Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Cu₂O/TiO₂ heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO₂ reduction to methanol

Junyi Wang^a, Guangbin Ji^{a,*}, Yousong Liu^a, M.A. Gondal^b, Xiaofeng Chang^a

^a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

^b Laser Research Group, Physics Department, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

ARTICLE INFO

Article history: Received 13 June 2013 Received in revised form 21 September 2013 Accepted 12 November 2013 Available online 20 November 2013

Keywords: Cu₂O/TiO₂ heterostructures Electrodeposition CO₂ photocatalytic reduction to methanol Degradation of organic pollutants (dyes)

ABSTRACT

Cu₂O/TiO₂ composite nanotube arrays demonstrating enhanced photocatalytic performance were synthesized using an electrodeposition method to impregnate the p-type Cu₂O into the n-type titanium dioxide nanotube arrays (TNTs). The morphological results confirmed that the TNTs are wrapped by the Cu₂O nanoparticles and the UV–Vis absorption spectra showed that the Cu₂O/TNTs display a better ability for visible light absorption compared to the pure TNTs. CO₂ photocatalytic reduction experiments carried out by using Cu₂O/TNT nanocomposites proved that Cu₂O/TNTs exhibit high photocatalytic activity in conversion of CO₂ to methanol, while pure TNT arrays were almost inactive. Furthermore, Cu₂O/TNTs also exhibited augmented activity in degradation of target organic pollutant like acid orange (AO) under visible light irradiation. The ultra enhanced photocatalytic activity noticed by using Cu₂O/TNTs in CO₂ reduction and degradation of organic pollutant could be attributed to the formation of Cu₂O/TiO₂ heterostructures with higher charge separation efficiency.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a lot of research has been carried out to study the solar-driven photocatalytic conversion of CO₂ into hydrocarbon fuels to achieve the primary objective of the cyclic utilization of CO₂ due to global warming and climate change [1,2]. So far, semiconductor photocatalysts like TiO₂, ZnO [3], CdS [4], ZnGa₂O₄ [5], Zn₂GeO₄ [6,7], InTaO₄ [8], and WO₃ [9,10] have been widely investigated. Among them, TiO₂ has attracted considerable attention for its nontoxicity, low cost and stability in the field of photoelectric conversion and photocatalysis. Compared with the traditional TiO₂ particles, TiO₂ nanotube arrays have been widely applied for their large surface areas, excellent controllability, superior electron transport properties and excellent performance [11,12]. However, the wide band gap of TiO₂ (3.2 eV) inhibits its use for solar energy applications as TiO₂ only absorbs light having wavelength shorter than 387 nm in the ultraviolet region [13,14]. The construction of interface structure, such as heterojunction [15], is considered as an effective tool to improve the utilization of sun light and separation efficiency of the photo-generated electrons and holes. So far, the photocatalytic performance of the interface structures, such as CdS/TiO₂ [16], Fe₂O₃/TiO₂ [17], MoS₂ (WS₂)/TiO₂ [18], and CdS (Bi₂S₃)/ TiO₂ [19], has been widely studied. Cu₂O exhibits great potential for applications in the field of the conversion of solar energy because of its advantages such as low price, visible light absorption and adjustable band-gap [20–24]. Coupled Cu₂O with TiO₂ to form Cu₂O/TiO₂ heterojunction may enhance the light absorption ability and photocatalytic activity in CO₂ reduction.

In this paper, we used TiO_2 nanotube arrays as the matrix to prepare $Cu_2O/TNTs$ using electrodeposition method. The photoelectric properties and the photocatalytic activity of the composite photocatalyst in CO_2 reduction into hydrocarbon like methanol and photodegradation of organic pollutant (acid orange dye) were investigated.

2. Experimental section

2.1. Materials' preparation and characterization

Well-ordered TNTs were prepared by the anodization of Ti foil, as reported earlier [25]. The Cu₂O/TNT composites were prepared using a simple electrodeposition method (the preparation process in detail has been presented in the supplementary material). The morphology of the prepared samples was studied with scanning electronic microscopy (SEM, HITACHI-S4800). The crystal structure of the samples was examined by means of X-ray diffraction analysis (XRD, Bruker D8 ADVANCE with Cu-K α radiation, $\lambda = 1.5418$ Å). UV–Vis absorption spectra of the Cu₂O/TNT composites were obtained using a UV–Vis spectrometer (Shimadzu UV-3600).

^{*} Corresponding author. Tel.: +86 25 52112902; fax: +86 25 52112900. *E-mail address:* gbji@nuaa.edu.cn (G. Ji).

^{1566-7367/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.catcom.2013.11.011

Fig. 1. XRD pattern of the prepared TNTs and $Cu_2O/TNTs$ (A: Anatase, R: Rutile, C: Cu_2O , T: Ti substrate).

2.2. Photocatalytic reduction of CO₂

500 watt collimated xenon mercury (Xe Hg) broadband lamp (Oriel, USA) was used as the light source of excitation in this study. Catalyst was loaded in 100 mL distilled water in the reaction cell which could sustain 50 psi pressure without leaking. High purity CO₂ gas (99.99%) was introduced to the reactor and the reactor pressure was maintained at 50 psi. After a predetermined irradiation time, the liquid samples were withdrawn from the reactor by using syringe and were subjected to GC analysis. (The photocatalytic reduction process in detail has been presented in the supplementary material).

3. Results and discussion

3.1. Characterization

The phase structure of the Cu_2O/TNT samples was confirmed by the XRD results, as depicted in Fig. 1. The diffraction peaks of TNTs at

Fig. 2. SEM images of the TNTs and Cu₂O/TNTs with different electrodeposition charges: (a, b) TNTs, (c, d) 0.5 C, (e, f) 1.0 C and (g, h) 1.5 C.

Fig. 3. UV–Vis DR spectra of the TNTs and Cu₂O/TNTs with different electrodeposition charges (a); Photocurrent density profiles of the TNTs and Cu₂O/TNTs at a bias potential of 0.0 V (vs. Ag/AgCl) under visible light (b).

25.3° and 48.0° can be assigned to (101) and (200) planes of TiO₂ having anatase phase (JCPDS Card No. 84-1286) and the diffraction peaks at 40.2° and 53.0° are indexed to the (101) and (102) planes of Ti substrate (JCPDS Card No. 44-1294), respectively. From the XRD curve of the Cu₂O/TNTs, it can be seen that the diffraction peaks at 27.4° could be assigned to (110) planes of TiO₂ of rutile phase (JCPDS Card No. 78-2485), suggesting that Cu₂O/TNT samples are consisted of anatase predominantly and a small amount of rutile. The diffraction peaks with 20 values of 36.4 and 42.3 can be indexed to (111) and (200) planes of Cu₂O (JCPDS Card No.05-0667) respectively. With the deposition charge increases from 0.5 C to 1.5 C, the intensities of the Cu₂O characteristic peaks were also increased, which is resulted from the larger amount of the nanocrystalline Cu₂O deposited onto the nanotubes.

In Fig. 2a and b, SEM images illustrate that the TNTs are compact and the average inner diameter is approximately 80 nm having the length = 800 nm. From the top view (Fig 2c, e and g), the Cu₂O nanoparticles can be clearly noticed which are formed on the surface of the TNT arrays and the average side length of these Cu₂O nanoparticles with a polyhedral shape is about 80–100 nm. From the cross-sectional image view (Fig 2d, f and h), it is evident that the entire TNTs including the top, inner and outer walls of the TNTs are wrapped by the Cu₂O nanoparticles. By increasing the deposition charge from 0.5 to 1.0 C, the nanotube walls become rougher and rougher and the amount of the particles embedded into the structure seems also to be increasing. When the electrodeposition charges reach to 1.5 C, a large amount of Cu₂O nanoparticles arranges so compactly that they almost cover all the nanotube pores.

3.2. UV-Vis absorption spectra and photoelectrochemical results

From Fig. 3a it can be noticed that the adsorption intensity of the Cu₂O/TNT samples is clearly stronger than bare TNTs through the entire UV and visible light region, which demonstrate that the light absorption performance has been improved greatly due to the deposition of the Cu₂O nanoparticles. It also can be noticed that with the electrodeposition charge increasing, the adsorption intensity of the Cu₂O/TNT samples is increasing. However, the absorption intensity decreases when the electrodeposition charge reached 1.5 C, which could be attributed to the covered TiO₂ nanotubes with too much Cu₂O nanoparticles, which lead to the enhancement of the light reflection and the reduction of the light penetration into the TiO₂ nanotubes.

From the photoelectrochemical results (see Fig. 3b), one can see that there is no significant current in the dark, however, in the visible light illumination, the photocurrents of all the Cu₂O/TNT samples increase significantly while the bare TNTs showed negligible photoresponse. One can draw the conclusion that the photocurrent of Cu₂O/TNTs is greatly enhanced as compared with the TNTs, which may be ascribed to the photo-generated carrier separation efficiency of the Cu₂O/TNTs by taking the advantage of the formation of heterostructure. Therefore, it can be clearly inferred that the heterostructure construction is an effective way to improve the photoelectric performance.

3.3. Photocatalytic reduction of CO₂

In order to evaluate the photocatalytic activity of converting CO_2 into hydrocarbon fuels by TNTs and $Cu_2O/TNTs$, the conversion process was investigated by using high power pulsed laser as the light source. It is worth mentioning that laser excitation was a quite selective process for the end product like CH_3OH which is considered to be a future fuel in the CO_2 photocatalytic reduction. We selected the 1.0 C $Cu_2O/TNTs$, which exhibited the best photocatalytic activity in the CO_2 photocatalytic reduction process. Comparative tests demonstrated that very little product was found by using TNTs as photocatalysts, which is probably due to the low conductive band edge potential of TiO₂.

3.3.1. Analysis and quantification of methanol product

Gas chromatography (GC) peak positions using standard methanol and the calibration curve of methanol concentration vs GC peak area are depicted in Fig. S-1. As shown in Fig. 4a, after every 2 h irradiation for the Cu₂O/TNT sample, the GC peaks of methanol from CO₂ photoreduction are obtained. All the GC peaks appear at exactly 2.46 min retention time and no other GC peaks were detected, suggesting that the methanol is the only obtained product through the photocatalytic reduction of CO₂. Fig. 4a also depicts that as the irradiation time increase to 6 h, the GC methanol peak areas continuously grow to reach a maximum, which also indicates that the Cu₂O/TNT samples exhibit better photocatalytic activity than that of the TNTs. Fig. 4b depicts the concentration and conversion efficiency trend of CO₂ photoreduction into methanol as a function of irradiation time. It demonstrates that the concentration of methanol increases with the irradiation time and reaches to its maximum (55.15 μ M/100 mL) at 6 h.

3.3.2. Conversion and photonic efficiency of CO_2

The efficiency for CO₂ conversion into methanol using Cu₂O/TNTs was also calculated. In a typical experiment, an amount of CO₂ dissolved in 1 L distilled water at atmospheric pressure is 34 mmol, as calculated by Henry's law. The CO₂ pressure in our experiments was 50 psi (3.4 atm), so the amount of CO₂ dissolved in 100 mL water would be 11.56 mmol. The CO₂ conversion efficiency can be estimated by the ratio of the methanol concentration to CO₂ concentration. As depicted in Fig. 4b, the maximum CO₂ conversion efficiency is about 0.48% after 6 h irradiation.

Fig. 4. GC peaks of methanol taken after every 2 h interval irradiation with a laser pulse energy of 40 mJ/pulse at 355 nm radiation and catalyst in 100 mL distilled water, with 50 psi CO_2 pressure (a); Concentration and conversion efficiency of produced CH_3OH (b).

Moreover, the photonic efficiency of CO₂ conversion into methanol using Cu₂O/TNTs was also investigated. The number of methanol molecules can be calculated from the product molar concentration and Avogadro number. The photon number can be calculated to be 4.286 × 10¹⁹ photons/min. The maximum rate of methanol production is 1.2366 × 10¹⁷ molecules/min at the irradiation time interval from 4 to 6 h. As a single methanol molecule needs 6 photogenerated electrons, the maximum photonic efficiency of CO₂ photoreduction can be computed 6 × 1.2366 × 10¹⁷ / 4.286 × 10¹⁹ to be about 1.731%. To the best of our knowledge, the high photonic efficiency of Cu₂O/TNTs may be due to the construction of Cu₂O/TNT heterojunction.

3.4. Photocatalytic activity for the degradation of AO

In order to further prove the construction of Cu₂O/TiO₂ heterojunction, the photocatalytic activity of the samples was evaluated by the degradation of AO. The Cu₂O/TNT samples exhibit enhanced catalytic activity that 90% of the AO was photocatalytically degraded using the 1.0 C Cu₂O/TNTs and only 20% of the AO was decolorized by the bare TNTs after 2 h of visible light irradiation. The photocatalytic results of using Cu₂O/TNT samples with different electrodeposition charges and the repeated photocatalytic degradation with 1.0 C Cu₂O/TNTs are depicted in Fig. S-2 to S-6.

3.5. Possible mechanism for the improved photocatalytic property of $Cu_2O/TNTs$

For the Cu_2O/TiO_2 composite system under visible light irradiation, only the electrons in Cu_2O are excited to the conduction band. In the

Fig. 5. A schematic of the charge separation in Cu₂O/TiO₂ heterojunction structure catalysts under visible light irradiation (a); ultraviolet–visible light irradiation (b).

excitation process, as the Cu₂O potentials of both conduction band and valence band are more negative than that of TiO₂, the photogenerated electrons in the conduction band of Cu₂O particles transfer to the TiO₂, leading to the spatial separation of the photo-generated holes and electrons. Under the irradiation of ultraviolet–visible light, the electrons both in Cu₂O and TiO₂ are excited to the conduction band. Photo-generated electrons in conduction band of Cu₂O particles quickly transfer to TiO₂ particles, whereas photo-generated holes in valence band of TiO₂ particles migrate to the surface of Cu₂O particles. The separation of electrons and holes reduces the charge recombination rate and thus promotes eventually the photocatalytic activity. The schematic charge separation in the Cu₂O/TiO₂ heterojunction structure is depicted in Fig. 5.

4. Conclusion

In summary, Cu₂O/TNTs have been prepared successfully through the electrodeposition method. The Cu₂O/TNT composites exhibit much higher photocatalytic activity than bare TNTs for the CO₂ conversion into methanol and degradation of AO under light irradiation, which may be due to the formation of Cu₂O/TiO₂ heterostructure and higher charge separation efficiency. Furthermore, such nanocomposite material may bring a new insight into the design and applications of highly efficient photocatalysts.

Acknowledgments

The work is financially supported by the National Natural Science Foundation of China (No. 51172109) and Jiangsu province Natural Science Foundation (No. BK2010497). Prof. Gondal is thankful to KFUPM for supporting this work under project #RG1011-1/2.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.catcom.2013.11.011.

References

- G.S. Shao, F.Y. Wang, T.Z. Ren, Y.P. Liu, Z.Y. Yuan, Appl. Catal. B 92 (2009) 61–67.
 G.S. Shao, L. Liu, T.Y. Ma, F.Y. Wang, T.Z. Ren, Z.Y. Yuan, Chem. Eng. J. 160 (2010) 370–377.
- [3] F.C. Meunier, Angew. Chem. Int. Ed. 50 (2011) 4053-4054.
- [4] Y.S. Chaudhary, T.W. Woolerton, C.S. Allen, J.H. Warner, E. Pierce, S.W. Ragsdale, F.A. Armstrong, Chem. Commun. 48 (2012) 58-60.
- [5] S.C. Yan, S.X. Ouyang, J. Gao, M. Yang, J.Y. Feng, X.X. Fan, LJ. Wan, Z.S. Li, J.H. Ye, Y. Zhou, Angew. Chem. Int. Ed. 49 (2010) 6400–6404.
- [6] Q. Liu, Y. Zhou, J.H. Kou, X.Y. Chen, Z.P. Tian, J. Gao, S.C. Yan, J. Am. Chem. Soc. 132 (2010) 14385–14387
- [7] N. Zhang, S.X. Ouyang, T. Kako, J.H. Ye, Chem. Commun. 48 (2012) 1269–1271.
 [8] H.C. Chen, H.C. Chou, J.C.S. Wu, H.Y. Lin, J. Mater. Res. 23 (2008) 1364–1370.
- [9] P. Maruthamuthu, M. Ashokkomar, K. Gurunathan, E. Subramanian, M.V.C. Shastri, Int. J. Hydrogen Energy 14 (1989) 525-528.

- [10] P. Maruthamuthu, M. Ashokkomar, Int. J. Hydrogen Energy 14 (1989) 275–277.
- [11] I. Paramasivalm, J.M. Macak, P. Schmuki, Electrochem, Commun. 10 (2008) 71–75.
- [12] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3 (2007) 300–304.
- [13] K.H. Yoo, K.S. Kang, Y. Chen, K.J. Han, J. Kim, Nanotechnology 19 (2008) 505202. [14] H.J. Zhang, G.H. Chen, D.W. Bahneman, J. Mater. Chem. 19 (2009) 5089-5121.
- [15] Z.Y. Zhang, C.L. Shao, X.H. Li, C.H. Wang, M.Y. Zhang, M.Y. Zhang, Y.C. Liu, ACS Appl. Mater. Interfaces 2 (2010) 2915-2923.
- [16] S. Banerjee, S.K. Mohapatra, P.P. Da, M. Misra, Chem. Mater. 20 (2008) 6784–6791.
- [17] A.I. Kontos, V. Likodimos, T. Stergiopoulos, D.S. Tsoukleris, P. Falaras, Chem. Mater. 21 (2009) 662-672.
- [18] W. Ho, J.C. Yu, J. Lin, J. Yu, P. Li, Langmuir 20 (2004) 5865–5869.
- X. Li, H. Liu, D. Luo, J. Li, Y. Huang, H. Li, Y. Fang, Y. Xu, L. Zhu, Chem. Eng. J. 180 [19] (2012) 151-158.
- [20] C.H. Lu, L.M. Qi, J.H. Yang, Adv. Mater. 17 (2005) 2562–2567.
- [21] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, Sol. Energy Mater. Sol. Cells 77 (2003) 229-237
- [22] H.M. Yang, J. Ouyang, A.D. Tang, Mater. Res. Bull. 41 (2006) 1310–1318.
- [23] J.L. Li, L. Liu, Y. Yu, Electrochem. Commun. 6 (2004) 940–943.
- [24] H.L. Li, Y.G. Lei, Y. Huang, Y.P. Fang, Y.H. Xu, L. Zhu, X. Li, J. Nat. Gas Chem. 20 (2011) 145-150.
- [25] J.H. Yun, Y.H. Ng, C. Ye, A.J. Mozer, G.G. Wallace, ACS Appl. Mater. Interfaces 3 (2011) 1585-1593.