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ABSTRACT: A potassium yttrium benzyl ate complex was
generated simply by mixing an yttrium amide and potassium
benzyl. The benzyl ate complex could undergo peripheral
deprotonation to produce a cyclometalated complex or
hydrogenation to give a hydride ate complex. The latter
hydride ate complex features a (KH)2 structure protected by
two yttrium amide complexes. The synergistic effect between
potassium hydride and the amide ligand enables the complex
to deprotonate a methyl C−H bond. The combination of
intramolecular deprotonation of the hydride ate complex and
hydrogenation of the cyclometalated complex constitutes a reversible H2 activation process. Using this process involving formal
addition and elimination of H2, we accomplished the catalytic hydrogenation of alkenes, alkynes, and imines.
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Reversible activation of H2 is crucial both for energy
storage and for catalytic hydrogenation reactions, which

are among the most fundamental transformations in organic
synthesis; various metal-mediated H2 activation processes have
been reported.1 Activation of H2 with late-transition-metal
catalysts, either heterogeneous or homogeneous, occurs via a
redox process at the metal center (Scheme 1, eq 1).2 Over the
past couple of decades, metal−ligand cooperation in pincer
complexes of late-transition metals has emerged as a powerful
alternative H2 activation strategy to the redox process (Scheme

1, eq 2).3 In contrast, alkyl early transition-metal catalysts
prefer to undergo σ-bond metathesis reaction4 between the
M−C bond and H2, proceeding via a four-centered transition
state and giving an alkane and a metal hydride complex
(Scheme 1, eq 3).4−6 Metal hydride complexes, which are
important intermediates and catalyst precursors, have been
extensively studied over the past several decades, because of
their versatile structures and reactivities.7 Some hydride
complexes are reactive enough to undergo intramolecular
C−H bond activation of their own ligands to give “tuck-in”
cyclometalated complexes and liberate H2.

8 The combination
of internal deprotonation of a hydride complex and hydro-
genation of the cyclometalated complex constitutes a process
for reversible activation of H2, which provide a H2 activation
approach involving early transition metals and even s-block
metals.9 In 1979, Andersen and co-workers reported γ-
metalation reactions of actinide hydride complexes HAn[N-
(SiMe3)2]3 (An = Th and U) in which H2 is reversibly
activated via γ-deprotonation of one of the silylamide ligands
and subsequent hydrogenation of a four-membered metal-
locycle.9a,b The research groups of Evans, Teuben, Chirik, and
Sutton reported the reversible addition and release of H2 from
metallocene hydrides of samarium, yttrium, cerium, and
zirconium.9c−g Okuda recently achieved a reversible H2 release
and capture by using a cationic lutetium polyhydride
complex;9h specifically, a C−H bond of one of the methyl
groups of the neutral Me4TACD ligand of the complex is
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Scheme 1. Metal-Mediated H2 Activation
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activated. Despite these achievements, this reversible H2
activation process remains underdeveloped in catalytic trans-
formations.
Because of the strong coordination ability of the hydride

anion, hydride complexes of early transition metals and s-block
metals usually prefer to form dimers or clusters via bridging
coordination of the hydrides to the metals.7,10 In contrast to
the well-developed homometallic hydride complexes, hetero-
metallic hydride complexes have rarely been explored, because
of the shortage of available synthetic methods. Several groups
have synthesized hydride complexes containing M1−H−M2

moieties (where M1 = Ti, Zr, Ln, or Al and M2 = Li, Na, or
K).11 However, the reactivity of these heterometallic hydride
complexes remains mostly unknown. Herein, we report the
synthesis and reactions of a potassium yttrium hydride ate
complex featuring a protected (KH)2 unit. The synergistic
effect of the potassium yttrium ate complexes can achieve a
reversible H2 activation and affect the hydrogenation of olefins,
alkynes, and imines (Scheme 1, eq 4).
Because anionic rare-earth species form readily as by-

products in alkyl lanthanide synthesis, we began our study by
combining an yttrium amide compound with KBn. When KBn,
which is insoluble in benzene, was mixed with a C6D6 solution
of Y[N(SiMe3)2]3, an orange solution formed rapidly (see
Scheme 2). In-situ NMR spectroscopy revealed a doublet at δ

2.22 (J = 4.0 Hz, 2H) in 1H NMR spectrum and doublet for a
secondary carbon atom at δ 54.2 (J = 33.3 Hz) in the 13C
NMR spectrum, suggesting the generation of an ate complex
with a newly formed Y−benzyl bond.12 As shown in Figure 1
(left), X-ray diffraction (XRD) analysis indicated that the
complex (A) is composed of contact ion pairs consisting of
{YBn[N(SiMe3)2]3}

− and [K(THF)]+. The potassium cation
also coordinates with another molecular unit via an η3 π-
interaction and an agostic interaction, which extends the
structure supramolecularly (see the Supporting Information).
In its solid state, complex A was stable for months in a
glovebox at −35 °C. However, in benzene solution, the
complex slowly underwent peripheral deprotonation reactions
to produce cyclometalated complex B.13 XRD analysis of a
single crystal of B revealed a four-membered Y−N−Si−C ring
similar to that described by Niemeyer (Figure 1, right).13b

Upon treatment with H2, both benzyl ate complex A and
cyclometalated complex B smoothly underwent hydrogenation
to produce hydride complex C. X-ray analysis revealed that the
hydride atom coordinates not only with the Y atom but also
with two K atoms, forming a dimer held together by the
interactions between the K and hydride atoms (Figure 2). The

core of the dimeric hydride ate complex features a (KH)2
parallelogram structure. Remarkably, there were no coordinat-
ing solvent molecules; only a N atom and two hydride atoms
were bonded directly to the K atom. The lack of solvent
molecules may be attributable to six agostic interactions with
the nearby methyl groups, meeting with the high coordination
requirement of the K+ cation.14 Formally speaking, we
synthesized a hydrocarbon-soluble (KH)2 unit protected by
two yttrium amide complexes via Y−H and K−N coordinative
interactions.15 It is important to note that hydride ate complex
C smoothly underwent intramolecular C−H bond activation
upon heating to afford cyclometalated complex B with release
of two H2 molecules. Thus, by deprotonation of hydride ate
complex C and hydrogenation of deprotonated complex B, we
achieved a reversible H2 activation process.
Given the reversible H2 activation ability of potassium

yttrium ate complexes, we explored their applications for
catalytic hydrogenation. After preliminary condition optimiza-
tion, we achieved complete hydrogenation of 1-octene with 5
mol % of hydride ate complex C as a catalyst in 3 h at 80 °C
under a 6 bar H2 pressure in C6D6 (Table 1, entry 1).
Complete hydrogenation of 1-octene could also be achieved by
using benzyl ate complex A (prepared either in advance or in
situ from the yttrium amide and KBn) as the catalyst (Table 1,
entries 2 and 3). Control reactions that were conducted with

Scheme 2. Potassium Yttrium Ate Complexes

Figure 1. Solid-state structures of potassium yttrium benzyl ate
complex A (left) and cyclometalated complex B (right) with thermal
ellipsoids set at 50% probability. H atoms (except H19, H19′, H13A,
and H13B) are omitted for clarity. Selected bond lengths for A: Y1−
C19, 2.529(7) Å; K1−C19, 3.238(7) Å; K1−C20, 3.101(7) Å; K1−
C21, 3.334(8) Å; K1−H19, 2.799(2) Å. Selected bond angle for A:
Y1−C19−K1, 154.169(3)°. Selected bond lengths for B: Y1−C13,
2.452(3) Å; K1−C13, 2.998(3) Å; K1−H13A, 2.814(3) Å; K1−
H13B, 2.839(3) Å. Selected bond angle for B: Y1−C13−K1,
177.035(1)°.

Figure 2. Solid-state structure of potassium yttrium hydride ate
complex C, {KHY[N(SiMe3)2]3}2, with thermal ellipsoids set at 50%
probability. H atoms (except Ha, Hb, H4, H6, H12, H14, H16, and
H18) are omitted for clarity. Selected bond lengths: Y1-Ha, 2.034(2)
Å; K1-Ha, 2.728(2) Å; K1-Hb, 2.643(2) Å; K1−H4, 2.661(4) Å;
K1−H6, 2.823(4) Å; K1−H12, 2.781(4) Å; K1−H14, 3.104(4) Å;
K1−H16, 2.679(3) Å; K1−H18, 2.842(4) Å; K1−N3, 3.029(1) Å.
Selected bond angles: Y1-Ha-K1, 148.89(7)°; Ha−K1−Hb,
76.38(5)°; K1−Ha−K1′, 103.62(5)°.
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the yttrium amide, KBn, KN(SiMe3)2, or KH as a catalyst
failed to give any of the desired hydrogenation product,
suggesting the synergistic effect between KH and yttrium
amide plays a crucial role for the catalytic hydrogenation
(Table 1, entries 4−7). Combinations of the yttrium amide
with LiBn′ and with NaBn also catalyzed the hydrogenation,
but with lower conversions (Table 1, entries 8 and 9). The
addition of THF or 18-crown-6 drastically decreased the
conversion (Table 1, entries 10 and 11), probably because
coordination of these compounds with the K+ cation destroyed
the hydride ate structure and prevented the synergistic effect.
The hydrogenation could actually be achieved, even at a much
lower catalyst loading (0.5 mol %), when the reaction time was
prolonged to 6 h (Table 1, entry 12).
We then explored the catalytic activity of the potassium

yttrium hydride ate complex for the hydrogenation of a variety
of alkenes, alkynes, and imines (see Table 2). Trimethylsily-
lethene, 1,5-hexadiene, and 1,9-decadiene smoothly gave the
corresponding alkanes (2b−2d) in high conversions. Interest-
ingly, the reaction of 1,5-hexadiene gave methylcyclopentane
(28% yield) as an intramolecular cyclization byproduct, in
addition to hexane. The hydrogenation reactions of alkenes
with more sterically bulky alkyl substituents were relatively
slow, requiring a longer reaction time to achieve complete
conversion, they nevertheless afforded the desired alkanes (2e
and 2f). Complete conversion of a disubstituted ethene (2,5-
dimethyl-1,5-hexadiene) to 2g required a reaction temperature
of 100 °C. Norbornene smoothly underwent the catalytic
hydrogenation under the standard conditions to afford 2h,
whereas the hydrogenation of cyclohexene required much
harsher conditions to afford 2i. The reaction of styrene
resulted in the formation of oligomers, but disubstituted
styrenes cleanly afforded catalytic hydrogenation products 2j,
2k, and 2l. 3-Hexyne was also a suitable substrate, undergoing
selective semihydrogenation to afford (Z)-3-hexene (2m) in
81% yield (see the Supporting Information). Finally, we found
that several imines also underwent hydrogenation to provide
the corresponding amines (2n−2q) under the increased H2
pressure conditions.

To gain insight into the mechanism of this catalytic
hydrogenation reaction, we performed the hydrogenation of
complex B with H2 and D2 under identical conditions at room
temperature (Scheme 3, eqs 5 and 6). We found that the
reaction of B with H2 was twice as fast as its reaction with D2.
A similar kinetic isotope effect (1.9) was also measured for the
B-catalyzed hydrogenation of 1,1-diphenylethylene (1j) with
H2 and D2 (Scheme 3, eqs 7 and 8). For the reaction between
C and D2, we observed the emergence of a signal for a
deuterated methyl group (see the Supporting Information).
However, the reaction of 1j with D2 gave 2j-d with a lower
deuterium content than expected (Scheme 3, eq 8). This result
suggests that an H−D exchange reaction between D2 and the
C−H of the methyl group occurred both in the hydrogenation
of complex B and in the catalytic hydrogenation of the alkene.

Table 1. Effects of Hydrogenation Reaction Parameters

entry variation from standard conditionsa conversionb (%)

1 none 99
2 complex A (10 mol %) as catalyst 99
3 KBn + Y[N(SiMe3)2]3 (10 mol %) as catalyst 99
4 Y[N(SiMe3)2]3 (10 mol %) as catalyst <5
5 KBn (10 mol %) as catalyst <5
6 KN(SiMe3)2 (10 mol %) as catalyst <5
7 KH (10 mol %) as catalyst <5
8 NaBn + Y[N(SiMe3)2]3 (10 mol %) as catalyst 70
9c LiBn′ + Y[N(SiMe3)2]3 (10 mol %) as catalyst 72
10 THF (0.5 mL) as additive 17
11 18-crown-6 (20 mol %) as additive 16
12d {KHY[N(SiMe3)2]3}2 (C, 0.5 mol %), 6 h 99

aStandard conditions: 1-octene 1a (0.3 mmol), C (5 mol %), H2 (6
bar), 80 °C, C6D6 (0.5 mL), 3 h. bDetermined by 1H NMR
spectroscopy. cLiBn′ = LiCH2C6H4NMe2-o.

d1-Octene (1a) (3.0
mmol).

Table 2. Catalytic Hydrogenation Reactions*

*Conditions: 1 (0.3 mmol), C (5 mol %), H2 (6 bar), 80 °C, C6D6
(0.5 mL). Conversions were determined by 1H NMR spectroscopy.
aMethylcyclopentane also formed (in 28% yield). b100 °C. cH2 (12
bar). dZ/E = 11:1 (determined by inverse gated decoupled
spectroscopy), along with 11% 2-hexene (Z/E = 2.5:1). eH2 (10 bar).

Scheme 3. Control Experiments
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To investigate product formation in more detail, we allowed 1j
to react with hydride ate complex C (Scheme 3, eq 9). After
heating at 80 °C for 3 h, the hydrogenated product 2j was
obtained in 84% yield, and C was completely transformed to
complex B. Notably, the hydrogenation reaction even occurred
in the absence of H2; that is, hydride ate complex C, in effect,
released the H2, which added across the double bond of the
alkene. Based on the above-described observations, we propose
the reaction mechanism shown in Scheme 4 for alkene 1j.

Coordination of the unsaturated bond of the alkene to dimeric
potassium yttrium hydride ate complex C results in
deaggregation of the dimeric complex and a hydride insertion
reaction to give an alkyl ate intermediate D. Subsequent
peripheral deprotonation of a methyl group by the alkyl anion
gives the hydrogenation product and four-membered ring
complex B, which then undergoes a formal H2 addition
reaction to regenerate hydride ate complex C, completing the
catalytic cycle.
In conclusion, we prepared a potassium yttrium benzyl ate

complex A that can undergo peripheral deprotonation of the
methyl group to afford four-membered cyclometalated
complex B. The subsequent hydrogenation of B with H2
provides dimeric potassium yttrium hydride ate complex C,
which features a formal (KH)2 structure protected by two
yttrium amides. For the synergistic effect between the
potassium hydride and the amide ligand, complexes B and C
exist in equilibrium and can be interconverted by reversible
formal addition or elimination of a molecule of H2. Using this
process, we accomplished the catalytic hydrogenation of
alkenes, alkyne, and imines. Considering the ready availability
and good activity of the catalyst, this reaction constitutes a
practical approach to H2 activation and catalytic hydrogenation
reactions. Exploration of applications of the potassium yttrium
ate complex and a search for additional ate complex systems
are underway in our laboratory.
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