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ABSTRACT

Cephalosporolide B (Ces-B) was efficiently synthesized and exploited for the first time as a versatile biomimetic synthetic precursor for the
chemical syntheses of not only cephalosporolides C, G, and (4-OMe-) G via a challenging diastereoselective oxa-Michael addition but also the
structurally unprecedented cephalosporolides E and F via a novel biomimetic ring-contraction rearrangement. These findings provide the first
direct chemical evidence that Ces-B may be the true biosynthetic precursor of cephalosporolides.

Biomimetic synthesis inspired by a biosynthesis (or
biosynthetic hypothesis) of natural products has been well
recognized as a highly efficient synthetic tactic for chemical
synthesis of complex molecules (e.g., natural products).1

It provides not only chemical evidence for its biogenesis
origin but also a newvenue for synthesis of other structure-
related naturally occurring products. However, it is still a
formidable synthetic task to mimic an enzyme-mediated
transformation that involves a cascade reaction process or
rearrangement of structural skeletons. Another challenge
for biomimetic synthesis is to imitate the strategy used in
nature for construction of natural product collections from
a common intermediate or interconversions of natural
products within a family.2 This natural synthetic strategy

received less attention from synthetic communities due to

the structural diversity and scarcity of the parent natural

products. In this context,weherein report a strategy that led

to asymmetric biomimetic total syntheses of five natural

products from a parent natural product within the family,

which successfully mimicked two biosynthesis-inspired

processes: (i) a novel ring-contraction rearrangement of
10-membered lactones (cephalosporolides B, C, and G) to

5,5-spiroketal-cis-fused-γ-lactone (cephalosporolides E and

F) and (ii) a diastereoselective intermolecular oxa-Michael

addition (Scheme 1).
Cephalosporolides B�G (Figure 1) were isolated by

Hanson3 and co-workers from the industrial fermenta-
tion of the fungus Cephalosporium aphidicola, ACC 3490.

(1) For selected reviews on biomimetic synthesis of natural products,
see: (a) Poupon, E.; Nay, B. Biomimetic Organic Synthesis; Wiley-VCH:
Weinheim, 2011. (b) Bulger, P. G.; Bagal, S.K.;Marquez, R.Nat. Prod.Rep.
2008, 25, 254. (c) de la Torre,M.C.; Sierra,M.A.Angew.Chem., Int. Ed.
2004, 43, 160.

(2) For selected examples, see: (a) Flyer, A. N.; Si, C.; Myers, A. G.
Nat. Chem. 2010, 2, 886. (b) Jones, S. B.; Simmons, B.; Mastracchio, A.;
MacMillan, D. W. C. Nature 2011, 475, 183. (c) Wang, J.; Chen, S.-G.;
Sun, B.-F.; Lin, G.-Q.; Shang, Y.-J. Chem.;Eur. J. 2013, 19, 2539. (d)
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The molecular structures of cephalosporolides were eluci-
dated by extensive NMR studies, and the relative config-
uration of Ces-C (2) and Ces-E (7) was unambiguously
determined by single-crystal X-ray diffraction. Interest-
ingly, some of these cephalosporolides were also isolated
recently from other natural sources such as Cordyceps
militaris BCC 2816,4 Beauveria bassiana,5 and/or wood
decay fungus Armillaria tabescens (strain JNB-OZ344).6

Structurally, these cephalosporolides (1�6) are 10-membered
lactones (namely decanolides) with a methyl group at C9,
resembling to other bioactive decanolides.7 However, the
structural skeleton of cephalosporolides E andF (Ces-E, 7,
and Ces-F, 8) characterized by the presence of 5,5-spiro-
ketal-cis-fused-γ-lactone was unprecedented at the time of
their isolation but found in other recently isolated natural
products such as cephalosporolides H and I, penisporo-
lides, and ascospiroketals.8

Although the biological activity profiles of cephalospor-
olides have not been fully demonstrated, they have re-
ceived considerable synthetic attention9,10 partly because
of the novel structural skeleton of Ces-E and Ces-F and/or

the synthetically challenging 10-membered lactone. How-
ever, it has not been reported that a unified synthetic stra-
tegy would lead to total syntheses of both 10-membered
cephalosporolides and the unique 5,5-spiroketal-cis-fused-
γ-lactones Ces-E and Ces-F. The combination of the wide
occurrence in nature and potential biological activity
coupled with the structural novelty and complexity of
Ces-E and Ces-F prompted us to develop a biomimetic
divergent synthetic strategy for the cephalosporolide
family, especially the potential transformations of the 10-
membered lactones to 5,5-spiroketal-cis-fused-γ-lactones.
Our synthetic strategy (Scheme 1)was primarily inspired

by Hanson’s biogenetic hypothesis3 of Ces-E and Ces-F,
which might arise from dehydrative ring contraction of
Ces-C via hydrolysis, lactonization, and acetalization.11

However, their attempts to the chemical conversion ofCes-
C into Ces-E and Ces-F in the laboratory were unsuccess-
ful. Intrigued by the employment of Ces-B for hypothetic
biosynthesis of tenuipyrone12 and pyridomacrolidin,13 we
envisioned that Ces-B could also be the biosynthetic pre-
cursor of cephalosporolides via a diastereoselective inter-
molecular oxa-Michael addition14 and/or Hanson’s ring-
contraction rearrangement (Ces-E and Ces-F, Scheme 1).
In addition, Ces-C and Ces-G, if available from Ces-B,
could be explored to verify Hanson’s biosynthetic hypoth-
esis under the conditions optimized for ring contraction
rearrangement of Ces-B.

Scheme 1. Synthetic Plans and Hanson’s Biosynthetic
Hypothesis of Cephalosporolides E and F

Figure 1. Representative cephalosporolides.
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To achieve a practical total synthesis of the key Ces-B
with sufficient quantity for subsequent biomimetic synthetic
studies, we chose oxidative ring expansion of β-hydro-
xyethers developed by Ferraz15 as the key step to construct
the 10-membered lactone (Scheme 2). The enantiomerically
pure rhododendrol (11)16was chemoselectively protected as
tert-butyldimethylsilyl ether 12. Phenol dearomatization17

of 12 with PhI(OAc)2, desilylation, and subsequent TsOH-
promoted oxa-Michael cyclization provided bicyclic
ether 13 as a single diastereomer.18 Luche reduction of 13,
chemoselective silylation of the secondary alcohol, and
hydroxyl-directed epoxidation with m-CPBA provided ep-
oxide 14, which upon treatment of PCC underwent oxida-
tive ring expansion to give the 10-membered lactone 15.9b

Rh-catalyzed deoxygenation19 of epoxide 15 with dimethyl
diazomalonate unmasked the cis-alkene to furnish the
(þ)-Ces-B (1)20 after desilylation with HF-pyridine com-
plex. Noteworthy was the employment of epoxide as an
unusual protecting group of cis-alkene to avoid oxidative
rearrangement of tertiary alcohol in the PCC oxidation. All
spectroscopic data of our synthetic Ces-B were in good
agreement with those reported in the literature.3a,9c

With Ces-B (1, ∼200 mg) in hand, we set out to exploit
it as a biomimetic synthetic precursor for Ces-C, Ces-G,
and 4-OMe-Ces-G via diastereoselective intermolecular
oxa-Michael addition (Scheme 3). Although it is well
recognized that intermolecular oxa-Michael addition has
suffered frommany drawbacks such as low reactivity, low

stereoselectivity, and reversibility issues,14 we were de-
lighted to know that She9c and Xie documented a success-
ful oxa-Michael addition of MeOH to 16, providing
(þ)-4-OMe-Ces-G (5). Analogously, we found that cam-
phorsulfonic acid (CSA) or Amberlyst-15 (A-15) effec-
tively promoted the syn-Michael addition of MeOH to
Ces-B, affording (þ)-4-OMe-Ces-G (5) in 72% yield as a
single diastereomer. Encouraged by this result, we em-
ployed benzyl alcohol for the similar syn-oxa-Michael
addition to Ces-B. Not surprisingly, after Pd-catalyzed
hydrogenative debenzylation of 4-OBn-Ces-G (17),
(þ)-Ces-G (4)9b could be obtained in 57.3% yield over
two steps.20 Note: although enzyme-catalyzed Michael
addition of water to conjugated carbonyl compounds is
well-known,21 the corresponding nonenzymatic process
remains very limited.22 These exciting findings drove us
to explore the possibility of an anti-oxa-Michael addition
of benzyl alcohol to Ces-B, which after debenzylation
would be expected to give Ces-C (2), a biosynthetic
precursor of Ces-E and Ces-F in Hanson’s hypothesis.
Unfortunately, in contrast to She’s observation,9c we were
not able to achieve such anti-oxa-Michael addition under
various basic conditions, which only led to decomposition of
Ces-B. Inspired by Evans’ example of cascade acetalization/
oxa-Michael cyclization,23 we found that the similar cas-
cade reaction of aromatic aldehyde and Ces-B could
proceed smoothly to provide a diastereomeric mixture
of bicyclic acetal 19 in good yield. Removal of the aryl
acetal by CAN oxidation in a buffered solution produced
the expected (þ)-Ces-C (2) in excellent yield as a single

Scheme 2. Total Synthesis of Cephalosporolide B (1)a

aAbbreviations: TBSCl, chloro-tert-butyldimethylsilane; TBAF, tet-
rabutylammonium floride; DEAD, diethyl azodicarboxylate;m-CPBA,
meta-chloroperoxybenzoic acid; PCC, pyridinium chlorochromate.

Scheme 3. Total Syntheses of Cephalosporolides C and G and
4-OMe-cephalosporolide G from Cephalosporolide B
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diastereomer. This constitutes the first, asymmetric total
synthesis of Ces-C. Alternatively, Ces-C could be synthe-
sized from epoxidation of Ces-B followed by SmI2-
mediated reductive epoxide ring-opening24 of 20. Our
synthetic (þ)-Ces-C was fully confirmed by extensive
NMR studies and single-crystal X-ray diffraction. How-
ever, we noticed that theNMRdata of our syntheticCes-C
were not inwell agreementwith those reported byHanson,
butwithX-ray diffraction analysis of natural and synthetic
samples we believed the NMR data for Ces-C might be
erroneously reported.25

Finally, we set out to verify our key hypothesis that
Ces-B could be the direct synthetic precursor of Ces-E
and -F (Scheme 1). Because of decomposition under basic
conditions, we focused on the ring-contraction rearrange-
ment of Ces-B under acidic conditions (Table 1). To our
delight, weobserved for the first time thatCes-E andCes-F
could be generated from Ces-B upon addition of one
drop of concentrated HCl to the THF solution of Ces-B
(entry 1). Further optimization (entries 2�7) led us to
identify the trifluoroacetic acid (TFA) as the best acid for
the ring-contraction rearrangement of Ces-B (1), affording
a 3:1 mixture of Ces-E and Ces-F in 79% combined yield
(entry 5), favoring the thermodynamically more stable
Ces-E. This is the first example that demonstrated a ring-
contraction rearrangement of a ten-membered lactone to
5,5-spiroketal-cis-fused-γ-lactone, a cascade process mim-
icking Hanson’s hypothesis. This exciting discovery
prompted us to further examine Hanson’s hypothesis:
dehydrative ring contraction of Ces-C into Ces-E and
Ces-F (Scheme 4). In sharp contrast to Hanson’s results,
we found that under our optimized conditionCes-Cunder-
went efficient dehydrative ring contraction to provide a
3:1 mixture of Ces-E and Ces-F in excellent yield. Most
strikingly, Ces-G, a diastereomer of Ces-C, was able to
rearrange to afford a mixture of Ces-E and Ces-F in
comparable yield with the same diastereomeric ratio. The
inversion mechanism of C4 stereogenic center of Ces-G

remains unknown, however, the inconsequence of stereo-
genic center at C4 in the course of rearrangement (Ces-C
and Ces-G) might suggest that Ces-B might be the true
biosynthetic precursor of Ces-E and Ces-F. Taking all
these evidence together, we proposed that Ces-E and
Ces-F might arise from Ces-B through hemiacetal forma-
tion (21), macrolactone opening to carboxylic acid 23,
γ-lactone formation (24) by SN2

0 substitution and acid-
promoted spiroketalization. This hypothesis also ex-
plained the coisolated furan 22, which may be generated
from dehydrative aromatization of 23.
In conclusion, we have achieved a practical total synth-

esis of cephalosporolide B, which has been successfully
exploited as a versatile synthetic precursor for biomimetic
total syntheses of cephalosporolides C, E, F, G, and
(4-OMe-)G via an oxa-Michael addition and/or a novel
biomimetic ring-contraction rearrangement. These studies
suggested that cephalosporolide B might be the true
biogenetic precursor of other cephalosporolides, which
may imply the biogenetic relationship of the cephalospor-
olide family and find applications in total syntheses of
other bioactive natural products. In addition, the 28-year
Hanson’s biogenetic hypothesis of cephalosporolides E
and F was synthetically verified for the first time in the
laboratory.
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Table 1. Ring-Contraction Rearrangement of Cephalosporolide
B to Cephalosporolides E and Fa

entry acid (equiv) solvents (ratio) time (h) yield (%, 7/8)

1 HClb THF 1 <10

2 TsOH (5) THF/H2O (9/1) 12 NR

3 A-15 (10) THF/H2O (9/1) 12 NR

4 TFA/THF/H2O (1/1/1) 12 40 (3:1)c

5 TFA/THF/H2O (3/1/1) 8 79 (3:1)

6 TFA/THF/H2O (9/1/1) 2 complex

7 TFA/CH2Cl2/H2O (3/1/1) 2 complex

aReaction with Ces-B (20 mg, 0.1 mmol) was run at 0.05 M at rt;
isolated yield. bOne drop (∼5 mg) of concd HCl was added to 2.0 mL of
THF solution at 0 �C. cRecovery of 42%yield ofCes-B.NR: no reaction.

Scheme 4. Realization of Hanson’s Hypothesis and Proposed
Mechanism of Dehydrative Ring-Contraction Rearrangement
to Cephalosporolides E and F

(24) Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 2596.
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Ces-J and bassianolone, and we suspected that Ces-C was the correct
structure for Ces-J and bassianolone. For more details, see the Support-
ing Information. The authors declare no competing financial interest.


