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Abstract 

A novel bipyridine-functionalized turn-on fluorescent chemosensor was successfully 

synthesized and fully characterized by 1H NMR, 13C NMR and MS, UV-Vis and 

fluorescence spectroscopies. The sensor specifically binds to Hg2+ over other 

competing ions with a significant fluorescence enhancement as well as a visual colour 

change under physiological conditions. The detection limit of Hg2+ was as low as 32 

nM, confirming very high sensitivity toward Hg2+. Moreover, the fluorescence 

intensity and colour change of the sensor-Hg2+ was quenched by I‒ or S2‒ and was 

proportional to their concentrations with a detection limit of 0.37 µM and 0.43 µM, 

respectively. The reaction of I‒ grabbing Hg2+ from the sensor-Hg2+ finished in 10 

seconds due to a stronger binding force, much faster than that of S2‒, which allowed 

fast detection of I‒ over S2‒ even in a competent environment. In addition, the sensor 

was successfully used for the highly sensitive detection of Hg2+ in living cells. 

Keywords: colorimetric, chemosensor, mercury, iodide, sulphide 
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1. Introduction 

The developments of multifunctional chemosensors for heavy and transition 

metal cations as well as various anions have attracted considerable attention due to 

their potential applications in biological and environmental systems [1-4]. As one of 

the most toxic metals mercury (Hg) can significantly destroy human central nervous 

system and endocrine system [5-7]. Even a very low level of Hg2+ can disturb a series 

of cellular processes and consequently trigger serious health disorders in the human 

body, such as Minamata, edema and anemia [8-11]. Moreover, mercury ion (Hg2+) 

from artificial and mineral processes such as gold mining, fossil fuel combustion, and 

chemical manufacturing can be released into the natural environment, accumulated in 

food chains, and finally entered into higher trophic biological systems [12]. The 

World Health Organization (WHO) has strictly stipulated that the level of Hg2+ is not 

more than 0.001 mg·L‒1 in drinking water [13]. Among various chemically and 

biologically important anions, I‒ is one of dispensable elements in human body and 

the heaviest element commonly needed by living organisms [14-16]. Iodide 

deficiency leads to mental retardation and thyroid gland dysfunction and increases the 

risk of breast and stomach cancer [17]. Release of excessive I‒ ions and iodine can 

damage environment and physical systems.[18]Also H2S from industrial processes 

such as sewage plants and petroleum refining results in serious environmental 

pollution. Moreover, endogenic sulfide ions from microbial reduction of sulfate and 

sulfur-containing amino acids can destroy mucous membranes and brain tissues, 

which are correlated with Alzheimer’s disease, Down’s syndrome, and diabetes 
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[19-24]. So it is urgent to develop novel analytical methods with high sensitivity and 

selectivity to detect I‒ and S2‒ ions as well as Hg2+ in either aqueous or non-aqueous 

media. 

Fluorescence methodology has been widely used as a great tool for detection of 

metal ions and anions due to its operational simplicity, high sensitivity and selectivity, 

and ease of observation over traditional methods such as inductively coupled plasma 

mass spectrometry, atomic absorption, and chemiluminescence [25-28]. Thus, 

numerous colorimetric and fluorescent chemosensors have been reported in the recent 

literatures for selective and sensitive sensing of Hg2+ [29-35], I‒ [36-38] and S2‒ 

[39-41] ions, respectively. As a matter of fact, few multifunctional probes sensing 

metal ions and anions have been reported [42, 43]. Without doubt, it is of challenge to 

rationally design simple, practical multifunctional chemosensors in aqueous media. 

Usually, the construction of fluorescent sensors depends on rational 

combinations of recognition sites and signalling subunits [44]. It is well known that 

each signalling subunit has its own distinct emission spectrum and each recognition 

group could detect a wide array of ions. Even the subtle changes of the linker such as 

incorporation of either a single- or double-bond could dramatically influence the 

detection efficiency of designed probes. For example, Duan’s group reported the 

probe P1 constructed through the condensation of rhodamine 6G hydrazide and 

2-pyridinecarboxaldehyde (Scheme 1a), which can detect Hg2+ in 1:1 (v/v) H2O/DMF 

solution with very high efficiency [45]. Later, Zhang’s group reported that the probe 

P2 (Scheme 1b), obtained through reducing probe P1, could rapidly sense Cu2+ within 
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one minute in buffered H2O/EtOH (8:2, v/v, Tris-HCl, pH 7.1) [46]. Probe P3 

containing thiophene tailed pyridine as the recognition group could detect Zr4+ in 

CH3OH-H2O (4:1, 1/1, HEPES, 10 µM, pH 7.4) (Scheme 1c) [47]. Furthermore, 

ligand-metal ensembles tend to selectively and sensitively recognize anions in 

aqueous solutions [48-52].  

Encouraged by these excellent studies and speculations, a multifunctional 

chemosensor RBP (Scheme 2) was constructed based on the rhodamine fluorescence 

platform combining a 2,2`-bipyridyl recognition site. As anticipated, the binding of 

RBP with Hg2+ triggered the opening of the spirolactam ring of the rhodamine moiety 

in neutral aqueous solutions with remarkably high sensitivity and selectivity. 

Interestingly, the ensemble RBP-Hg2+ could sense I‒ over S2‒. Moreover, RBP can be 

successfully applied to bioimaging and detecting Hg2+ in living cells. 

2. Experimental 

2.1 Material and apparatus 

All starting materials were used as received without further purification. All 

solvents were purified according to standard procedures unless stated otherwise. 

Doubly purified water used in all experiments was from Milli-Q systems. 1H and 13C 

NMR were performed on a Bruker DRX-400 spectrometer operating at 400 and 100 

MHz, respectively, using TMS as an internal standard. Mass spectrometric data were 

collected on a PE Sciex API 3000 mass spectrometer. Elemental analyses (C, H and 

N) were carried out using a Perkin-Elmer 240 elemental analyser. UV-Vis absorption 

and fluorescence spectra were measured on a Shimadzu UV-2100 spectrophotometer 
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and an F-7000 spectrofluorophotometer, respectively. 

2-amino-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one (3) was 

synthesized according to the literature [53]. 

2.2 Synthesis 

2.2.1 Synthesis of 6-methyl-2,2'-bipyridine (1) 

The title compound was synthesized using a revised procedure [54]. 

Methyllithium (1.3 M, 33.80 mmol) in THF (26 mL) was added dropwise to a 

solution of 2,2'-bipyridine (5.30 g, 34.00 mmol) in diethyl ether (100 mL) at 0oC 

under N2 atmosphere. The reaction mixture was stirred for 2 h, and then refluxed for 3 

h. Water (10 mL) was added when the mixture cooled to room temperature. The 

organic layer was separated and the aqueous layer was extracted three times with 

ether. The combined organic layer was dried by anhydrous Na2SO4. The solvent was 

removed by evaporation. The resulting orange oil was oxidized with saturated 

KMnO4/acetone (300 mL) and stirred for 1 h. The filtrate was placed in a flask and 

acetone was removed by evaporation. The resulting dark oil was distilled under 

vacuum and finally gave pure 6-methyl-2,2'-bipyridine as colourless oil (3.73 g, 

63.8%). 1H NMR (400 MHz, CDCl3) δ ppm : 8.65 (s, 1H), 8.38 (d, J = 8.0 Hz, 1H), 

8.15 (d, J = 7.9 Hz, 1H), 7.72-7.82 (m, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.21-7.30 (m, 

1H), 7.13 (d, J = 7.7 Hz, 1H), 2.61(s, 3H). 13C NMR (100 MHz, CDCl3) δ ppm: 157.7, 

156.3, 155.4, 149.0, 136.9, 136.7, 123.6, 123.2, 121.02, 117.9, 24.5. ESI-MS (m/z): 

calcd for C11H10N2 [M+H] + 171.22, found 171.61. 

2.2.2 Synthesis of 2,2'-bipyridine-6-carbaldehyde (2)  
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Compound 2 was obtained using a revised procedure [55]. A mixture of 

compound 1 (3.31g, 19.45 mmol) and selenium dioxide (1.27 g, 11.5 mmol) in 

dioxane (50 mL) containing H2O (0.21 mL) was refluxed for 3 h. After the foregoing 

mixture was cooled to room temperature, additional selenium dioxide (1.27 g, 11.5 

mmol) and H2O (0.2 mL) was added and then the mixture was refluxed for 27 h. The 

hot reaction mixture was filtered and the insoluble material was washed with warm 

dioxane and ethyl acetate (20 mL × 3). the crude product was purified by column 

chromatography to give the title compound (1.28 g, 34.1%) as colourless oil. 1H NMR 

(400 MHz, CDCl3) δ ppm: 10.18 (s, 1H), 8.74 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.65 (dd, 

J = 7.1, 1.95 Hz, 1H), 8.56 (d, J = 7.9 Hz, 1H), 7.97-8.02 (m, 2H), 7.90 (td, J = 7.9, 

1.8 Hz, 1H), 7.40 (ddd, J = 7.1, 4.8, 1.1 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ ppm: 

193.7, 156.6, 155.0, 152.3, 149.3, 138.0, 137.1, 125.3, 124.4, 121.5, 121.4. ESI-MS 

(m/z): calcd for C11H8N2O [M+H]+ 185.20, found 185.15. 

2.2.3 Synthesis of 2-(2,2'-bipyridin-6-ylmethyleneamino)-3',6'-bis (diethylamino) 

spiro[isoindoline-1,9'-xanthen]-3-one (RBP) 

A mixture of Rhodamine B hydrazide (0.547 g, 1.14 mmol) and 

2,2'-bipyridine-6-carbaldehyde (0.184 g, 1.00 mmol) in ethanol (20 mL) was refluxed 

for 6 h. The pure RBP as a yellow solid (0.36 g, 50.1%) was obtained by column 

chromatography. 1H NMR (400 MHz, CDCl3) δ ppm: 8.84 (s, 1H), 8.31-8.60 (m, 2H), 

7.70-8.03(m, 3H), 7.31-7.62 (m, 4H), 7.15 (d, J = 8.3 Hz, 1H), 6.55 (t, J = 8.4 Hz, 

1H), 6.46 (d, J = 7.7 Hz, 2H), 6.42 (d, J = 7.8 Hz, 2H), 6.23-6.32 (m, 2H), 3.33 (q, J = 

7.0 Hz, 8H), 1.15 (t, J = 6.9 Hz, 12H). 13C NMR (100 MHz, CDCl3) δ ppm: 166.2, 
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153.8, 149.0, 148.9, 148.8, 136.9, 136.8, 132.5, 128.1, 127.9, 120.8, 120.5, 108.0, 

105.9, 104.5, 97.9, 97.9, 66.2, 65.9, 44.3, 12.6. ESI-MS (m/z): calcd for C39H38N6O2 

[M+H] + 623.3134, found 623.3174. 

2.2.4 Synthesis of 2-(benzylideneamino)-3',6'-bis(diethylamino)spiro[isoindoline- 

1,9'-xanthen]-3-one (RBB) 

RBB was synthesized using excess benzaldehyde in an identical procedure to 

RBP as a yellow solid (0.71 g, 65.4%). 1H NMR (400 MHz, CDCl3) δ ppm: 8.65 (s, 

1H), 7.98 (s, 1H), 7.54-7.58 (m, 2H), 7.39-7.50 (m, 2H), 7.22-7.26 (m, 3H), 7.11 (s, 

1H), 6.52 (dd, J = 8.8, 2.3 Hz, 2H ), 6.43 (d, J = 2.3 Hz, 2H), 6.24 (dd, J = 8.8, 2.3 Hz, 

2H), 3.31 (q, J = 7.1 Hz, 8H), 1.15 (t, J = 7.1 Hz, 12H). 13C NMR (100 MHz, CDCl3) 

δ ppm : 164.3, 153.3, 151.6, 149.0, 148.4, 135.1, 134.4, 130.8, 129.4, 128.1, 127.3, 

124.4, 123.5, 108.5, 106.0, 97.8, 66.0, 44.1, 12.9. Anal. calc. for C35H36N2O2: C, 

77.18; H, 6.66; N, 10.29; found: C, 77.24; H, 6.62; N, 10.32. 

2.3 Cell culture and confocal imaging 

MCF-7 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco), and maintained in 

5% CO2 at 37oC. 12 hours before imaging, the cells were cultured on confocal culture 

dishes in 1 mL of DMEM without FBS the cells were treated and incubated with 10 

µM RBP in EtOH-H2O stock solution at 37oC under 5% CO2 for 30 min, and were 

provided with fresh medium that contained Hg2+ (50 µM). The cells were incubated 

for another 10 min under the above conditions. The images were taken after the cells 

were rinsed three times with phosphate buffered saline (PBS). 
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3. Results and discussion 

3.1. Synthesis 

The synthesis of compound RBP is shown in Scheme 2. Briefly, 2 was prepared 

by methyl group oxidation of 2,2'-bipyridine according to a previously reported 

procedure [54, 55]. Thereafter RBP was obtained in good yields by heating a mixture 

of 2 and 3 to reflux in methanol for 6 h. A reference compound 

2-(benzylideneamino)-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one 

(RBB), was synthesized in good yields using the same procedure as RBP from  

benzaldehyde. RBP was characterized by 1H NMR, 13C NMR, and MS (SI, Figs. 

S1-S3). Comparison of the fluorescence emission spectra of RBP and RBB further 

confirmed the important role of the binding ability of bipyridyl group. 

3.2. UV-vis and fluorescence studies 

First, the UV-Vis titration experiments of RBP with Hg2+ were performed in 1:4 

(v/v) EtOH/H2O solution at pH 7.0 (HEPES 20 mM). As shown in Fig. 1a, the 

solution of free RBP in EtOH/H2O (1:4, v/v) was colourless and exhibited no 

absorption, which is ascribed to the spirolactam form of RBP. Addition of Hg2+ 

immediately induced a new absorption band at 568 nm which is proportional to the 

Hg2+ concentration ranging from 0‒33 equiv. (Inset of Fig. 1a). The maximum 

absorption appeared upon addition of 33 equiv. of Hg2+. An obvious colour response 

of RBP from colourless to pink was stimulated by coordination of Hg2+ (Fig. 1b and 

1c). Such a characteristic colour change and absorption response indicates that RBP 
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can be used as a sensitive and colorimetric “naked-eye” chemosensor for Hg2+ in 

environmental and biological samples. 

To further examine the sensitivity, fluorescence properties of RBP (20 µM) with 

Hg2+ were investigated in EtOH/H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0) (Fig. 

2). As anticipated, a new fluorescence emission peak at 584 nm was observed upon 

incremental addition of Hg2+ and finally reached the maximum in the presence of 33 

equiv. of Hg2+
, an 18-fold increase over that with 1 equiv. of Hg2+, whereas free RBP 

displayed almost no fluorescence emission upon excitation at 520 nm. This 

remarkable enhancement was reasonably attributed to the existing conjugated 

xanthene tautomer of the rhodamine moiety of RBP. The fluorescence quantum yield 

was 0.386 with Rhodamine B as a reference. In the inset of Fig. 2a, there is a good 

linear relationship between the emission intensity at 584 nm and the concentration of 

Hg2+ ranging from 0 – 33 equiv. (R2 = 0.997), which was further confirmed by the 

linearity of UV-Vis data. The detection limit for Hg2+ was evaluated to be 32 nM 

using the equation LOD = K*Sb/S (where K = 3, Sb is the standard deviation of the 

blank solution and S is the slope of the calibration curve of fluorescence emission) 

(Fig. S4), which was much lower than the permissible limit of 0.001 mg/L (tolerable 

value for mercury in drinking water by the World Health Organization (WHO)) [13]. 

A Job’s plot indicated a 1:1 binding stoichiometry with a maximum emission change 

observed at a mole ratio of 1:1 for RBP and Hg2+ (Fig. S5). With the absorption data, 

the association constant Ka was evaluated to be 0.95 × 103 M‒1 using the 

Benesi-Hildebrand equation [56]. Thereby, our supposed fluorescence method to 
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detect Hg2+ provides excellent sensitivity comparable to most turn-on sensors reported 

in the literature (Table S1). 

3.3. pH stability studies 

To explore RBP applications in biological systems, the fluorescence response of 

RBP, with or without Hg2+ at 584 nm at different pH values, was investigated (Fig. S6) 

in EtOH/H2O (1:4, v/v). In the absence of Hg2+ the obvious fluorescence emission of 

the free RBP was detected only in a more acidic environment (pH < 5.0), indicating 

the susceptibility of the spirolactam ring. There was no any obvious change of 

complex RBP-Hg2+ when pH was not more than 10. That is because RBP-Hg2+ 

would decompose at strong basic conditions. This good fluorescence response of RBP 

to Hg2+ in a wide pH range of 5 ‒ 10 indicated that it can act as a sensitive 

chemosensor under physiological conditions. 

3.4. Metal Ion Competition and Anion Recognition Studies 

Competition experiments to study the selectivity of chemosensor RBP toward 

Hg2+ over other competitive metal cations were performed and the respective 

fluorescence intensities are displayed in Fig. 2b. When the titration was conducted in 

EtOH/H2O solution (1:4, v/v, HEPES 20 mM, pH 7.0), respective addition of other 

competitive metal ions such as Ag+, Al3+, Ba2+, Cd2+, Fe3+, K+, Li+, Mn2+, Na+, Ni2+, 

Pb2+, and Zn2+ did not cause any absorption and fluorescence response of RBP even at 

a concentration of 50 equiv. of metal ions under physiological conditions. Only Hg2+ 

induced a significant fluorescence enhancement; the colour change from colourless to 

red although Cu2+ and Cr3+ induced a weak fluorescence change. As shown in Fig. S7, 
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addition of Hg2+ into a solution of RBP with other competitive metal ions together 

induced significant fluorescence emission. In fact, RBP also exhibited satisfactory 

selectivity toward Hg2+ in a mixture of all competitive metal ions. These results 

indicate that RBP is highly selective chemosensor for Hg2+ by direct visual 

observation in aq. ethanol solution under physical conditions. 

To further verify the selectivity, the fluorescence emission of complex RBP-Hg2+ 

was investigated with some representative anions such as SO4
2‒, PO4

3‒, CH3COO‒, 

CO3
2‒, NO3

‒ F‒, Cl‒, Br‒, I‒ and S2‒ in EtOH-H2O (1:4, v/v) solution at pH 7 (HEPES 

20 mM). As shown in Fig. 3a, only I‒ and S2- could dramatically quench the 

fluorescence intensity of the solution of RBP (10 µM) and Hg2+ (30 equiv.), and 

induce a colour change from red to colourless. Other anions did not perturb any 

marked fluorescence emission of the RBP-Hg2+ complex in solution except a weak 

fluorescence-quenching from Br‒. The fluorescence intensity of RBP-Hg2+ decreased 

upon gradual addition of I‒ (Fig. 3b). That also indicated that Hg2+ prefers binding 

with I‒ than RBP. A good linear relationship between the fluorescence change and the 

I‒ concentration was obtained during the I‒ range from 0-2 equiv. compared to the 

Hg2+ concentration (inset of Fig. 3c). Based on LOD = K*Sb/S, the limit of detection 

(LOD) of RBP-Hg2+ to I‒ is calculated to be 0.75 µM. The titration of S2‒ to 

RBP-Hg2+ also was carried out and gave rise to good linearity of the fluorescence 

change and the S2‒ concentration with the detection limit of 0.43 µM (Fig. S8). 

Response time and reversibility are fundamental parameters for most 

coordination-based chemosensors, and the kinetic profiles of the reaction of RBP and 
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Hg2+, RBP-Hg2+ and I‒, and RBP-Hg2+ and S‒, respectively, at room temperature was 

examined. The fluorescence emission reached maximum within 70 minutes (Fig. S9). 

Surprisingly the binding of I‒ to Hg2+ from the RBP-Hg2+ complex was over in ca. 10 

seconds and the fluorescence emission was unchanged over the subsequent 120 s (Fig. 

3d). However, the reaction between S2‒ and Hg2+ from RBP-Hg2+ almost finished in 

almost 30 minutes, which is much longer than that of I‒ (Fig. S10). Therefore, 

RBP-Hg2+ still can rapidly sense I‒ in few seconds even in the presence of S2‒ 

interference. The recyclability experiments of RBP upon the addition of Hg2+ and 

subsequent I‒/S2‒ were carried out and confirmed the high stability of RBP in 

EtOH/H2O solution although a slightly attenuation was found, which fully support the 

reversible spirolactam ring-opening mechanism of rhodamine derivatives (Fig. S11). 

These results indicated that RBP can be a selective and sensitive Hg2+ chemosensor 

and its resultant complex can fast detect I‒. 

3.5. The proposed sensing mechanism 

Up to now turn-on fluorescent chemosensors are still preferable due to high 

selectivity, sensitivity and ease of observation compared to turn-off ones. The 

fluorescence enhancement of RBP toward Hg2+ is supposed to arise from the spiro 

ring-opening mechanism rather than an ion-catalysed hydrolysis reaction. So a 

plausible response mechanism of RBP to Hg2+ is shown in Scheme S1. Based on 

this, RBP was rationally designed containing the rhodamine B platform as the 

potential strong fluorophore, and a bipyridyl fragment as a specific binding receptor 

of Hg2+. The bipyridyl fragment binding with Hg2+ induced opening of the 
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spirolactam ring of rhodamine moiety, which caused the enhancement of fluorescence 

and colour changes. Addition of I‒ led to the regeneration of the no-fluorescence 

spirolactam ring of rhodamine moiety of RBP because of the strong binding ability 

between I‒ and Hg2+ which causes the formation of HgI2. Although compared with I‒, 

S2‒ binds Hg2+ much more slowly, the reaction still can finish about 30 minutes. A 

second addition of Hg2+ also recovered the fluorescence emission. Thus, the 

reversibility evidently ruled out the possibility of hydrolysis mentioned in the 

literature [57]. In order to confirm the importance of the bipyridyl fragment, RBB was 

synthesized and studied by fluorescence emission spectra in EtOH/H2O (1:4, v/v). As 

shown in Fig. S12, RBB did not generate any fluorescence emission even with excess 

addition of 100 equiv. of Hg2+, which confirmed the crucial role of the bipyridyl 

group of RBP. Job’s plot also ascertained a 1:1 stoichiometry of RBP and Hg2+.  

3.6. Cytotoxicity and application of RBP in living cells  

The excellent absorbance and fluorescence spectroscopic properties of RBP 

inspired us to carry out the Hg2+ bioimaging studies using MCF-7 cells with a 

confocal microscope Zeiss LSM710 (Fig. 4). MCF-7 cells were cultured with RBP 

(10 µM) in DMEM for 30 min at 37°C and washed with PBS buffer. No intracellular 

fluorescence was detected (Figs. 4a and 4b), indicating that the probe RBP 

maintained its spirolactam form in cells. When the MCF-7 cells pre-incubated with 

RBP and further treated with 50 µM Hg2+ for 10 min, an intense red fluorescence was 

observed (Figs. 4c and 4d). This phenomenon illustrated RBP was cell permeable, 

and could sense Hg2+ in living cells. We further performed a conventional MTT assay 
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to examine the cytotoxicity of RBP on MCF-7 cells, in which no cytotoxicity was 

observed, even at RBP concentrations up to 100 µM. These results indicated that 

probe RBP could viably sense Hg2+ both in vitro and in vivo cells. 

4. Conclusions 

In conclusion, we have developed a colorimetric and fluorescent chemosensor 

RBP for Hg2+ detection with high selectivity and sensitivity under physiological 

conditions. Moreover, the ensemble RBP-Hg2+ can be an excellent sensory system for 

fast detection I‒ over S2‒ with reversibility, indicating that the metal-based complex is 

a promising tool to selectively and sensitively detect anions. The confocal 

fluorescence image confirmed that RBP owes high cell permeability and low toxicity 

for sensing Hg2+ in vivo cells. We believe that the proposed strategy can be applied to 

construct other multifunctional fluorescent probes owing wide potential applications 

in environmental and biological analysis, or in vivo cells. 
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Scheme and Figure Captions 

Scheme 1. The structures of formerly reported probes. 

Scheme 2. Structures and the syntheses of the RBP and RBB. 

Fig. 1. (a) UV-Vis absorption spectra of probe RBP (10 µM) upon addition of Hg2+ (0 

- 36 equiv.) in EtOH/H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). Inset: 

Calibration plot of absorption and concentration of Hg2+. (b) Colour change of RBP 

upon interaction with different metal ions (Hg2+, Ag+, Al3+, Ba2+, Ca2+, Cd2+, Fe3+, K+, 

Li+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Zn2+). (c) Colour change of RBP upon addition of 

Hg2+ (0 - 36 equiv.). 

Fig. 2. (a) Fluorescence spectra of RBP (10 µM) upon addition of Hg2+ (0 - 36 equiv.) 

in EtOH-H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). Inset: Calibration plot of 

fluorescence intensity and concentration of RBP. (b) Fluorescence intensity at 584 nm 

of RBP (10 µM) upon addition of 15 equiv. of various metal ions (Red bars: RBP 

with other metals, green bars: RBP with other metals and Hg2+) in EtOH/H2O (1:4, 

v/v) solution (HEPES 20 mM, pH 7.0).1, blank; 2, Ag+; 3, Al3+; 4, Ba2+; 5, Ca2+; 6, 

Cd2+; 7, Cr3+; 8, Cu2+; 9, Fe3+; 10, K+; 11, Li+; 12, Mg2+; 13, Mn2+; 14, Na+; 15, 

Ni2+;16, Pb2+; 17, Zn2+. 

Fig. 3. (a) Fluorescence spectra of RBP-Hg2+ (10 µM) upon addition of various 

anions (60 equiv.) in EtOH-H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). (b) 

Fluorescence intensity of RBP-Hg2+ (10 µM) upon addition of I‒ (0-2 equiv. of Hg2+) 

in EtOH-H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). (c) Calibration plot of 

fluorescence intensity and concentration of I‒. (d) Fluorescence intensity of 
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RBP-Hg2+ (10 µM) upon adding 2 equiv. of I‒ in EtOH/H2O (1:4, v/v) solution 

(HEPES 20 mM, pH 7.0) as a function of the time. 

Fig. 4. Images of MCF-7 cells treated with RBP (20 µM) in the absence or 

presence of Hg2+ (100 µM). (a) Confocal fluorescence image of MCF-7 cells 

with RBP. (b) Bright field image of (a). (c) Confocal fluorescent image of 

MCF-7 cell with Hg2+ and RBP. (d) Bright field image of (c). Excitation 

wavelengths of RBP and RBP-Hg2+ are 543 nm. The scale bar of all figures is 20 

μm. 
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Scheme 1. The structures of formerly reported probes. 
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Scheme 2. Structures and the syntheses of the RBP and RBB. 
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Fig. 1. (a) UV-Vis absorption spectra of probe RBP (10 µM) upon addition of Hg2+ (0 

- 36 equiv.) in EtOH/H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). Inset: 

Calibration plot of absorption and concentration of Hg2+. (b) Colour change of RBP 

upon interaction with different metal ions (Hg2+, Ag+, Al3+, Ba2+, Ca2+, Cd2+, Fe3+, K+, 

Li+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Zn2+). (c) Colour change of RBP upon addition of 

Hg2+ (0 - 36 equiv.). 
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Fig. 2. (a) Fluorescence spectra of RBP (10 µM) upon addition of Hg2+ (0 - 36 equiv.) 

in EtOH-H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). Inset: Calibration plot of 

fluorescence intensity and concentration of RBP. (b) Fluorescence intensity at 584 nm 

of RBP (10 µM) upon addition of 15 equiv. of various metal ions (Red bars: RBP 

with other metals, green bars: RBP with other metals and Hg2+) in EtOH/H2O (1:4, 

v/v) solution (HEPES 20 mM, pH 7.0).1, blank; 2, Ag+; 3, Al3+; 4, Ba2+; 5, Ca2+; 6, 

Cd2+; 7, Cr3+; 8, Cu2+; 9, Fe3+; 10, K+; 11, Li+; 12, Mg2+; 13, Mn2+; 14, Na+; 15, 

Ni2+;16, Pb2+; 17, Zn2+. 
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Fig. 3. (a) Fluorescence spectra of RBP-Hg2+ (10 µM) upon addition of various 

anions (60 equiv.) in EtOH-H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). (b) 

Fluorescence intensity of RBP-Hg2+ (10 µM) upon addition of I‒ (0-2 equiv. of Hg2+) 

in EtOH-H2O (1:4, v/v) solution (HEPES 20 mM, pH 7.0). (c) Calibration plot of 

fluorescence intensity and concentration of I‒. (d) Fluorescence intensity of 

RBP-Hg2+ (10 µM) upon adding 2 equiv. of I‒ in EtOH/H2O (1:4, v/v) solution 

(HEPES 20 mM, pH 7.0) as a function of the time. 
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Fig. 4. Images of MCF-7 cells treated with RBP (20 µM) in the absence or 

presence of Hg2+ (100 µM). (a) Confocal fluorescence image of MCF-7 cells 

with RBP. (b) Bright field image of (a). (c) Confocal fluorescent image of 

MCF-7 cell with Hg2+ and RBP. (d) Bright field image of (c). Excitation 

wavelengths of RBP and RBP-Hg2+ are 543 nm. The scale bar of all figures is 20 

μm. 
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A colorimetric multifunctional sensor RBP was synthesized. 

The sensor exhibited a selective fluorescence enhancement response to Hg
2+

. 

The resultant sensor-Hg
2+

 complex rapidly detected I
‒
 over S

2‒
. 

 

The sensor was successfully used to selectively detect Hg
2+

 in living cells. 


