instead occur preferentially upon a second molecule of N-PSP, particulary if the reagent is present in large excess. This results in the formation of the diselenide and phthalimide anion, which reacts further with 9 to afford the observed products 6 and 7. It is not clear whether the product-forming step involves an $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ process as both are expected to favor the major stereoisomer 6. A predominantly $\mathrm{S}_{\mathrm{N}} 2$ displacement would result in inversion of configuration at C-3 from β to α, while an $\mathrm{S}_{\mathrm{N}} 1$ step would produce an allyl cation which is known to undergo preferential nucleophilic attack from the α-face in the cholestane series. ${ }^{9}$

In contrast to the above results, sterol 3 was smoothly converted to selenides $4 a$ and $4 b$ with selenocyanates la and 1 lb in yields of 80% and 65%, respectively. Evidently the selenocyanates are less effective than N-PSP in competing with the alkoxyphosphonium ion 9 for available selenolate. Product 4a was transformed to the rearranged alcohol 5 in 47% yield with m-chloroperbenzoic acid; ${ }^{11} 4$ b provided a slightly lower yield. ${ }^{12}$ These experiments suggest that selenocyanates are a more prudent choice than N -PSP for the conversion of secondary alcohols to selenides.

Experimental Section

Melting points were determined on an A. H. Thomas hot-stage apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 467 instrument while NMR spectra were obtained on a Varian XL200 spectrometer at 200 MHz in CDCl_{3} solution with tetramethylsilane as the internal standard. A Varian MAT CH5 instrument was employed in recording mass spectra and optical rotations were measured on a Rudolph Autopol III polarimeter in CHCl_{3} solution. Elemental analyses were performed by Dr. W.S. Lin (University of Calgary). Preparative TLC was carried out on Analtech $20 \times 20 \mathrm{~cm}$ glass plates coated with 1 mm of silica gel GF. Sterol 3 was prepared by a variation of a literature method, ${ }^{7}$ via the reduction of the corresponding enone with diisobutylaluminum hydride. Selenocyanates 1a and 1b, ${ }^{14}$ as well as N-PSP, ${ }^{13}$ were obtained by previously reported procedures. Tri- n-butylphosphine and m-chloroperbenzoic acid were purchased from the Aldrich Chemical Co. and used without further purification.

Reaction of $3 \beta, 17 \beta$-Dihydroxy-4-androstene 17 -(tert-Butyldimethylsilyl Ether) (3) with N-PSP and Tri-n -butylphosphine. Sterol 3 ($203 \mathrm{mg}, 0.50 \mathrm{mmol}$) and N-PSP (302 mg , 1.00 mmol) were dissolved in 3 mL of dry, degassed THF at 0 ${ }^{\circ} \mathrm{C}$ under nitrogen. The phosphine ($0.25 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was introduced via syringe and the solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was then concentrated and filtered through a short column of silica gel with ethyl acetate as the solvent to remove polar byproducts (tri- n-butylphosphine oxide, phthalimide), and the remaining products were separated by preparative TLC in 15% ethyl acetate-hexane to afford three principal bands: (A) Diphenyl diselenide: $110 \mathrm{mg}(71 \%) ; R_{f} 0.72$; identified by comparison with an authentic sample (TLC, mp, NMR). (B) 17β-Hydroxy- 3α-phthalimido-4-androstene tert-butyldimethylsilyl ether (6): $137 \mathrm{mg}(51 \%) ; R_{f} 0.52 ; \mathrm{mp} 152-155{ }^{\circ} \mathrm{C}$ (from di-chloromethane-methanol); $[\alpha]_{D}+155^{\circ} ; \mathbb{R}$ (Nujol) $1760,1715,1608$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR 7.9-7.7 (m, 4 H), 5.19 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.78 $(\mathrm{m}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.73$

[^0](s, 3 H); mass spectrum, m / e (relative intensity) $533\left(\mathrm{M}^{+},<1\right)$, $476\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 25\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Si}: \mathrm{C}, 74.25$; H, 8.88; N, 2.62. Found: C, 74.65; H, 8.88; N, 2.44. (C) The 3β-epimer 7: $28 \mathrm{mg}(10 \%) ; R_{f} 0.46 ; \mathrm{mp} 226-227^{\circ} \mathrm{C}$ (from di-chloromethane-methanol); $[\alpha]_{\mathrm{D}}-25^{\circ}$; IR $\left(\mathrm{CHCl}_{3}\right) 1768,1707,1609$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR 7.9-7.7 ($\mathrm{m}, 4 \mathrm{H}$), 5.11 (d, $\left.J=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.84$ ($\mathrm{m}, 1 \mathrm{H}$), $3.56(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$) 1.21 (s, 3 H), 0.88 ($\mathrm{s}, 9 \mathrm{H}$), 0.74 ($\mathrm{s}, 3 \mathrm{H}$); mass spectrum, m / e (relative intensity) $533\left(\mathrm{M}^{+}, 2\right), 476$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 61\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Si}: \mathrm{C}, 74.25 ; \mathrm{H}, 8.88$; N, 2.62. Found: C, 74.22; H, 8.86; N, 2.61.

In a separate experiment the phosphine in 2 mL of THF was added over 1.5 h to the other reactants via a mechanically driven syringe. After workup as above, the yields of 6 and 7 were 168 mg (63%) and 30 mg (11%), respectively.
17β-Hydroxy-3 α-[(2-nitrophenyl) seleno $]-4$-androstene tert-Butyldimethylsilyl Ether (4a). Sterol 3 ($2.03 \mathrm{~g}, 5.00 \mathrm{mmol}$) and o-nitrophenyl selenocyanate ($1 \mathrm{a}, 1.25 \mathrm{~g}, 5.50 \mathrm{mmol}$) were dissolved in 40 mL of dry THF under nitrogen. Tri- n-butylphosphine ($1.5 \mathrm{~mL}, 6.0 \mathrm{mmol}$) was injected via syringe. After 1.5 h at room temperature, the mixture was concentrated and chromatographed over 80 g of silica gel. Elution with 30% benzene-hexane afforded $2.35 \mathrm{~g}(80 \%)$ of the title compound as a bright yellow solid: mp 129-130 (from ether-isopropyl alcohol); $[\alpha]_{\mathrm{D}}+194^{\circ}$; IR (Nujol) 1593, 1585, 1565, $1515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $8.3-7.25(\mathrm{~m}, 4 \mathrm{H}), 5.45(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{t}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum, m / e (relative intensity) $387\left(\mathrm{M}^{+}-0-\mathrm{NO}_{2} \mathrm{PhSe}, 28\right.$). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{SeSi}: \mathrm{C}, 63.24 ; \mathrm{H}, 8.05 ; \mathrm{N}, 2.38$. Found: C, 63.55; H, 8.31; N, 2.37.

17 β-Hydroxy- 3α-[(4-nitrophenyl)seleno]-4-androstene tert-Butyldimethylsilyl Ether (4b). The title compound was prepared in 65% yield from sterol 3, selenocyanate $1 b$, and tri-n-butylphosphine by the same procedure as 4 a , as a pale yellow solid: mp 143-145 ${ }^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}+108^{\circ}$; IR (Nujol) 1595, $1515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR 8.08 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57(\mathrm{~d}, J=9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.49(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum, m / e (relative intensity) $387\left(\mathrm{M}^{+}-p-\mathrm{NO}_{2} \mathrm{PhSe}, 28\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{SeSi}: \mathrm{C}, 63.24 ; \mathrm{H}, 8.05 ; \mathrm{N}, 2.38$. Found: C, 63.01; H, 8.17; N, 2.18.
$5 \alpha, 17 \beta$-Dihydroxy- 3 -androstene 17 -tert-Butyldimethylsilyl Ether (5). Selenide 4 a ($230 \mathrm{mg}, 0.39 \mathrm{mmol}$) was dissolved in 5 mL of THF at $0^{\circ} \mathrm{C}$. m -Chloroperbenzoic acid (0.2 g of ca. 85% purity, 1 mmol) was added and the yellow color rapidly faded. After 10 min the solution was diluted with ether, washed 3 times with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried over anhydrous MgSO_{4}, and purified by preparative TLC (15% ethyl acetate-hexane) to afford 75 mg (47%) of the title compound; $R_{f} 0.51, \mathrm{mp} 96-97{ }^{\circ} \mathrm{C}$ (from methanol); $[\alpha]_{D}-26^{\circ}$; IR (CHCl_{3}) $3600,3470 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 5.73 (dt, $J=10,3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=10,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=8 \mathrm{~Hz}$, 1 H), 0.91 (s, 3 H), 0.87 ($\mathrm{s}, 9 \mathrm{H}$), $0.70(\mathrm{~s}, 3 \mathrm{H}$); mass spectrum, m / e (relative intensity) $404\left(\mathrm{M}^{+},<1\right), 386\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 6\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 74.19 ; \mathrm{H}, 10.96$. Found: C, $73.85 ; \mathrm{H}$, 11.17.

Registry No. 1a, 51694-22-5; 1b, 19188-18-2; 2, 71098-88-9; 3, 57711-52-1; 4a, 91384-94-0; 4b, 91384-95-1; 5, 91384-96-2; 6, 91384-97-3; 7, 91384-98-4; n-Bu ${ }_{3} \mathrm{P}, 998-40-3$; PhSeSePh, 1666-13-3.

Two-Bond Cleavage in the Oxidation of Acyclic Tertiary 1,4-Diols with \mathbf{N}-Iodosuccinimide

T. R. Beebe,* R. L. Adkins, F. W. Ng, and J. A. Weems

Department of Chemistry, Berea College, Berea, Kentucky 40404

Received February 28, 1984
Recently, we found that 1,2 -diols ${ }^{1}$ and α-hydroxy carboxylic acids ${ }^{2}$ were easily cleaved with N -iodosuccinimide
(1) Beebe, T. R.; Hii, P.; Reinking, P. J. Org. Chem. 1981, 46, 1927.

Scheme I

(NIS). Here we describe the novel two-bond cleavage ${ }^{3}$ of two acyclic tertiary 1,4 -diols with NIS and irradiation. For example, when 2,5 -dimethyl-2,5-hexanediol (1) in benzene was treated with NIS (2) and light, acetone (3) was produced in $96-99 \%$ yields (assuming 2 mol of acetone for each mol of 1,4 -diol). Ethene (4) was obtained in $80-85 \%$ yields in separate reactions performed in diphenyl ether with irradiation using a vacuum system. Iodine and succinimide (5) were found in sufficient yields to support the reaction stoichiometry given by eq 1 .

Also, the reaction of 2,5-diphenyl-2,5-hexanediol (6) in benzene with NIS produced acetophenone (7) and ethene (4) as the only cleavage products, in yields of $86-100 \%$ and $55-65 \%$, respectively (eq 2). A postulated pathway for

(2) Beebe, T. R.; Adkins, R. L.; Belcher, A. I.; Choy, T.; Fuller, A. E.; Morgan, V. L.; Sencherey, B. B.; Russell, L. J.; Yates, S. W. J. Org. Chem. 1982, 47, 3006.
(3) Trahanovsky, W. S.; Himstredt, A. L. J. Am. Chem. Soc. 1974, 96, 7974.

Table I

run	NIS (mmol)	diol (mmol)	$\%$ yield ${ }^{a}$ (acetone)	time
	Oxidation of 2,5-Dimethyl-2,5-hexanediol with NIS			
1	1.204	0.595	99	1 h 25 min
2	1.240	0.574	99	1 h 10 min
3	0.804	2.045	85	1 h 30 min
4	1.147	0.561	99	1 h
5	0.307	0.092	96	1 h 20 min
run	NIS (mmol)	diol (mmol)	$\%$ yield ${ }^{a}$ (acetophenone)	time

Oxidation of 2,5-Diphenyl-2,5-hexanediol with NIS

	1.196	0.538	100	6 h
1	1.209	0.538	96	6 h
2	1.164	0.563	91	5 h
3	1.209	0.630	101	6 h
4	1.444	0.644	86	5 h
5	1.302	0.598	3	23 h

${ }^{a}$ Assuming 2 mol of ketone product for each mol of diol. ${ }^{6}$ This reaction was done in the dark with ambient temperatures.
the proposed two-bond cleavage of the ditertiary 1,4 -diol 1 is given in Scheme I. There is much evidence ${ }^{4,5}$ for the formation of alkyl hypoiodites from the reaction of alcohols and N -iodosuccinimide and the subsequent decomposition of the alkyl hypoiodites to produce alkoxy radicals. The two-bond cleavage occurs after the formation of the alkoxy radical 9. Production of the doubly bonded acetone and ethene molecules along with the resonance-stabilized radical 10 permits the easy cleavage of the two carboncarbon bonds in step III. A second molecule of acetone is formed when the iodohydrin 11 eliminates hydrogen iodide. The hydrogen iodide produced in step V rapidly reacts with NIS to give iodine and succinimide. A similar two-bond cleavage ${ }^{6}$ occurs when the cyclic peroxide 12 is irradiated or heated. The dialkoxy radical 13 is postulated as an intermediate.

Table I outlines several reactions involving the oxidation of 2,5-dimethyl-2,5-hexanediol and 2,5-diphenyl-2,5-hexanediol with NIS in benzene with irradiation. Reactions performed in the dark give only small percentages of carbonyl products indicating the radical nature of the reaction.

Experimental Section

Analyses were performed on Perkin-Elmer 810VPC and Varian Aerograph Model 700 VPC spectrometers. Liquid chemicals used in the reaction mixtures and standard VPC mixtures all had greater than 99.5% purity as determined on a gas chromatograph. The benzene solvent was spectrscopically pure and was used without further purification. VPC analyses were done on $6 \mathrm{ft} \times$ 0.25 in. copper columns of 10% SE-30, 7% SE- 30 and 3% Carbowax $20-\mathrm{M}$, and 10% Carbowax $20-\mathrm{M}$. The 2,5 -dimethyl-2,5hexanediol was used as purchased. The 2,5 -diphenyl- 2,5 -hexa-

[^1]nediol ${ }^{7}$ was synthesized from 2,5 -hexanedione by using phenylmagnesium bromide. The NIS was determined to have $98.0-99.5 \%$ active iodine and was used as purchased. Irradiation of reaction mixtures was effected with GE Projector Spot 150-W, $130-\mathrm{V}$ tungsten lamps.

Oxidation of 2,5-Dimethyl-2,5-hexanediol with NIS and Irradiation. A $5-\mathrm{mL}$ solution of $0.082 \mathrm{~g}(0.561 \mathrm{mmol})$ of $2,5-$ dimethyl-2,5-hexanediol in benzene was added to 0.258 g (1.147 mmol) of NIS contained in a $10-\mathrm{mL}$ flask. A condenser with a drying tube was attached to the flask. The mixture was stirred and irradiated. Reaction time and percentage yields of acetone (assuming 2 mol of acetone for each mol of diol) were as follows: $10 \mathrm{~min}(15 \%), 15 \mathrm{~min}(49 \%), 35 \mathrm{~min}(96 \%), 55 \mathrm{~min}(99 \%), 70$ $\min (99 \%)$. Elemental iodine determination gave 0.543 mmol (98%). Succinimide was recovered in 88% yield.

Oxidation of 2,5-Diphenyl-2,5-hexanediol with NIS and Irradiation. A $5-\mathrm{mL}$ solution of $0.152 \mathrm{~g}(0.538 \mathrm{mmol})$ of $2,5-$ diphenyl-2,5-hexanediol in benzene was added to 0.269 g (1.196 mmol) of NIS in a $10-\mathrm{mL}$ flask. A condenser with a drying tube was attached to the flask. The mixture was stirred and irradiated. Reaction times and percentage yields of acetophenone (assuming 2 mol of acetophenone for each mol of diol) were as follows: 1 h $15 \mathrm{~min}(39 \%), 2 \mathrm{~h}(64 \%), 3 \mathrm{~h}(83 \%), 4 \mathrm{~h}(92 \%), 6 \mathrm{~h}(100 \%)$, $7 \mathrm{~h}(99 \%)$. Succinimide was recovered in 99% yield (1.070 mmol) and elemental iodine was found at $94 \%(0.506 \mathrm{mmol})$. Crude acetophenone was recovered, weight $0.131 \mathrm{~g}(1.090 \mathrm{mmol}, 101 \%)$. Preparation of a 2,4 -dinitrophenylhydrazone derivative of the acetophenone gave $0.255 \mathrm{~g}(0.849 \mathrm{mmol}, 78 \%$) of product (mp $230-235^{\circ} \mathrm{C}$; lit. ${ }^{8} \mathrm{mp} 238-240^{\circ} \mathrm{C}$).

Oxidation of 2,5-Diphenyl-2,5-hexanediol with NIS in the Dark at Ambient Temperatures. A $5-\mathrm{mL}$ solution of 0.164 g (0.598 mmol) of 2,5-diphenyl-2,5-hexanediol in benzene was added to $0.293 \mathrm{~g}(1.302 \mathrm{mmol})$ of NIS contained in a $10-\mathrm{mL}$ flask. The flask was covered with aluminum foil in a dark fume hood. The mixture was stirred. After 23 h of reaction time acetophenone was found in 3% yield as determined by VPC.
Collection of Ethene in the Oxidation of 2,5-Dimethyl-2,5-hexanediol with NIS and Irradiation. The diol (2,5-di-methyl-2,5-hexanediol, $4.185 \mathrm{~g}, 28.619 \mathrm{mmol}$) and 30 mL of diphenyl ether were placed in a 50 mL , round-bottomed flask. NIS ($6.352 \mathrm{~g}, 28.232 \mathrm{mmol}$) was weighed in another flask. Both flasks were placed on a vacuum rack and the system was evacuated. The chemicals were mixed, stirred, and irradiated for 1 h 22 min . Analysis gave an 80% yield of ethene with a molecular weight of $29.0 \mathrm{~g} / \mathrm{mol}$. Mass spectrometer analysis of the gas collected indicated $82-83 \%$ ethene and $17-18 \%$ acetone.

Collection of Ethene in the Oxidation of 2,5-Diphenyl-2,5-hexanediol with NIS and Irradiation. The diol (2,5 -di-phenyl-2,5-hexanediol, $7.336 \mathrm{~g}, 32.61 \mathrm{mmol}$) and $75-\mathrm{mL}$ of diphenyl ether were placed in a $100-\mathrm{mL}$, round-bottomed flask. NIS (7.336 $\mathrm{g}, 32.61 \mathrm{mmol}$) was weighed in another flask. Both flasks were placed on a vacuum rack and the system was evacuated. The chemicals were mixed, stirred, and irradiated for 1 h 20 min . Analyses gave a 57% yield of ethene with a molecular weight of $29.2 \mathrm{~g} / \mathrm{mol}$. Mass spectrometer analysis of the ethene indicated a purity of $97-99 \%$.

Iodine Determination. The iodine produced in the oxidation of the 1,4 -diols with NIS was determined by adding reaction mixtures to 25 mL of a $1: 1$ mixture of acetic acid and water. Several drops of concentrated HCl were added, and the iodine was titrated with a standardized solution of thiosulfate. The iodine percentage yield was determined by assuming that 1 mol of iodine is produced from 2 mol of NIS.

Succinimide Determination. Succinimide was recovered from the completed reactions by pouring the reaction mixture into diethyl ether and extracting the ether solution with water. The combined water extracts were washed with fresh ether, and the water solution was evaporated.

Acknowledgment. We are grateful to the donors of the Petroleum Research Fund, administered by the American

[^2]Chemical Society, for financial support of this research. We also thank the Department of Chemistry of the University of Kentucky for mass spectrometry data.

Registry No. 1, 110-03-2; 6, 24434-16-0; 8, 91384-70-2; N iodosuccinimide, 516-12-1.

On the Stereospecifity of Intrinsic ${ }^{2} \mathbf{H} /{ }^{1} \mathrm{H}$ NMR Isotope Effects on ${ }^{13} \mathrm{C}$ Chemical Shifts in Cyclohexanes

R. Aydin, J. R. Wesener, and H. Günther*

Fachbereich 8, OC II, University of Siegen, D-5900 Siegen, Germany
R. L. Santillan, M.-E. Garibay, and P. Joseph-Nathan*

Departamento de Quimica del Centro de Investigaciōn y de Estudios Avanzados, Instituto Politécnico Nacional, Mêxico D. F., 07000 Mêxico

Received March 15, 1984

The structural dependence of intrinsic ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ NMR isotope effects on ${ }^{13} \mathrm{C}$ chemical shifts, ${ }^{n} \Delta\left({ }^{13} \mathrm{C}\right)$, where n is the number of intervening bonds, in organic compounds is of current interest ${ }^{1}$ because the determination of these parameters profits from the increasing number of highfield NMR instruments. Another reason is the use of ${ }^{n} \Delta\left({ }^{13} \mathrm{C}\right)$ values for assignment purposes in ${ }^{13} \mathrm{C}$ NMR spectra ${ }^{2}$ and in this context stereospecific isotope effects are of practical importance. For adamantane, we found ${ }^{n} \Delta_{\text {anti }}>{ }^{n} \Delta_{\text {syn }}$ for $n=3$ and $4 .^{3}$ More recently, Jurlina and Stothers ${ }^{4}$ have shown that in bicyclic systems ${ }^{3} \Delta$ has its maximum value for an eclipsed arrangement between the respective $\mathrm{C}-\mathrm{D}$ and $\mathrm{C}-{ }^{13} \mathrm{C}$ bonds. The authors concluded that these shifts arise from spacial proximity and supporting evidence for such a mechanism was seen in the results of Anet and Dekmezian, ${ }^{5}$ who had found large ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ isotope effects on ${ }^{1} \mathrm{H}$ chemical shifts in situations where van der Waals interactions are involved. However, ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ isotope effects on ${ }^{19} \mathrm{~F}$ chemical shifts violate this principle, displaying maxima for maximum distances, ${ }^{6}$ and further studies of the relationship between stereochemistry and NMR isotope effects are indicated.

Results and Discussion

In the present note we report data on the geometrical dependence of ${ }^{n} \Delta\left({ }^{13} \mathrm{C}\right)$ values in cyclohexane derivatives. From low-temperature measurements for cyclohexane- $d_{1}{ }^{7}$ (7), we were able to measure ${ }^{1} \Delta_{\mathrm{ax}}$ and ${ }^{1} \Delta_{\text {eq }}$ separately, but long-range isotope effects could not be resolved. Only the corresponding ${ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}$ data for cyclohexane $-d_{11}{ }^{8}(8)$ are available. Therefore, we decided to study derivatives substituted in the 4 -position by a tert-butyl group, known to stabilize the conformation with the alkyl group in the

[^3]
[^0]: (10) It is interesting to note that geraniol, a primary allylic alcohol affords the corresponding selenide in 82% yield under similar conditions. This suggests that steric factors are important in determining the course of the reaction.
 (11) The use of other oxidants such as hydrogen peroxide and ozone under various conditions failed to provide better yields of 5 .
 (12) The stereochemistry of $4 a, b$ is assumed to be 3α since the conversion of alcohols to selenides with $\mathrm{PhSeCN}-n-\mathrm{Bu}_{3} \mathrm{P}$ is known ${ }^{13}$ to proceed with inversion of configuration. This in turn results in the 5α-hydroxy stereoisomer 5 upon [2,3]-sigmatropic rearrangement.
 (13) Sevrin, M.; Krief, A. J. Chem. Soc., Chem. Commun. 1980, 656.
 (14) Bauer, H. Ber. 1913, 46, 92.
 (15) Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704.

[^1]: (4) Beebe, T. R.; Adkins, M.; Kwok, P.; Roehm, R. J. J. Org. Chem. 1972, 37, 4220. Beebe, T. R.; Lin, A. L.; Miller, R. D. Ibid. 1974, 39, 722.
 (5) Meystre, C.; Heusler, K.; Kalvoda, J.; Wieland, P.; Anner, G.; Wettstein, A. Experienta 1961, 17, 475. Heusler, K.; Kalvoda, J.; Meystre, C.; Anner, G.; Wettstein, A. Helv. Chim. Acta 1962, 45, 2162. Heusler, K.; Kalvoda, J. Angew Chem. 1964, 76, 518.
 (6) Adam, W.; Sanabia, J. J. Chem. Soc., Chem. Commun. 1972, 174.

[^2]: (7) Freeman, J. P. J. Org. Chem. 1957, 22, 1608.
 (8) Rappoport, Z. "Handbook of Tables for Organic Compound Identification", 3rd ed.; The Chemical Rubber Company: Cleveland, 1967.

[^3]: (1) (a) "Specialist Periodical Reports", NMR Spectroscopy, Vol. 12, The Royal Society of Chemistry: London, 1983; p 16, and earlier volumes in this series. (b) Hansen, P. E. Annu. Rep. NMR Spectrosc. 1983, 15, 106.
 (2) (a) Wehrli, F. W.; Wirthlin, T. "Interpretation of ${ }^{13} \mathrm{C}$ NMR Spectra"; Heyden, London 1976, 107 ff; (b) Pfeffer, P. E.; Valentine, K. M.; Parrish, F. W. J. Am. Chem. Soc. 1979, 101, 1265.
 (3) Aydin, R.; Günther, H. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1979, 34B, 528.
 (4) Jurlina, J. L.; Stothers, J. B. J. Am. Chem. Soc. 1982, 104, 4677.
 (5) Anet, F. A. L.; Dekmezian, A. H. J. Am. Chem. Soc. 1979, 101, 5449.
 (6) Lambert, J. B.; Greifenstein, L. G. J. Am. Chem. Soc. 1973, 95, 6150; 1974, 96, 5120.
 (7) Aydin, R.; Günther, H. Angew. Chem. 1981, 93, 1000; Angew. Chem., Int. Ed. Engl. 1981, 20, 985.
 (8) Chertkov, V. A.; Sergeyev, N. M. J. Am. Chem. Soc. 1977, 99, 6750.

