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Synthesis and antiproliferative activities of aminoalkylated 
polymethoxyflavonoid derivatives

Xue-Li Li, Yan-Hua Zhang, Cai-Fang Wang and Qiu-An Wang

College of Chemistry and Chemical Engineering, Hunan University, Changsha, China

ABSTRACT
A series of novel aminoalkylated polymethoxyflavonoid derivatives 
3–11 was synthesised from 5-hydroxy-3,7,3′,4′-tetramethoxyflavonoid 
(1) through extending alkoxy chain at the 5-position, and introducing 
amine hydrogen bond receptor at the end of the side chain. Their 
antiproliferative activities were evaluated in vitro on a panel of three 
human cancer cell lines (Hela, HCC1954 and SK-OV-3). The results 
showed that all the target compounds exhibited antiproliferative 
activities against investigated cancer cells with IC50 values of 9.51–
53.33 μM. Compounds 5, 7, 8, 11 on Hela cells and compounds 4–9, 
11 on HCC1954 exhibited more potency as compared to positive 
control cis-Platin.

1.  Introduction

Flavonoids are secondary metabolites widely distributed in higher plants that show various 
biological effects including antioxidative, anti-inflammatory, antiviral, antifungal anticar-
cinogenic, cardioprotective and neurite outgrowth stimulatory activities (Singh et al. 2014; 
Chang et al. 2017; Phan et al. 2017). Nevertheless, the most promising bioactive flavonoids 
such as quercetin, chrisin, kaempferol and apigenin have very low bioavailability, making 
them largely ineffective in vivo (Chen and Chen 2013). In fact, such compounds are 
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2   ﻿ X.-L. LI ET AL.

polyhydroxylated flavonoids (PHFs), and the free hydroxyl groups limit the intestinal absorp-
tion and are quickly conjugated by glucuronidation and sulfation (Walle 2007).

Polymethoxylated flavonoids (PMFs) are readily absorbed in the intestine and show wide 
tissue distribution and metabolic stability (Ruiu et al. 2015). PMFs may be more biologically 
active flavonoids compared to their hydroxylated analogues. Some results suggest that 
methylation of some natural phenolic compounds could improve P-gp modulating activity, 
and polymethoxy-substituted phenyl ring may be an important pharmacophore for anti-
cancer effect (Yuan et al. 2015). 5-Hydroxy-3,7,3′,4′-tetramethoxyflavonoid (1), a polymeth-
oxyflavonoid, occurred in sweet orange (Citrus sinensis) peel, can be employed as safe and 
effective modulators of BCRP-mediated drug resistance in cancer (Li et al. 2006). Our previous 
studies also suggested that the polymethoxy flavonoids possess significantly enhanced 
cytotoxic activity (Nguyen et al. 2017).

The introduction of the aminoalkyl group to the structure of compounds is a general 
strategy for improving bioavailability and water solubility (Bonesi et al. 2008). The results 
obtained in several classes of polyaromatic antitumour agent indicate that the introduction 
of an aminoalkyl side chain can increase significantly the biological activity and the potency 
of the parent compounds (Fu et al. 2012). These findings encourage us to investigate 
whether the flavonoid skeletons which possess aminoalkyl side chain can be improved 
antiproliferative activity. In the present work, we aimed to synthesise a novel series of meth-
ylated quercetin derivatives through extending alkoxy chain at the 5-position, and intro-
ducing amine hydrogen bond receptor at the end of the side chain. Furthermore, their 
antiproliferative activities were evaluated in vitro on a panel of three human cancer cell lines 
Hela (cervical carcinoma), HCC1954 (breast cancer) and SK-OV-3 (ovarian cancer) using CCK-8 
assay.

2.  Results and discussion

The novel aminoalkylated polymethoxyflavonoid derivatives 3–11 were synthesised 
according to the synthetic route shown in Scheme 1. Regiospecific methoxylation of 
quercetin with dimethylsulfate and K2CO3 provides the key intermediate 5-hydroxy-3,7,3′,4′- 
tetramethoxy flavonoid (1), because of the strong intramolecular H-bond at hydroxyl of 
C-5 with the adjacent carbonyl at C-4, quercetin was readily prepared from the commercial 
material rutin by acid hydrolysis of rutinose unit as previously described (Nguyen et al. 
2015). The bromoderivative 2, which was obtained in simple one-step alkylation of 1 with 
1,4-dibromobutane refluxed in K2CO3 and acetone, was further reacted with corresponding 
amines in the presence of K2CO3 in CH3 CN to provide the final aminoalkylated polymeth-
oxyflavonoid derivatives 3–11. All new compounds were purified by recrystallisation or 
chromatography, and their structures were confirmed by the analytical and spectroscopic 
data.

Antiproliferative activities in vitro of all synthesised compounds against three cancer cell 
lines (Hela, HCC1954 and SK-OV-3) were evaluated based on a CCK-8 assay using cis-Platin 
and paclitaxel as positive controls. Antiproliferative activities of the compounds indicated 
by IC50 values were calculated by linear regression analysis of the concentration–response 
curves obtained for each compound. The results were summarised in Table 1. Table 1 shows 
that parent compound 5-hydroxy-3,7,3′,4′-tetramethoxyflavonoid(1) did not exhibit any 
inherent cytotoxicity to investigated cancer cell lines (IC50 > 100 μM), while all aminoalkylated 
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NATURAL PRODUCT RESEARCH﻿    3

polymethoxyflavonoid derivatives showed moderate to potent anticancer activity against 
tested cell lines with IC50 values ranging from 9.51 to 53.33 μM. Therefore, the presence of 
an aminobutyl group in the flavonoid moiety (compounds 3–11) resulted to be a key sub-
stitution for the activity of compounds against these three cancer cells. Compounds 5, 7, 8, 
11 towards Hela Cells and compounds 4–9, 11 on HCC1954 displayed more potency as 
compared to positive control cis-Platin. Compound 4 revealed to be the most active with 
IC50 values ranging from 9.51 to 20.93 μM against all cancer cell lines.
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Scheme 1. Synthesis of aminoalkylated polymethoxyflavonoid derivatives 3–11.

Table 1. The antiproliferative activity (IC50 in μM) of compounds 1, 3–11 on the human cancer cell lines.

acis-Platin and paclitaxel were employed as positive controls.

compound Hela HCC1954 SK-OV-3
1 >100 >100 >100
3 53.33 43.82 40.90
4 23.05 20.75 28.29
5 9.51 14.63 20.93
6 21.74 18.73 29.43
7 16.56 23.27 32.02
8 12.02 19.84 26.71
9 33.33 24.75 38.37
10 34.43 37.99 43.42
11 14.66 20.61 29.01
cis-Platina 21.30 33.57 12.07
paclitaxela 0.0021 0.0011 0.0017
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4   ﻿ X.-L. LI ET AL.

3.  Experimental

3.1.  General information

Melting points were measured on a XRC-l apparatus, uncorrected. 1H and 13C NMR spectra 
were recorded on Varian INOVA-400 and Bruker AM-400 instrument, using tetramethylsilane 
as internal standard, chemical shifts (δ) in ppm, coupling constants (J) in Hz. Mass spectra 
were determined with ZAB-HS spectrometer. Column chromatography was carried out using 
200–300 mesh silica gel (Qingdao Ocean Chemical Products of China). AR or chemical pure 
reagents and solvents were purchased from commercial sources, and anhydrous solvents 
were freshly distilled or purified according to standard procedures.

5-Hydroxy-3,7,3′,4′-tetramethoxyflavone (1) was prepared from quercetin according to 
the previous methods (Yuan et al. 2015).

3.2.  5-Bromobutoxy-3,7,3′,4′-tetramethoxyflavone (2)

Anhydrous potassium carbonate (250 mg, 1.81 mmol) and a catalytic amount of KI were 
added in turn to a solution of 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (0.25 g, 0.70 mmol) 
in acetonitrile (20 mL). The reaction mixture refluxed for 1 h. Then 1,4-dibromobutane 
(0.12 mL, 1.44 mmol) was added dropwise. After addition completed, the reaction mixture 
was refluxed for 22 h. The reaction was monitored by TLC. After cooling to room temperature, 
the solvent was removed in vacuo. The residue was extracted with CH2Cl2 (3 × 50 mL). The 
organic phase was combined and dried over anhydrous sodium sulphate. Then, the solvent 
was removed in vacuo and crude product was purified by silica gel column chromatography 
(ethyl acetate/petroleum ether, v/v, 1:3 as the eluent) to afford white solid 2 in 84% yield. 
mp 131–133 °C; 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 1.9 Hz, 1H, 6ʹ-H), 7.63 (s, 1H, 2ʹ-H), 
6.91 (d, J = 9.1 Hz, 1H, 5ʹ-H), 6.43 (s, 1H, 8-H), 6.26 (s, 1H, 6-H), 4.03 (dd, J = 11.4, 5.5 Hz, 2H, 
5-OCH2), 3.90 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.83 and 3.77 (2s, 6H, 3-OCH3 and 7-OCH3), 3.28 
(t, J = 6.6 Hz, 2H, CH2), 2.19–2.08 (m, 2H, CH2), 2.05–1.95 (m, 2H, CH2); 13C NMR (100 MHz, 
CDCl3) δ 170.8, 160.7,157.2,155.7,149.7,147.8, 145.7, 138.1, 120.4, 118.6, 108.1, 107.8, 93.6, 
89.5, 65.2, 65.0, 56.9,53.0, 52.9, 52.7, 26.8, 26.6, 24.4. MS(ESI): m/z 492.1 [M + H]+.

3.3.  General procedure for synthesis of aminoalkylated polymethoxy flavonoid 
derivatives (3–11)

Anhydrous potassium carbonate (0.28 g, 2.05 mmol) was added to a solution of 5-bromob-
utoxy-3,7,3′,4′-tetramethoxyflavone (0.20 g, 0.41 mmol) in acetonitrile (15 mL). The reaction 
mixture refluxed for 1 h. Then secondary amines (0.5 mmol) were added dropwise to the 
reaction mixture and refluxing was continued. Completion of the reaction was monitored 
by TLC. After cooling to room temperature, the solvent was removed in vacuo. The residue 
was diluted with water and extracted with CH2Cl2 (3 × 10 mL). The organic phase was com-
bined and washed with brine (3 × 10 mL), dried over anhydrous Na2SO4 and concentrated. 
The residue was subjected to silica gel column chromatography purification (ethyl acetate/
petroleum ether, v/v, 2:3 with 3–5 drops of triethylamine as the eluent), to afford white solids 
3–11 in 71–94% yield.
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NATURAL PRODUCT RESEARCH﻿    5

3.3.1.  5-(4′-Dimethylamino)butoxy-3,7,3′,4′-tetramethoxyflavone (3)
3 was afforded as a white solid in 77% yield; mp 67–69 °C; 1H NMR (400 MHz, CDCl3) δ 7.72 
(d, J = 3.1 Hz, 1H, 6ʹ-H), 7.71 (s, 1H, 2ʹ-H), 6.50 (d, J = 4.5 Hz, 1H, 5ʹ-H), 6.50 (s, 1H, 8-H), 6.34 (s, 
1H, 6-H), 4.10 (t, J = 6.5 Hz, 2H, 5-OCH2), 3.97 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.90 and 3.85 (2s, 
6H, 3-OCH3 and 7-OCH3), 2.43–2.35 (m, 2H, CH2), 2.26 (s, 6H, CH3NCH3), 2.00–1.95 (m, 2H, 
CH2), 1.75–1.78 (m, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ 164.0, 160, 159.0, 150.9, 148.9, 
141.4, 123.7, 121.8, 111.2, 96.9, 92.6, 69.5, 60.3, 59.5, 56.3, 56.2, 56.0, 45.7, 27.0, 24.3. MS(EI): 
m/z 457.1 [M]+.

3.3.2.  5-(4′-Diethylamino)butoxy-3,7,3′,4′-tetramethoxyflavone (4)
4 was afforded as a white solid in 71% yield; mp 212–214 °C; 1H NMR (400 MHz, CDCl3) δ 7.63 
(s, 2H, 6ʹ-H and 2ʹ-H), 6.91 (d, J = 9.0 Hz, 1H, 5ʹ-H), 6.42 (s, 1H, 8-H), 6.26 (s, 1H, 6-H), 4.02 (t, 
J = 6.5 Hz, 2H, 5-OCH2), 3.89 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.82 and 3.77 (2s, 6H, 3-OCH3 and 
7-OCH3), 2.52 (dd, J = 13.1, 6.1 Hz, 6H, N(CH2)3), 1.89 (dd, J = 13.6, 6.7 Hz, 2H, CH2), 1.70 (d, 
J = 6.7 Hz, 2H, CH2), 0.98 (td, J = 7.0, 3.2 Hz, 6H, 2CH3); 13C NMR (100 MHz, CDCl3) δ 173.8, 
163.7, 160.3, 158.7, 152.4, 150.7, 148.6, 141.1, 123.4, 121.5, 111.1, 110.7, 96.6, 92.3, 69.2, 59.9, 
55.9, 55.7, 52.3, 46.7, 26.9, 23.1, 11.3. MS(ESI): m/z 485.2 [M + H]+.

3.3.3.  5-(4′-Dipropylamino)butoxy-3,7,3′,4′-tetramethoxyflavone (5)
5 was afforded as a white solid in 80% yield; mp 60–62 °C; 1H NMR (400 MHz, CDCl3) δ 7.64 
(dd, J = 4.2, 2.5 Hz, 2H, 6ʹ-H and 2ʹ-H), 6.92 (d, J = 4.6 Hz, 5ʹ-H), 6.42 (s, 1H, 8-H), 6.28 (s, 1H, 
6-H), 4.02 (t, J = 6.6 Hz, 2H, 5-OCH2), 3.90 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.83 and 3.79 (2s, 6H, 
3-OCH3 and 7-OCH3), 2.48–2.45 (m, 2H, CH2), 2.37–2.33 (m, 4H, CH2NCH2), 1.89 (dd, J = 14.5, 
7.0 Hz, 2H, CH2), 1.68–1.64 (m, 2H, CH2), 1.40 (d, J = 7.0 Hz, 4H, 2CH2), 0.80 (t, J = 7.3 Hz, 6H, 
2CH3); 13C NMR (100 MHz, CDCl3) δ 174.3, 164.2, 160.9, 159.2, 151.2, 149.1, 123.9, 122.0, 111.6, 
111.2, 110.1, 102.8, 97.1, 92.8, 69.8, 60.4, 56.5, 56.4, 56.2, 54.1, 32.1, 27.4, 23.1, 20.5, 12.4; MS 
(m/z, EI): 513.2[M]+. HRMS (EI): m/z [M+] calcd for C29H39O7 N: 513.2721, found: 513.2736.

3.3.4.  5-(4′-(Pyrrolidin-1-yl)butoxy)-3,7,3′,4′-tetramethoxyflavone (6)
6 was afforded as a white solid in 84% yield; mp 160–162 °C; 1H NMR (400 MHz, CDCl3) δ 7.64 
(dd, J = 8.5, 2.5 Hz, 2H, 6ʹ-H and 2ʹ-H), 6.92 (d, J = 8.5 Hz, 1H, 5ʹ-H), 6.46 (s, 1H, 8-H), 6.26 (s, 
1H, 6-H), 4.04 (t, J = 5.3 Hz, 2H, 5-OCH2), 3.90 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.84 and 3.73 (2s, 
6H, 3-OCH3 and 7-OCH3), 3.55–3.46 (m, 2H, CH2), 3.02–2.92 (m, 2H, CH2), 2.23–2.10 (m, 4H, 
CH2NCH2), 1.97 (dd, J = 11.7, 5.7 Hz, 2H, CH2), 1.79–1.76 (m, 4H, 2CH2); 13C NMR (100 MHz, 
CDCl3) δ 173.7, 163.9, 159.7, 158.7, 152.9, 150.9, 148.7, 140.9, 123.1, 121.7, 111.1, 110.8, 109.3, 
96.6, 92.8, 68.9, 59.8, 56.0, 55.9, 55.8, 55.2, 53.4, 25.8, 23.4. MS(ESI): m/z 488.2 [M + H] +.

3.3.5.  5-(4′-(Piperidin-1-yl)butoxy)-3,7,3′,4′-tetramethoxyflavone (7)
7 was afforded as a white solid in 91% yield (recrystallisation from ethyl acetate instead of 
flash column chromatography purification); mp 111–113 °C; 1H NMR (400 MHz, CDCl3) δ 
7.66–7.60 (m, 2H, 6ʹ-H and 2ʹ-H), 6.90 (d, J = 9.0 Hz, 1H, 5ʹ-H), 6.40 (s, 1H, 8-H), 6.25 (s, 1H, 6-H), 
4.01 (t, J = 4.9 Hz, 2H, 5-OCH2), 3.89 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.82 and 3.78 (2s, 6H, 3-OCH3 
and 7-OCH3), 2.51–2.23 (m, 6H, N(CH2)3), 1.88 (dd, J = 14.4, 6.8 Hz, 2H, CH2), 1.71 (dd, J = 14.8, 
7.7 Hz, 2H, CH2), 1.51 (dd, J = 11.0, 5.4 Hz, 4H, 2CH2), 1.40–1.32 (m, 2H, CH2); 13C NMR (100 MHz, 
CDCl3) δ 173.8, 163.7, 160.3, 158.7, 152.4, 150.7, 148.6, 141.0, 123.4, 121.5, 110.9, 109.6, 96.5, 
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6   ﻿ X.-L. LI ET AL.

92.3, 69.2, 59.9, 58.8, 55.9, 55.7, 54.4, 26.9, 25.7, 24.3, 23.1. MS (m/z, EI): 497.2 [M]+. HRMS (EI): 
m/z [M+] calcd for C28H35O7 N: 497.2408, found: 497.2390.

3.3.6.  5-(4′-(4-Hydroxypiperidin-1-yl)butoxy)-3,7,3′,4′-tetramethoxyflavone (8)
8 was afforded as a white solid in 89% yield; mp 134–136 °C; 1H NMR (400 MHz, CDCl3) δ 7.65–
7.43 (m, 2H, 6ʹ-H and 2ʹ-H), 7.41 (d, J = 8.7 Hz, 1H, 5ʹ-H), 6.46 (s, 1H, 8-H), 6.28 (s, 1H, 6-H), 6.05 
(s, 1H, -CH-OH), 4.04 (t, J = 5.8 Hz, 2H, 5-OCH2), 3.90 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.84 and 3.76 
(2s, 6H, 3-OCH3 and 7-OCH3), 3.21 (t, J = 6.5 Hz, 2H, CH2), 2.35–2.22 (m, 4H, CH2NCH2), 2.06–2.02 
(m, 4H, 2CH2), 1.69–1.61 (m, 1H, CH), 1.23–1.15 (m, 2H, CH2), 0.87–0.56 (m, 2H, CH2); 13C NMR 
(100 MHz, CDCl3) δ 178.3, 168.3, 164.5, 163.2, 155.3, 145.6, 141.8, 133.8, 126.1, 123.4, 115.6, 
115.2, 101.1, 97.1, 73.2, 64.5, 60.5, 60.4, 60.3, 51.2, 32.5, 30.2. MS(ESI): m/z 513.2 [M + H] +.

3.3.7.  5-(4′-Morpholinobutoxy)-3,7,3′,4′-tetramethoxyflavone (9)
9 was afforded as a white solid in 87% yield; mp 56–58 °C; 1H NMR (400 MHz, CDCl3) δ 7.64–
7.62 (m, 2H, 6ʹ-H and 2ʹ-H), 6.91 (d, J = 9.0 Hz, 1H, 5ʹ-H), 6.42 (s, 1H, 8-H), 6.26 (s, 1H, 6-H), 4.03 
(t, J = 5.2 Hz, 2H, 5-OCH2), 3.90 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.83 and 3.78 (2s, 6H, 3-OCH3 
and 7-OCH3), 3.64–3.62 (m, 4H, CH2NCH2), 2.41–2.38 (m, 4H, CH2CH2), 1.92–1.89 (m, 4H, 2CH2), 
1.76–1.70 (m, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ 165.1, 161.6, 151.9, 149.9, 142.4, 124.6, 
122.9, 112.4, 111.9, 97.9, 93.6, 70.3, 68.2, 61.3, 59.8, 57.3, 57.0, 54.9, 28.1, 24.1. MS (m/z, EI): 
499.2 [M]+. HRMS (EI): m/z [M+] calcd for C27H33O8 N: 499.2201, found: 499.2188.

3.3.8.  5-(4′-(4-methylpiperazin-1-yl)butoxy)-3,7,3′,4′-tetramethoxyflavone (10)
10 was afforded as a white solid in 84% yield; mp 157–159 °C; 1H NMR (400 MHz, CDCl3) δ 
7.71–7.69 (m, 2H, 6ʹ-H and 2ʹ-H), 6.99 (d, J = 4.5 Hz, 1H, 5ʹ-H), 6.49 (s, 1H, 8-H), 6.34 (s, 1H, 6-H), 
4.09 (t, J = 6.6 Hz, 2H), 3.97 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.90 and 3.85 (2s, 6H, 3-OCH3 and 
7-OCH3), 2.72–2.36 (m, CH3 N(CH2)2), 2.36–2.10 (m, 6H, N(CH2)3), 2.00–1.93 (m, 2H, CH2), 
1.79–1.72 (m, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ 173.1, 163.0, 159.7, 158.0, 151.8, 149.9, 
147.9, 140.4, 122.7, 120.9, 110.4, 109.9, 108.9, 95.9, 91.6, 68.5, 59.3, 57.4, 55.3, 55.0, 54.4, 52.5, 
45.4, 26.2, 22.5. MS (m/z, EI): 512.2 [M]+. HRMS (EI): m/z [M+] calcd for C28H36O7N2: 512.2517, 
found: 512.2525.

3.3.9.  5-(4′-(1H-imidazol-1-yl)butoxy)-3,7,3′,4′-tetramethoxyflavone (11)
11 was afforded as a white solid in 94% yield (recrystallisation from ethyl acetate instead of 
flash column chromatography purification); mp 132–134 °C; 1H NMR (400 MHz, CDCl3) δ 7.64 
(d, J = 7.6 Hz, 2H, 6ʹ-H and 2ʹ-H), 7.54 (s, 1H, NHN), 6.95 (d, J = 9.4 Hz, 2H, NHHN), 6.91 (d, 
J = 8.7 Hz, 1H, 5ʹ-H), 6.44 (s, 1H, 8-H), 6.22 (s, 1H, 6-H), 4.11 (t, J = 6.8 Hz, 2H, 5-OCH2), 3.98 (t, 
J = 5.6 Hz, 2H, CH2), 3.89 (s, 6H, 3ʹ-OCH3 and 4ʹ-OCH3), 3.82 and 3.77 (2s, 6H, 3-OCH3 and 
7-OCH3), 2.15–2.04 (m, 2H, CH2), 1.89–1.78 (m, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ 173.7, 
163.7, 159.9, 158.7, 150.8, 148.6, 141.1, 137.2, 129.0, 123.2, 121.6, 118.8, 110.9, 109.5, 96.6, 
92.6, 68.6, 59.9, 56.0, 55.9, 55.7, 46.7, 27.9, 25.7; MS (m/z, EI): 480.2 [M]+. HRMS (EI): m/z [M+] 
calcd for C26H28O7N2: 480.1891, found: 480.1897.

3.4.  Assay for antiproliferative activity

The antiproliferative activity in vitro of compounds 1, 3–11 was measured using the CCK-8 
assay (Song et al. 2015). Hela, HCC1954 and SK-OV-3 cell lines were obtained from the Tumor 
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Cell Resoures Bank, Chinese Academy of Medical Sciences. Cell counting kit-8 was obtained 
from Dojindo (Japan).

Hela, HCC1954 and SK-OV-3 (5 × 103 per well in a 96-well plate) were treated with different 
concentrations of compounds 1, 3–11 (100, 25, 6.25, 1.56, 0.39, 0.0976, 0.0244, 0.0061 μM) 
for 48 h. Then, 10% CCK-8 was added into each well and incubated with 90% humidity and 
5% CO2 for another 1–3 h. The supernatant was discarded, and 0.1 mL of DMSO was added 
to dissolve precipitation. The mixture was shaken on a microvibrator for 5 min, and the 
absorbance was measured at 450–490 nm by automated Fluorimeter (Novostar, BMG 
LABTECH, Germany) to determine the concentration that killed 50% of cells (IC50). Data rep-
resent the means of at least three separate experiments. The IC50 value was defined as the 
concentration that caused 50% inhibition of cell proliferation.

4.  Conclusions

In summary, a series of novel aminoalkylated polymethoxyflavonoid derivatives were syn-
thesised. The antiproliferative activity results showed that all the target compounds exhibited 
antiproliferative activities against investigated cancer cells with IC50 values of 9.51–53.33 μM. 
The introduction of aminoalkyl group in the flavonoid moiety (compounds 3–11) resulted 
to be a key substitution for the activity of polymethoxyflavonoid 1 against these three cancer 
cells. Compounds 5, 7, 8, 11 on Hela cells and compounds 4–9, 11 on HCC1954 cells displayed 
more potency as compared to positive control cis-Platin. Compound 5 revealed to be the 
most active with IC50 values ranging from 9.51 to 20.93 μM against all cancer cell lines, and 
worthy of further development.
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