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Transition-metal-catalyzed couplings provide important tools
in modern organic synthesis.[1] The bases commonly employed
for these couplings are salts of alkaline or alkaline-earth
metals (e.g. K3PO4, NaOtBu, and Cs2CO3). They are thought
to facilitate the otherwise slow transmetalation (e.g. in Suzuki
couplings), reductive elimination (e.g. in Heck couplings), or
nucleophile deprotonation/coordination (e.g. in carbon–het-
eroatom couplings). At present, the choice of base remains
empirical. Problems are often encountered for the couplings
in less polar solvents where most inorganic bases are poorly
soluble. To solve these problems we propose the use of
organic ionic bases composed of organic cations and basic
anions.[2] These bases are well soluble in organic solvents.
More importantly, they exhibit novel useful reactivities.

Figure 1 shows the organic ionic bases synthesized in the
present study. Most of them are new compounds.[3] They were
prepared mainly through the reaction between an equimolar
quantity of tetraalkylammonium or -phosphonium hydroxide
and the appropriate acid. To demonstrate the advantage of
using organic ionic bases, we report novel room-temperature
(RT) Cu-catalyzed C–N couplings[4] promoted by these bases.

Our work starts with the coupling of aryl iodides with
amines. Recently Buchwald et al. reported the first protocol
for this coupling at room temperature;[5] other research
groups have described related work.[6] In the present study we
have examined different organic ionic bases. We found that
TMAP and TEAP do not mediate the coupling (Figure 2a) at
room temperature (25� 1 8C), although they are both well
soluble. Significant yields (ca. 40–80%) are obtained when
TBAP is used, indicating the importance of choosing a bulky
cation. When the cation is fixed as NnBu4

+, the yield varies
dramatically with different anions. These observations reveal

that solubility alone does not explain the utility of organic
ionic bases.

The best yield (95 %) is obtained with TBAA, which is a
carboxylate base. Remarkably, the use of a very simple and
cheap ligand (i.e. l-proline as opposed to 2-isobutyrylcyclo-
hexanone in the previous protocol[5]) is sufficient for the
reaction to proceed in high yields at room temperature. Also,
the current protocol is not sensitive to water (see Scheme 1,
footnote [a]). Application of the optimized protocol to
diverse aryl iodides (Scheme 1) was successful. Both elec-
tron-rich and electron-poor aryl iodides show high to
excellent yields when coupled with aliphatic amines.

Side products may arise from the reaction of the
nucleophile with the tetraalkylammonium cation. However,
GC–MS analysis of the reaction mixtures from the described
coupling reactions shows no such side products (see the
Supporting Information). To further minimize this potential
problem, we examined the organic ionic bases having
tetraalkylphosphonium as the cation; they are known to be
much more stable than tetraalkylammonium salts.[7] Remark-
ably, the phosphonium bases perform even much better than
the ammonium bases. For the coupling of PhI with BnNH2 at
room temperature, TBPE can drive the reaction to comple-
tion within approximately 30 min (Figure 2c) whereas TBAA
requires roughly 24 h. Additional evidence for the extremely
facile C–N coupling is the fact that TBPE can promote the
amination of aryl iodides even at 0 8C in 5 h (Scheme 2).

The unprecedented facility of the coupling implies that
even aryl bromides may be activated at room temperature.
Indeed TBPE promotes the coupling of PhBr with BnNH2 at
room temperature (70 % yield). Further tests of other
phosphonium bases show that TBPM gives the best result

Figure 1. Structures of the organic ionic bases in this study.
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(92 % yield). The ligand (N,N-dimethylglycine) for this
coupling is still a very simple one. As to the generality of
the reaction, both electron-rich and electron-poor aryl
bromides can be successfully converted (Scheme 3). Various
primary and secondary amines can be used. ortho Substitution
can also be tolerated to some extent. The coupling yields are

usually over 80 %. Thus we show the first example for the Cu-
catalyzed coupling of nonactivated aryl bromides at room
temperature.[8]

Other notable applications of the phosphonium bases
include: 1) room-temperature coupling of aryl iodides with
anilines[9] and N-heterocycles,[10] and 2) room-temperature
synthesis of anilines[11] from aryl iodides and even bromides
(Scheme 4). These transformations have not been achieved
before at room temperature. Control experiments show that
the couplings do not proceed at room temperature with
traditional inorganic bases.

To explain the significant favorable effect of organic ionic
bases, we recognize that the function of the base in the C�N

Figure 2. a) Coupling reaction used in this study. b) Effect of base
and ligand on the C�N coupling at room temperature. The ratio for
PhI/BnNH2/base= 1.0:1.5:2.0. c) Rates of the PhI–BnNH2 coupling
reaction; L = l-proline.

Scheme 1. Products and yields obtained from the coupling of aryl
iodides with amines at room temperature. Reaction conditions: ArI
(0.5 mmol), amine (0.75 mmol), TBAA (0.75 mmol), DMF (0.5 mL).
[a] 1 equiv water was added.

Scheme 2. Products and yields obtained from the coupling of aryl
iodides with amines at 0 8C. Reaction conditions: ArI (0.5 mmol),
amine (0.75 mmol), TBPE (1 mmol), N-methylpyrrolidone (0.5 mL).

Scheme 3. Products and yields obtained from the coupling of aryl
bromides with amines at toom temperature. Reaction conditions: ArBr
(0.5 mmol), amine (0.75 mmol), TBPM (0.75 mmol), DMSO (0.5 mL).
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couplings is to deprotonate the nucleophile.[12] This step has
been shown to be crucial in Cu-catalyzed couplings,[13,14] and
the rate of the coupling was calculated to be linearly
dependent on the concentration of the CuI complex with
the deprotonated nucleophile.[12] To optimize the catalysis one
must use bases that promote deprotonation the most effi-
ciently. As discussed above, good solubility is not enough to
make a good base.

We propose that the performance of the bases may be
related to their different ionization abilities. Thus the electric
conductivities for various bases were measured (Table 1).[13]

The inorganic bases exhibit very low conductivities in DMF
and almost zero conductivity in THF, indicating that they do

not ionize easily in organic solvents. Among these bases
Cs2CO3 shows the highest conductivity, which explains why
Cs2CO3 performs better than Na and K bases in Cu-catalyzed
couplings.[15] By comparison, the organic ionic bases exhibit
much higher conductivities, meaning that they ionize readily.
Interestingly, the conductivity varies greatly between organic
ionic bases. A more bulky organic cation leads to greater
conductivity. The anion also exerts an influence. The large
difference in conductivities explains why these organic ionic
bases have dissimilar performances. Thus, it is the ionization
ability that accounts for the advantage of using organic ionic
bases.

In summary, we have synthesized a series of novel organic
ionic bases that promote Cu-catalyzed C�N couplings of aryl
iodides and even bromides at room temperature which are
either difficult or cannot accomplished with traditional
alkaline bases. Good solubility alone does not explain the
performance of the organic ionic bases. Conductivity meas-
urements indicate that the usefulness of organic ionic bases
may be attributed to their good ionization ability in organic
solvents. The results indicate the important, yet overlooked
value of using organic ionic bases in transition-metal-cata-
lyzed transformations and/or other organic reactions.[16]

Experimental Section
Representative procedure (Scheme 3): A mixture of CuI (9.5 mg,
0.05 mmol, 10 mol %), N,N-dimethylglycine (10.3 mg, 0.1 mmol,
20 mol%), TBPM (465 mg, 0.75 mmol), and the (solid) aryl bromide
was added to a vacuum tube filled with argon. The tube was evacuated
and backfilled with argon (this procedure was repeated three times).
Under a counterflow of argon, the amine, aryl bromides (if liquid),
and DMSO (0.5 mL) were added by syringe. The tube was sealed and
the mixture was allowed to stir under argon at ambient temperature
(25� 1 8C) for 24 h. Upon completion of the reaction, the mixture was
diluted with ethyl acetate. The solvent was removed with the aid of a
rotary evaporator. The residue was purified by column chromatog-
raphy on silica gel, and the product was dried under high vacuum for
at least 0.5 h before it was weighed and characterized by NMR
spectroscopy.
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Scheme 4. Products and yields for other Cu-catalyzed C�N couplings
at room temperature. Reaction conditions: a) ArI (0.75 mmol), aniline
(0.5 mmol), ligand= 2,2’-biphenol, TBPM (0.75 mmol), dioxane
(0.3 mL). b) ArI (0.75 mmol), N-heterocycle (0.5 mmol), ligand = N,N-
dimethylglycine, TBPE (1.25 mmol), DMSO (0.5 mL). c) ArI
(0.5 mmol), ligand= N,N-dimethylglycine, TMPM (0.75 mmol), NH3/
dioxane (1.5 mL, 0.5m). [a] ArBr (0.5 mmol) was used instead of ArI.

Table 1: Conductivity of various bases (0.01m) in organic solution
(15 8C, 1 atm).[a]

Base In DMF
[ms cm�1]

In THF
[mscm�1]

Base In DMF
[mscm�1]

In THF
[ms cm�1]

Li2CO3 2.63 0 TBAP 1237 21.70
Na2CO3 2.75 0 TBAC 1229 19.00
K2CO3 14.00 0 TBAHC 716 8.76
Cs2CO3 24.00 0.021 TBAA 1028 2.11
Na3PO4 3.92 0 TBAE 721 1.28
K3CO3 13.10 0 TBPA 780 7.40
TMAP 185 1.01 TBPE 758 2.73
TEAP 740 2.88 TBPM 842 9.48

[a] The conductivities of pure DMF and THF are 0.72 and 0 mscm�1,
respectively.
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