 7.61 (s, 2H), 7.13–6.68 (m, 2H). 13C NMR (101 
MHz, CDCl3) δ 160.6, 134.3, 119.3, 116.5, 102.5. m.p.: 112–114 °C. 

2-(N,N-Dibenzylamino)-2-phenylethan-1-ol (2t): White solid. IR (cm−1, KBr): 3440, 3134, 1661, 1624, 1401, 
1070. 1H NMR (400 MHz, CDCl3) δ 7.53–7.19 (m, 15H), 4.17 (t, J = 10.6 Hz, 1H), 4.00–3.91 (m, 3H), 3.64 
(dd, J = 10.6, 5.1 Hz, 1H), 3.18 (d, J = 13.4 Hz, 2H), 3.04 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 139.1, 
135.1, 129.3, 129.0, 128.5, 128.4, 128.0, 127.2, 63.0, 60.4, 53.5. m.p.: decomposed. 

Cholesterol (7): White solid. IR (cm−1, KBr): 3435, 3132, 2943, 1666, 1624, 1459, 1399, 1057. 1H NMR (400 
MHz, CDCl3) δ 5.37 (d, J = 4.3 Hz, 1H), 3.69–3.35 (m, 1H), 2.35–2.19 (m, 2H), 2.01 (t, J = 14.8 Hz, 2H), 
1.86 (d, J = 9.9 Hz, 3H), 1.60–0.85 (m, 34H), 0.70 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 140.7, 121.7, 
71.7, 56.7, 56.1, 50.1, 42.3, 42.3, 39.8, 39.5, 37.2, 36.5, 36.2, 35.8, 31.9, 31.6, 28.2, 28.0, 24.3, 23.8, 22.8, 22.5, 
21.1, 19.4, 18.7, 11.8. m.p.: 146–148 °C. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table 

S1: title, Video S1: title. 
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