Semisynthetic Aminoglycoside Antibacterials. Part 9.^{1,2} Synthesis of Novel 1- and 3-Substituted and 1- and 3-*epi*-Substituted Derivatives of Sisomicin and Gentamicin from the 1- and 3-Oxo-derivatives

By Dena L. Boxler, Raymond Brambilla, D. Huw Davies, Alan K. Mallams,^{*} Stuart W. McCombie, James B. Morton, Paul Reichert, and H. Frederick Vernay, Research Division, Schering-Plough Corporation, Bloomfield, New Jersey 07003, U.S.A.

The conversion of selectively protected gentamicin and sisomicin derivatives into the 1- and 3-oxo-compounds by reaction with 3,5-di-t-butyl-1,2-benzoquinone is described. By application of suitable reductive techniques these oxo-aminoglycosides have been converted into novel 1- and 3-*epi*-, 1- and 3-deamino-1- and -3-hydroxy-, 1- and 3-deamino-1- and -3-*epi*-hydroxy-, and 1-deamino-derivatives. A study of the ¹³C n.m.r. parameters of the 1-*epi*- and 1-deamino-derivatives has led to the assignment of novel solution conformations for these new amino-glycosides.

THE search for novel semisynthetic aminoglycoside antibacterials that would hopefully exhibit an improved spectrum of activity with decreased toxicity relative to the parent antibiotics, has been vigorously pursued in many laboratories during the last decade. Modification of the 1-amino-group of the 2-deoxystreptamine ring has proved to be particularly fruitful. The occurrence in nature of butirosin A (3) and B (4) 3-5 which may formally be regarded as the (1S)-1-N-(4-amino-2-hydroxybutyryl) derivatives of xylostasin (1)⁶ and ribostamycin (2) ⁷ respectively, coupled with the recognition that such modification of the 1-amino-group resulted in an improved spectrum of activity, particularly against Pseudomonas strains, led to the preparation of a variety of 1-N-substituted ribostamycin derivatives,^{8,9} none of which unfortunately proved to be better than (3) and (4). The preparation of the (1S)-1-N-(4-amino-2-hydroxybutyryl) derivative of kanamycin A (5) led to the discovery of a clinically useful drug, amikacin (6),¹⁰ and a number of analogues have been prepared.¹¹ A variety of 1-N-acyl derivatives of gentamicin and sisomicin (7) have also been prepared.^{12,13} Reductive alkylation of the 1-amino-group in sisomicin (7) led to the discovery of the important semisynthetic aminoglycoside, netilmicin (8),¹⁴ which exhibits an improved spectrum of activity against resistant strains of bacteria and which has reduced toxicity relative to sisomicin (7).¹⁵ We describe here an alternative route for the preparation of these 1-N-alkyl derivatives from novel 1-oxoaminoglycosides. The latter intermediates have also been converted into unique 1-epi-, 1-deamino-1-hydroxy-, 1-deamino-1-epihydroxy-, and 1-deamino-derivatives² which do not occur in nature. The preparation of a 3-deamino-3oxo-derivative of gentamicin C1a and its conversion into 3-epi-3-deamino-3-hydroxy-, and 3-deamino-3-epi-hydroxy-derivatives will also be described.

Several literature procedures are available for the transformation of a primary amino-group into a carbonyl group and from these methods the deamination procedure developed by Corey ¹⁶ was chosen in view of the mild reaction conditions used, the high yields, and absence of side reactions observed with this method.

Thus gentamic n C_1 (20) was converted into the 3,2'bis-N-trifluoroacetate (21),¹² which on treatment with 3,5-di-t-butyl-1,2-benzoquinone¹⁶ followed by acidic hydrolysis, afforded a high yield of 1-deamino-1-oxo-3,2'bis-N-trifluoroacetylgentamicin C_1 (22) which was isolated as the sulphate salt. Reduction of the ketone (22) with sodium cyanoborohydride at pH 3 followed by hydrolysis of the protecting groups with concentrated ammonium hydroxide, gave 1-deamino-1-hydroxygentamicin C_1 (23) and the 1-*epi*-analogue (24). The massspectral data (Table 1) were consistent with replacement, of the 1-am no-group with a 1-hydroxy-group ¹⁷ and did not enable (23) and (24) to be distinguished. The epimers could readily be distinguished by the presence of a multiplet in the ¹H n.m.r. spectrum at $\delta_{\rm H}$ 4.25 due to the equatorial proton at C-1 in the epi-derivative (24). The ¹³C n.m.r. spectrum of the *epi*-derivative (24) was also highly characteristic of the structure (Table 2) and will be discussed later.

Reductive amination of the ketone (22) with ammonia and sodium cyanoborohydride at pH 6 followed by hydrolysis with concentrated ammonium hydroxide gave a 1:1 mixture of gentamicin C_1 (20) and its 1-epiderivative (25), which could not be separated in a number of chromatographic systems. The ¹³C n.m.r. spectrum of the mixture was recorded (Table 2). The use of morpholinoborane as the reducing agent gave similar results. In the above reaction as well as in subsequent reductive amination reactions, both 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1epi-hydroxygentamicin C_1 (24) were isolated as well. When the reductive amination was carried out using a variety of alkylamines in the presence of sodium cyanoborohydride at pH 5.5-6 there were obtained after base hydrolysis, from methylamine, 1-N-methylgentamicin C_1 (26) and 1-epi-N-methylgentamicin C_1 (27); from isopropylamine, 1-N-isopropylgentamicin C_1 (28) and 1-epi-N-isopropylgentamicin C₁ (29); from 2-hydroxyethylamine, 1-N-(2-hydroxyethyl)gentamicin C₁ (30) and 1-epi-N-(2-hydroxyethyl)gentamicin C_1 (31); and 2-phenylethylamine, 1-N-(2-phenylethyl)gentfrom amicin C₁ (32) and 1-epi-N-(2-phenylethyl)gentamicin C₁

(33). The above N-alkyl derivatives were all readily separated by column chromatographic techniques. In contrast to the 1-epi-alcohol (24), the above 1-epi-amino-derivatives could not be distinguished from their ¹H n.m.r. spectra as the multiplets due to the equatorial

selective protection of aminoglycosides has led to the development of elegant, high yielding procedures for the preparation of selectively protected aminoglycosides having the 1-amino-group free.¹⁸ Thus gentamicin C_{1a} (35) has been converted into 3,2',6'-tris-N-(2,2,2-tri-

ÓН

-CH₂CH₂NH₂

1-protons overlapped with other signals. However, the ¹³C n.m.r. spectra were very characteristic (Table 2) and could be used to distinguish the 1-epi-amino-derivatives. The mass-spectral fragmentation patterns are given in Table 1 and all of the compounds showed the characteristic F_1 and F_2 ions ¹⁷ associated with 1-N-alkylation.

(5)R = H

 $(6) R = CO^{-1}$

The application of transition-metal complexing for the

chloroethoxycarbonyl)gentamicin C_{1a} (36) ¹⁸ in high yield, and the latter on treatment with 3,5-di-t-butyl-1,2-benzoquinone followed by acidic hydrolysis gave 1-deamino-1-oxo-3,2',6'-tris-N-(2,2,2-trichloroethoxy-carbonyl)gentamicin C_{1a} (37). A fully N-protected keto-intermediate was also desired and this was prepared as follows. It has been shown ¹⁹ that 3,2',6'-tri-N-acetyl-

J.C.S. Perkin I

sisomicin (9) ¹⁸ reacts preferentially with 1-acetylimidazole to give 3,2',6',3''-tetra-*N*-acetylsisomicin. It was hoped therefore that 3,2',6'-tris-*N*-(2,2,2-trichoroethoxycarbonyl)gentamicin C_{1a} (36) would react with 1-(2,2,2-trichloroethoxycarbonyl)imidazole to give the 3''-*N*-substituted derivative. However, the only product isolated from the reaction was the 3''-*N*,4''-*O*-carbonyl derivative (38) which presumably formed by cyclization of the vicinal *cis*-4''-hydroxy-group with the 3''-*N*- hydroxygentamicin C_{1a} (42). Both gave similar mass spectra (Table 1) and the latter could again be distinguished by the presence of a multiplet in the ¹H n.m.r. spectrum at $\delta_{\rm H}$ 4.24 due to the equatorial 1proton. The ¹³C n.m.r. data are given in Table 2 and will be discussed later.

Application of the Corey deamination reaction to 3,2',6'-tri-N-acetylsisomicin (9) ¹⁸ afforded 3,2',6'-tri-N-acetyl-1-deamino-1-oxosisomicin (10) in quantitative

2170

 $(35) R^{1} = NH_{2}, R^{2} = R^{3} = R^{4} = R^{5} = H$ $(36) R^{1} = NH_{2}, R^{2} = R^{3} = Co_{2}CH_{2}CCI_{3}$ $(37) R^{1} R^{2} = = 0, R^{3} = Co_{2}CH_{2}CCI_{3}, R^{4} = R^{5} = H$ $(38) R^{1} = NH_{2}, R^{2} = R^{4} = R^{5} = H, R^{3} = Co_{2}CH_{2}CCI_{3}, R^{4} = R^{5} = H$ $(38) R^{1} = NH_{2}, R^{2} = H, R^{3} = Co_{2}CH_{2}CCI_{3}, R^{4} = R^{5} = H$ $(38) R^{1} = NH_{2}, R^{2} = R^{5} = H, R^{3} = Co_{2}CH_{2}CCI_{3}, R^{4} = Ac, R^{5} = H$ $(39) R^{1} = NH_{2}, R^{2} = R^{5} = H, R^{3} = Co_{2}CH_{2}CCI_{3}, R^{4} = Ac, R^{5} = H$ $(41) R^{1} = OH, R^{2} = R^{3} = R^{4} = R^{5} = H$ $(42) R^{1} = R^{3} = R^{4} = R^{5} = H, R^{2} = OH$

(2,2,2-trichloroethoxycarbonyl) group in the presence of imidazole. Reaction of (36) with 1,1'-carbonyldi-imidazole afforded the identical product (38). When (36) was treated with 1-acetylimidazole a smooth conversion into 3''-N-acetyl-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (39) was obtained. The deshielding of the 3'-N-methyl group to $\delta_{\rm H}$ 3.15 in the latter was characteristic of a 3''-N-acetyl substitution in the molecule. Application of the Corey deamination procedure to (39) afforded an excellent yield of 3''-N-acetyl-1-deamino-1-oxo-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (40).

Reduction of the ketone (37) with either sodium cyanoborohydride, or sodium borohydride followed by deprotection with zinc in acetic acid afforded 1-deamino-1-hydroxygentamicin C_{1a} (41) and 1-deamino-1-epi-

yield. In order to prepare a fully N-protected ketosisomicin derivative, 3,2'6'-tri-N-benzoylsisomicin (11) prepared by the transition-metal complexing method 18 was treated with 1-acetylimidazole in aqueous tetrahydrofuran to give 3"-N-acetyl-3,2',6'-tri-N-benzoylsisomicin (12). The latter was then deaminated by the Corey procedure to give 3"-N-acetyl-3,2',6'-tri-Nbenzoyl-1-deamino-1-oxosisomicin (13). Reduction of the keto-derivative (10) with sodium cyanoborohydride at pH 3 followed by basic hydrolysis afforded both 1-deamino-1-hydroxysisomicin (14) and the 1-epi-analogue (15). The mass-spectral fragmentation patterns were consistent with the presence of the 1-hydroxy-group (Table 1).¹⁷ The 1-epi-alcohol (15) exhibited a characteristic signal at $\delta_{\rm H}$ 4.34 due to the equatorial 1-proton. The ¹³C n.m.r. parameters are given in Table 2. In order

to achieve greater selectivity for the 1-epi-derivative (15) by using L-Selectride as the reducing agent, it was necessary to use the fully N-protected ketone (13), which was soluble in dry tetrahydrofuran. Thus (13) on reduction with L-Selectride followed by basic hydrolysis gave predominantly the 1-epi-derivative (15).

Reductive amination of the ketone (10) at pH 5-5.7 using sodium cyanoborohydride and a variety of amines afforded after suitable deprotection, from ammonium deamino-1-oxosisomicin (13) on treatment with the ylid derived from diethyl *N*-ethylphosphoramidate (43) $^{20.21}$ followed by reduction with L-Selectride and basic hydrolysis gave only the desired *epi*-derivative (17), but the yield was low.

It was of interest to prepare a 1-deamino-derivative of gentamicin C_1 and this was achieved in the following manner. Conversion of 1-deamino-1-oxo-3,2'-bis-N-tri-fluoroacetylgentamicin C_1 (22) into the tosylhydrazone

TABLE 1										
Mass-spectral fragment ions $(m/e$	(%)]									

$\begin{array}{c} \text{Compound} \left(M \right. \\ \left(\begin{array}{c} 23 \\ 24 \end{array} \right) & 479(2 \\ \left(\begin{array}{c} 24 \end{array} \right) & 479(2 \\ \left(\begin{array}{c} 26 \\ 27 \end{array} \right) & 492(1 \\ \left(\begin{array}{c} 27 \end{array} \right) & 492(2 \\ 28 \end{array} \right) \\ \left(\begin{array}{c} 29 \\ 30 \end{array} \right) & 520(1 \\ \left(\begin{array}{c} 29 \\ 31 \end{array} \right) & 522(2 \\ \left(\begin{array}{c} 32 \end{array} \right) & 582(2 \\ \left(\begin{array}{c} 33 \end{array} \right) & 582(2 \\ \left(\begin{array}{c} 33 \end{array} \right) & 582(2 \\ \left(\begin{array}{c} 44 \end{array} \right) & 451(2 \\ \left(\begin{array}{c} 44 \end{array} \right) & 451(2 \\ \left(\begin{array}{c} 14 \end{array} \right) & 449(2 \\ \left(\begin{array}{c} 16 \end{array} \right) & 449(2 \\ \left(\begin{array}{c} 16 \end{array} \right) & 448(2 \\ \left(\begin{array}{c} 17 \end{array} \right) & 476(2 \\ \left(\begin{array}{c} 18 \end{array} \right) & 533(4 \\ \left(\begin{array}{c} 33 \end{array} \right) & 533(4 \\ \left(\begin{array}{c} 34 \end{array} \right) & 453(2 \\ \left(\begin{array}{c} 34 \end{array} \right) & 453(2 \\ \left(\begin{array}{c} 44 \end{array} \right) & 449(2 \\ \left(\begin{array}{c} 44 \end{array} \right) & 453(2 \\ \left(\begin{array}{c} 44 \end{array} \right) & 451(1 \\ \left(\begin{array}{c} 50 \end{array} \right) & 450(1 \\ \left(\begin{array}{c} 50 \end{array} \right) & 450(1 \end{array} \end{array} \right)$	$\begin{array}{c} -1)^+ & M\\ + & M$	$\begin{array}{cccc} & \mathbf{A_1} \\ 1 & 348(2) \\ .5, & 348(7) \\ .5, & 348(7) \\ .5, & 381(0) \\ .5, & 389(5) \\ .5, & 389(5) \\ .5, & 389(2) \\ .5, & 389(2) \\ .5, & 389(2) \\ .5, & 389(2) \\ .5, & 389(2) \\ .5, & 381(2) \\ .5, & 381(2) \\ .5, & 381(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5, & 382(2) \\ .5$	$\begin{array}{c} A_{1} \\) \\) \\ 33 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 343 \\ 34$	$\begin{array}{c} A_1 \\ 320((7) \\ 323(2) \\ 333(2) \\ 333(2) \\ 333(2) \\ 333(2) \\ 361(3) \\ 361(3) \\ 363(4) \\ 423(1) \\ 5) \\ 292(0,3) \\ 292(0,3) \\ 292(0,3) \\ 290(4) \\ 289(4) \\ 374(6) \\ 374(6) \\ 374(6) \\ 374(6) \\ 374(6) \\ 304(6) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(4) \\ 292(2) \\ 291(2) \end{array}$	$\begin{array}{c} A_4 \\ 302(5) \\ 302(2) \\ 315(2) \\ 343(2) \\ 345(1) \\ 345(1) \\ 345(1) \\ 345(1) \\ 405(0.3) \\ 274(3) \\ 274(3) \\ 272(23) \\ 272(23) \\ 272(23) \\ 272(23) \\ 272(23) \\ 272(23) \\ 272(23) \\ 271(10) \\ 299(15) \\ 356(4) \\ 286(11) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2) \\ 274(2$	$\begin{array}{c} A_4 \\ 351(5) \\ 354(2) \\ 364(2) \\ 392(1) \\ 392(2) \\ 394(3) \\ 394(3) \\ 394(3) \\ 351(4) \\ 351(4) \\ 351(4) \\ 351(4) \\ 355(3) \\ 435(3) \\ 435(3) \\ 435(3) \\ 435(3) \\ 435(3) \\ 355(2) \\ 378(3) \\ 355(2) \\ 351(4) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\ 355(2) \\$	A. 333(3) 333(2) 346(2) 374(0.5) 374(1) 376(2) 436(2) 436(2) 436(3) 333(4) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(2) 333(5) 333(5) 332(5)	$\begin{array}{c} \mathbf{A_7}\\ 323(23)\\ 323(8)\\ 336(5)\\ 336(4)\\ 366(2)\\ 366(4)\\ 366(4)\\ 326(2)\\ 326(2)\\ 323(25)\\ 323(28)\\ 323(28)\\ 323(28)\\ 323(4)\\ 322(2)\\ 350(2)\\ 407(4)\\ 307(38)\\ 323(35)\\ 323(35)\\ 323(4)\\ 322(28)\\ 323(35)\\ 323(4)\\ 322(28)\\ 323(35)\\ 323(4)\\ 322(28)\\ 323(35)\\ 323(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322(18)\\ 322$	$\begin{array}{c} A_{\rm s} \\ 3.05(1) \\ 3.05(9) \\ 3.05(9) \\ 3.18(9) \\ 3.48(2) \\ 3.48(2) \\ 3.48(2) \\ 4.08(7) \\ 3.05(4) \\ 3.05(4) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\ 3.05(2) \\$	$\begin{array}{c} A_{\bullet} \\ 3) & 192(1) \\ 0 & 205/(2) \\ 0 & 205/(2) \\ 0 & 205/(1) \\ 0) & 233(1, 0) \\ 0) & 233(1, 0) \\ 0 & 235(1, 0) \\ 0 & 205/(9) \\ 0 & 205/(9) \\ 0 & 205/(9) \\ 0 & 205/(9) \\ 0 & 205/(9) \\ 1 & 192(1, 0) \\ 0 & 205/(9) \\ 0 & 205/(9) \\ 1 & 192(1, 0) \\ 0 & 205/(9) \\ 1 & 192(1, 0) \\ 0 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1 & 100/(9) \\ 1$	$\begin{array}{c} A_{10} \\ 3) & 174(2) \\ 174(7) \\ 174(7) \\ 187(1) \\ 187(4) \\ 187(4) \\ 191(2) \\ 187(4) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ 191(2) \\ $	$\begin{array}{c} \mathbf{A_{11}}\\) & \mathbf{164(12)}\\ \mathbf{164(5)}\\) & \mathbf{177(11)}\\ \mathbf{205(8)}\\ \mathbf{207(21)}\\ 207($	$\begin{array}{c} A_{11} \\ 146(30) \\ 146(7) \\ 159(37) \\ 159(37) \\ 187(15) \\ 187(15) \\ 187(15) \\ 189(10) \\ 294(4) \\ 146(22) \\ 146(40) \\ 146(40) \\ 146(40) \\ 146(40) \\ 146(40) \\ 145(5) \\ 230(27) \\ 230(27) \\ 146(16) \\ 146(57) \\ 145(7) \\ 145(7) \\ 145(7) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 150(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27) \\ 100(27$	$\begin{array}{c} \mathbf{B_1} \\ 157(11) \\ 157(12) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 157(14) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44) \\ 1127(44$	$\begin{array}{c} C_1 \\ 000 & 160(7) \\ 000 & 160(8) \\ 000 & 160(8) \\ 000 & 160(8) \\ 000 & 160(2) \\ 000 & 160(7) \\ 000 & 160(7) \\ 000 & 160(7) \\ 000 & 160(8) \\ 000 & 160(8) \\ 000 & 160(10) \\ 000 & 160(10) \\ 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 160(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 000 & 100(10) \\ 0$	$\begin{array}{c} & D_1 \\ 1) & 461(0.5) \\ 3) & 461(0.5) \\ 1) & 474(0.5) \\ 3) & 502(0.2) \\ 1) & 502(0.2) \\ 1) & 502(0.2) \\ 1) & 502(0.2) \\ 1) & 504(0.1) \\ 1) & 433(0.5) \\ 3) & 564(0.1) \\ 1) & 433(0.5) \\ 3) & 564(0.1) \\ 1) & 433(0.5) \\ 3) & 500 \\ 1) & 443(0.5) \\ 3) & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100$
Compound (23) (24) (26) (27) (28) (30) (31) (32) (33) (41) (42) (14) (15) (16)	D ₂ 272(25) 272(32)	Da 431(16) 431(6) 430(0.6)	D4 272(25) 272(32) 271(10) 270(15)	D ₅ 431(16) 2 431(6) 2	D. 44 44 44 4 4 4 4 4 4 72(25) 72(32)	D ₇ 21(10) 21(2) 34(1) 34(0,3) 62(0,4) 62(0,2) 64(1) 64(1)	D ₈ 3 3 3	D, 63(26) 63(15) 62(5)	D ₁₀ 204(44) 204(25) 203(21)	$\begin{array}{c} E_1 \\ 416(0.5) \\ 444(1) \\ 444(0.5) \\ 444(1) \\ 446(2) \\ 446(1) \\ 506(0.2) \\ 506(0.3) \\ 375(0.2) \\ 375(0.2) \\ 373(2) \\ 373(2) \\ 372(0.2) \\ 400(2) \end{array}$	E_2 260(5) 260(2) 288(6) 290(2) 290(4) 247(0.1) 247(0.1) 246(7)	$\begin{array}{c} E_{3}\\ 361(8)\\ 374(3)\\ 374(3)\\ 402(0.8)\\ 402(2)\\ 404(3)\\ 404(5)\\ 464(1)\\ 464(1)\\ 464(1,5)\\ 333(6)\\ 333(6)\\ 333(6)\\ 331(6)\\ 331(6)\\ 330(2)\\ 976(2)\\ 976(2)\\ 986($	E. 205(2) 205(3) 204(18)	$\begin{array}{c} F_1 \\ 286(27) \\ 286(27) \\ 286(27) \\ 286(27) \\ 286(21) \\ 286(21) \\ 286(21) \\ 286(21) \\ 286(21) \\ 286(4) \\ 286(4) \\ 258(3) \\ 258(3) \\ 258(3) \\ 258(2) \\ 256(8) \\ 256(8) \\ 256(7) \\$	$\begin{array}{c} F_1 & f;\\ 290(27)\\ 303(6)\\ 331(5)\\ 331(5)\\ 333(7)\\ 333(7)\\ 333(7)\\ 333(7)\\ 303(4)\\ 290(5)\\ 290(4)\\ 290(9)\\ 200(4)\\ 289(4)\\ 289(4)\\ 2917(10)\\ \end{array}$	Other 'agments 490(0.5) 490(1) 490(15) 490(2)
(17) (18) (19) (34) (44) (47) (48) (50)	286(11)	458(2) 515(2) 515(2)	299(15) 356(7) 356(4)	438(2) 2 515(2) 3 515(2) 3	99(15) 56(7) 56(4) 4(3)	05(22) 2 84(2)	3 4 4 46(3)	48(2) 48(2) 48(2)	288(6) 288(6)	400(2) 457(4) 457(3) 375(2) 375(1) 374(0.5)	247(9) 247(6) 246(4)	333(5) 332(5) 332(5) 324(8) 333(5) 332(5) 332(5)	205(7) 205(3) 20 4(3)	256(52) 256(52) 256(29) 271(21) 259(2) 259(2) 259(2) 258(2)	374(6) 374(6) 374(8) 274(36) 289(8) 289(9) 289(2)	285(80) 282(38) 126(80)

acetate, sisomicin (7) and 1-epi-sisomicin (16); from ethylamine, 1-N-ethylsisomicin (netilmicin) (8) and 1epi-N-ethylsisomicin (1-epi-netilmicin) (17); and from 3-dimethylaminopropylamine, 1-N-(3-dimethylaminopropyl)sisomicin (18) and 1-epi-N-(3-dimethylaminopropyl)sisomicin (19). The 1-epi-amino-derivatives of sisomicin again could not be distinguished from their ¹H n.m.r. spectra; however, the ¹³C n.m.r. spectra were quite characteristic (Table 2). The amino-derivatives exhibited the expected mass-spectral fragmentation patterns (Table 1) and the 1-N-alkyl derivatives showed the characteristic F₁ and F₂ ions ¹⁷ associated with 1-Nalkylation. In order to increase the stereoselectivity in the preparation of 1-epi-N-ethylsisomicin (17) an alternative synthesis of the intermediate imine was in-Thus 3"-N-acetyl-3,2',6'-tri-N-benzoyl-1vestigated.

followed by reduction with sodium cyanoborohydride ²² and basic hydrolysis afforded 1-deaminogentamicin C_1 (34). The mass-spectral data (Table 1) were consistent with the absence of the 1-amino-group in the molecule. A novel analogue (44) of gentamicin C_1 (20) in which the 2-deoxystreptamine ring had been replaced by a phenolic moiety was prepared from the ketone (22) by 3-elimination and basic hydrolysis with concentrated ammonium hydroxide. The ¹H n.m.r. spectrum of (44) contained signals at $\delta_{\rm H}$ 6.72 and 6.87 due to the aromatic protons. The mass spectrum of the phenol (44) showed the expected molecular ion and very few of the normal aminoglycoside fragment ions (Table 1). The spectrum did however contain a diagnostic series of fragment ions shown in Figure 1.

We next turned our attention to the preparation of

a 3-deamino-3-oxo-derivative. Thus 1,2',6',3''-tetrakis-N-benzyloxycarbonylgentamicin C_{1a} (45), prepared by the application of the transition-metal process,¹⁸ on treatment with 3,5-di-t-butyl-1,2-benzoquinone afforded the intermediate 3-deamino-3-oxo-derivative (46). Reduction of (46) with sodium borohydride followed by deprotection with sodium in liquid ammonia gave 3-de-

amino-3-hydroxygentamicin C_{1a} (47) and 3-deamino-3epi-hydroxygentamicin C_{1a} (48). The mass spectra of (47) and (48) (Table 1) supported the assigned structures, but did not enable them to be distinguished. The equatorial alcohol (47) showed a broad multiplet at ca. $\delta_{\rm H}$ 4.0 with $W_{\frac{1}{2}}$ ca. 20 Hz due to the axial 3-proton. The axial alcohol on the other hand exhibited a narrower multiplet at $\delta_{\rm H}$ 4.23 with $W_{\frac{1}{2}}$ 8 Hz which was assigned to 3eq-H. The ¹³C n.m.r. data (Table 2) further supported the above assignments and will be discussed later.

J.C.S. Perkin I

Reductive amination of the 3-oxo-derivative (46) using ammonium acetate and sodium cyanoborohydride afforded a mixture of the equatorial amine (45) and the axial amine (49) which were separated by chromatography. The axial amine (49) was reduced with sodium in liquid ammonia to give 3-epi-gentamicin C_{1a} (50). The mass-spectral data were in accord with the assigned structure (Table 1). The signal due to 3eq-H was not clearly visible in the ¹H n.m.r. spectrum. The ¹³C n.m.r. data given in Table 2 clearly indicated that the assigned structure was correct and these data will be discussed later.

The 1-epi- and 1-deamino-derivatives exhibited very characteristic ¹³C n.m.r. spectra (Table 2) which enabled them to be readily identified. Pronounced shielding was observed for these derivatives at C-1", C-6, and C-1 relative to their 1-equatorially-substituted counterparts. The $\Delta\delta_{\rm C}$ values for these derivatives relative to their 1-equatorial analogues are given in Table 3 and are consistent with epimerization, or removal of the 1-equatorial substituent, with concomitant clockwise

FIGURE 1 Mass-spectral fragments

rotation of the 6-O-glycoside about the O-C-6 glycosidic bond due to the absence of the 1-equatorial substituent in these derivatives. It is evident from Table 3 that epimerization of the 1-hydroxy-group in 1-deamino-2deoxy-1-hydroxystreptamine (51) to give (52) resulted in moderate shielding at C-1, C-2, C-3, and C-5, with more pronounced shielding at C-6. Deshielding was also observed at C-4 in going from (51) to (52). These results are in good agreement with what is observed in going from scyllo-inositol to myo-inositol.23 In the aminoglycosides we see a somewhat different picture when the 1-hydroxy-group is epimerized as in going from (23) to (24), (41) to (42), and (14) to (15) (Table 3). In these examples we again observe shielding at C-3 and C-5, and deshielding at C-4, similar to that observed in going from (51) to (52). Somewhat greater shielding is observed at C-2 and markedly greater shielding is also observed at C-1 and C-6, than can be accounted for by simply epimerizing the 1-hydroxy-group. Pronounced shielding is also observed at C-1" when the 1-hydroxygroup is epimerized. If we now consider the $\Delta \delta_{C}$ values for the free bases for the 1-equatorial hydroxyaminoglycosides (23), (41), and (14) relative to 1-deamino-2deoxy-1-hydroxystreptamine (51), and for the 1-axial hydroxyaminoglycosides (24), (42), and (15) relative to

$-\infty$	
Ś	
÷.	
21	
- 93	
00	
õ	
9	
_	
0	
\sim	
~	
9	
0	
~	
<u> </u>	
0	
_	
- 12	
0	
\mathbf{c}	
100	
- 12	
- 23	
- 23	
1	
_	
<u> </u>	
_ <u>_</u>	
ੁਹ	
0	
E	
M	
UMC	
own	
Down	
. Down	
1. Down	
81. Down	
981. Down	
981. Down	
1981. Down	
y 1981. Down	
ry 1981. Down	
ary 1981. Down	
uary 1981. Down	
nuary 1981. Down	
anuary 1981. Down	
January 1981. Down	
January 1981. Down	
11 January 1981. Down	
01 January 1981. Down	
n 01 January 1981. Down	
on 01 January 1981. Down	
on 01 January 1981. Down	
d on 01 January 1981. Down	
ed on 01 January 1981. Down	
hed on 01 January 1981. Down	
shed on 01 January 1981. Down	
lished on 01 January 1981. Down	
olished on 01 January 1981. Down	
ublished on 01 January 1981. Down	
Published on 01 January 1981. Down	

	$\begin{array}{rcrcr} & & & & & & & & & & & & & & & & & & &$	aas 2.1 6.5 0.5 1.7 1.7 1.3 3.0 3.0 5.3 6.3 6.3 1.6 6.3 1.6	4,85 2,10 10,11 4,60 4,60 2,10 2,10 2,10 2,10 2,10 2,10 2,10 2,1
	 (*) (32) (572) (572) (572) (572) (572) (572) (575) (575) (575) (575) (575) (575) (575) (575) (575) (572) (575) (572) (5	(17) H+ Δδc(B 54.8 47.9 47.9 77.9 77.1 77.1 77.1 47.0 84.0 47.0 84.0 47.0 144.1 144.	988 988 708 4 11.6 11.5 11.5 11.1 11.5 11.1 11.5 11.1 11.5 11.1 11.5 11.1 11.5 11.1 11.5 11.1 11
	∆ 200 4.83 4.83 4.83 4.83 1.10 1.1	H++ (17) 52.7 52.7 52.7 52.7 73.8 47.7 73.8 7 73.8 7 7 35.7 7 7 35.7 7 7 35.7 7 85.7 85.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	→ ∆δ0(Base = 1.1 = 1	++ ++ ++++++++++++++++++++++++++++++++
(f	2 (1)	$\begin{array}{c} (8) H^{+} \\ 56.9 \\ 56.9 \\ 56.9 \\ 79.6 \\ 97.8 \\ 83.5 \\ 83.5 \\ 83.5 \\ 83.5 \\ 101.6 \\ 47.1 \\ 41.6 \\ 41.6 \\ 41.6 \\ 41.6 \\ 101.6 \\ 1$	102.2 67.4 64.3 66.6 68.6 68.6 68.6 71.9 11.9
		 (8) 58.3 50.3 50.4 75.3 86.7 150.4 43.4 43.4 	102.1 70.2 64.3 73.1 68.7 88.7 41.1 14.1 14.1
,		∆δc(Base→H+ +0.5 +0.5 +0.5 +7.0 -5.5 -1.1 -1.1 -1.3 +1.1 -1.6 +1.3 -1.6 +1.3 -1.6 +1.3 -1.6 +1.3 -1.6	6.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0 0 0
- -	10111 (36) H 256 A 256 A 256 A 256 A 257 A 2	16)H ⁺ 47.9 47.9 47.9 47.9 97.9 97.9 97.9 44.1 1.5 44.1 1.5	688.1 70.8 335.7 21.9 21.9
-	01.2 01.2	(16) (16) (16) (16) (16) (16) (16) (16)	95.8 64.0 64.0 33.1 22.4
ABLE 2	2.1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H ⁺) (7) a 51.8 50.4 50.4 50.4 55.5 75.4 75.4 1006 1 4706 1 55.6 25.6 150.4 1 150.4 1 150.4 1	101.5 70.0 64.3 64.3 83.0 22.9 22.9
Ε.	0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26C(Base - 0.3 - 0.3 - 0.8 - 1.0 - 1.0	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
-	2 (2 1) 5 (44.3 21.5 44.3 21.5 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	21.8 86.9 87.6 87.6 87.6 21.8 21.8
	2225 (200) 2225 2225 2225 2225 2225 2225 2225	(15) (696. 646.9 6473.3 23.1 9 23.1 9 23.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 9 25.5 25.5
	ີ (ີ ຕິເພດ - 445 ສິຊິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິຍິ	(14) (14) 36.6 49.0 74.8 88.7 74.8 885.2 255.3 255.3 43.1 43.1	100.5 73.2 337.6 222.3
	, 88898498191896548888119 , 94848665269996654888666488	(42) 6.53 34.6 47.9 87.8 87.8 73.2 79.6 101.9 70.6 45.5 70.7	96.6 64.1 72.8 68.4 53.7.7 22.2 22.2 22.2
:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(41) 6.9.5 8.6.9 8.6.1 8.6.1 8.6.1 8.6.2 8.6.2 8.6.2 2.5.9 70.9 45.1 45.1	100.3 6429 688.5 2223 22.3
	 →H⁺) (2.4) (2.4) (2.4) (2.4) (2.4) (2.5) (2.6) (2.6)	((Base → H +) - 6.2 - 6.2 - 10.3 - 1	1+1+1+1+1+1+++ 44:001000000000000000000000000000000000
	∆ 6 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(33)H + ∆8 55.2 24.8 24.8 77.8 72.3 76.6 95.7 76.6 95.7 76.6 95.7 70.1 58.1 23.18 95.7 10.7 10.7	98.0 98.0 66.4 68.2 88.2 88.2 88.3 88.3 88.3 137.2 133.0 13.
	(23) (53) (53) (53) (53) (53) (53) (53) (5	(33) 52.4 52.4 52.4 52.4 73.2 50.8 50.8 50.8 56.8 56.8 58.2 56.8 58.2 56.8 58.2 58.2 58.2 58.2 58.2 58.2 58.2 58	33.2 96.0 69.0 69.0 73.2 68.4 73.2 87.8 37.8 37.8 37.8 129.8 120.8 129.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8
	(23) 26,27 27,27 27,	Cathon Cathon Cool Cool Cool Cool Cool Cool Cool Cool	C-1.20 C-1.20 C-1.20 C-1.20 C-1.20 A-1.20
	Carbon Carbon Carbon Carbon Concest Co		

View Article Online

). Rane,
	(54)H+ 4 48.2 50.5 50.5 69.2 72.2 68.9 68.9			run. • I
	(54) d 50.4 33.9 33.9 33.9 76.1 74.8 74.8			H 1 was
	∆å(Base→H+) - 3.0 - 1.0 - 1.5 - 1.5 - 0.6 - 0.6		\d(Base→H ⁺) +0.7 -7.0 -7.0 -5.9 +0.1 -6.9	n from base to pl
	(52)H+ 68.3 32.0 73.5 73.7 74.1 74.1		7 +	titratio
	(52) 55.5 35.5 49.0 78.9 78.9 74.7 74.7		(57)H 50.5 48.3 48.3 68.9 69.2 69.2	s as no
	A 80 (Base → 11, 13, 0, 8 1, 1, 1, 0, 5 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		(57) 49.8 33.9 50.4 74.8 73.1 73.1	tive assignment
	69.5 83.2 50.8 73.7 77.0 77.0 77.0		(+H*	f Tenta
	(51) (70.3 36.8 36.8 78.0 75.8 77.8 77.8 77.8		(Base 1 - 0.5 1 - 0.5 2.5 2.5 2.5	f. 19.
	(+ ₩ ₩	10 00 00 -	A 8	Re
ued)	∇ 0 0 0 0 0 0 0 0 0 0 0 0 0	1+11 1+11	(56)H+ 56.1 58.1 24.9 48.8 73.0 73.0 70.1 43.1 11.0	ture (1 : 1)
ontim	(50) H+ 50.3 21.6 50.3 49.6 50.8 49.8 49.8 49.8 51.1 101.1 55.1 101.1 55.1 101.1 55.1 55	70.8 88.7 35.6 21.5	00-1-20-20-20-20-20-20-20-20-20-20-20-20-20-	he mix
ع 8	(50) 49.1 54.2 54.2 54.2 50.8	73.3 68.5 37.8 22.6	(56 57. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	rum of
TABLE	· Δδ(Base-H+) +0.9 +4.0 -4.0 -2.4 -4.0 -3.6 -4.0 -4.0 -4.9 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0		%0(Base→H+) - 1.1 - 6.9 - 6.8 - 6.6 - 1.3 - 1.3 - 3.9 - 3.9 - 3.2) from the spectr
	(48)H ⁴ 50.1 50.1 50.1 50.3 866.1 866.1 866.1 85.2 85.2 87.9 497.1 497.1 43.6 67.9 67.9 61.2 64.3 61.2 64.3 64.2 64.3 64.3 64.3 64.3 64.3 64.3 64.3 64.3	70.8 68.5 35.6 22.0	•	e to (2(
	(48) 49.2 35.6 68.5 88.5 88.2 88.2 50.8 88.2 102.6 50.8 88.2 28.9 28.9 28.9 28.9 28.9 28.9 101.4 45.7 70.2 64.2 100.2 64.2 64.2 100.2 64.2 64.2 70.2 64.2 70.2 64.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70	73.3 68.8 37.8 22.6	(55)H+ 56.4 56.9 26.9 26.9 72.9 72.4 41.4 11.6	nais du
	∆ ⁵⁰ (Base → H+) 0.1 1.0.1 1.0.1 1.0.3 1.0.1 1.0.3 1.1.5 1.5	-2.4 - 2.2 - 0.6 - 0.6	(55) ¢ 57.5 33.8 51.3 51.3 76.9 76.9 41.1 14.8 14.8	action of the sig
	(47)H+ 50.4 50.4 85.8 85.8 82.5 95.0 96.0 96.0 96.0 96.0 87.8 43.6 67.1 101.6 67.1 67.1 67.1 67.1	70.8 68.6 35.6 22.0	(+H-	y subtra
	(47) 50.5 50.5 50.5 50.5 50.7 50.7 50.7 50.7	13.2 68.5 37.8 22.6	(Base - 2.2 - 7.0 + 0.7 - 6.9 - 5.9 - 5.9	ained b
	(34) 280.1 280.1 280.2 280.2 280.3 260.8 250.8 250.8 250.8 250.8 250.8 250.8 250.8 250.8 250.8 250.8 250.8 250.9 2	73.3 37.8 22.2 22.2	Δ&σ	ere obt:
	(19) 52.7 53.7 53.7 53.7 73.5 56.8 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3	68.3 37.7 45.9 67.3 44.5 44.5	u	r (25) w
	(18) 57.9 57.9 50.1 85.1 75.7 75.7 75.7 100.8 86.8 97.4 43.1 43.1 43.1 43.1 102.2 70.3 54.3	23.4 37.7 22.4 57.1 57.1 57.1 57.1		hifts fo
		CC5 25 27 27 27 27 27 27 27 27 27 27 27 27 27		Ref. 24. b Chemical a published observations
				• 5

J.C.S. Perkin I

TABLE 3

	1-NH,	(20)(34)	- 25.4	-8.5	+2.5	+0.5	+1.8	-10.1	+0.4	-5.4
	3-NH ₃	(35)→(40)	-2.0	-1.9	-1.5	-5.5	-3.4	+0.5	+0.1	0
		(55)→(56)	-0.9	-3.7	-2.0	-0.9	-3.7	-2.4		
		(18)→(19)	- 0.2	-2.0	-2.5	+0.7	-2.5	-8.3	+0.1	-6.3
	+ax)	(8)-+(17)	-0.3	-2.1	-2.4	+0.4	-2.3	-8.3	+0.1	-6.3
(or	I Alkyl (eq-	(32)→(33)	-4.7	-2.1	-1.3	+1.0	-2.3	-7.7	+0.2	-5.0
s (eq	IN-I	(30)-+(31)	-4.9	-2.1	-1.3	+0.2	2.3	-7.6	-0.4	-5.5
		(28)→(29)	-4.0	-1.3	-2.3	+0.9	-2.6	- 9.3	+0.3	-6.5
		(26)-+(27)	-4.3	-2.2	-2.5	+1.4	-2.4	-7.7	+0.5	-5.7
		53)-+(54)	-1.2	-3.1	-1.8	-2.4	-4.5	-3.7		
ree base	H _a (eq-+ax)	(2)→(16) (-4.4	-2.3	-2.7	0	-2.7	- 8.9	+0.1	-5.7
$\Delta \delta_{C}$ Values for the free	N-1	(20)→(25)	-6.4	-3.4	-3.1	+0.3	-2.3	9.2	0	-5.6
	3-OH	(47)→(48)	-1.3	-1.4	-0.7	-2.9	-2.5	+0.8	+1.3	+0.1
		(51)→(52)	-1.0	-1.3	-1.3	+0.9	-1.9	-3.1		
	q→ax)	(14)→(1 5)	-5.7	-2.1	-1.2	+1.0	~1.9	-5.4	+0.2	-3.7
	1-OH (e	(41)→(42)	-4.2	-2.3	-1.2	+1.6	-1.7	-5.6	+1.0	-3.7
		(23)→(24)	19.9	-2.3	-1.3	+1.1	-2.0	-5.7	+0.4	-3.8

4	
TABLE	

ases	
free t	
r the	
le) fo	
risaccharid	
۵å ₀ (DOS	

	3-NH.(ar)	(54)→(50)	-0.1	+0.9	-1.3	+8.0	-0.1	+12.2
	3-NH.(ea)	(53)→(35)	+0.1	-0.3	-1.0	+9.8	-1.2	+ 9.3
	1-NHC.H.(az)	(56)→(17)	-4.3	+0.5	-1.6	+8.2	+0.2	+4.5
	1-NHC.H.(ed)	(55)→(8)	+0.5	-1.1	-1.1	+6.9	-1.2	+10.4
	s(ax)	(54)→(16)	-3.0	+0.2	-2.1	+9.2	+0.6	+4.1
	"HN-I	(54)→(25)	-5.0	-0.5	-2.0	+12.8	+1.0	+3.9
	(<i>ba</i>)*	(53)→(7)	+0.1	-0.6	-1.3	+6.7	-1.3	+9.2
	"HN-I	(53)→(20)	+0.2	-0.2	-0.7	+10.1	-1.2	+9.4
	3-0H(ax)	(52)→(48)	+0.2	+0.1	-0.8	+8.3	-1.8	+9.3
	3-OH(ea)	(11)→(47)	+0.2	+0.2	-1.1	+8.0	-1.2	+9.4
5		(52)→(15)	-4.0	-1.0	-1.2	+6.8	-1.0	+5.1
	1-OH(ax)	(52)-+(42)	-4.0	-0.9	-1.1	+8.9	-0.7	+4.9
		$(52) \rightarrow (24)$	-4.0	6.0	-1.0	+9.8	-11	+4.9
		(51)→(14)	+0.7	-0.2	-1.3	+6.7	-1.0	+1.4
	1-OH(eq)	(51)→(41)	-0.8	+0.1	-1.2	+8.3	-0.9	+1.4
		(51)→(23)	+0.5	+0.1	-1.0	+ 9.6	-1.0	+7.5
		Carbon	5	ن-2	C-3	3	ۍ د	မို

View Article Online

2175

1-deamino-2-deoxy-1-*epi*-hydroxystreptamine (52) (Table 4) the reason for this pronounced shielding at C-1, C-6, and C-1" becomes apparent. In (23), (41), (24), and (42) we observed deshielding at C-4 and shielding at C-3 indicating that in these compounds the 4-O-glycoside adopts the usual rotamer *a* about the O-C-4 glycosidic bond.^{1,24-33} In the sisomicin derivatives (14) and (15) we again observe shielding at C-3 and reduced net deshielding at C-4 indicating that the 4-O-glycoside in these compounds has undergone a modest clockwise rotation about the O-C-4 glycosidic bond relative to rotamer *a*.³³ In the 1-equatorial alcohols (23), (41), and (14) we also observe shielding at C-5 and a reduced net deshielding at C-6 relative to that observed for gent-

amicin C_{1a} (35), C₁ (20), or sisomicin (7).³³ This indicates that the 6-O-glycoside in these derivatives adopts a rotamer about the O-C-6 glycosidic bond in which a modest clockwise rotation has occurred about the O-C-6 glycosidic bond relative to a rotamer b.³³ A similar clockwise rotation of the 6-O-glycoside has also been observed in the case of a series of 1-N-acyl aminoglycosides.^{32.33} Presumably reduced steric and/or dipolar interactions between these substituents at C-1 and the 6-O-glycoside, relative to a 1-equatorial amino-group, are responsible for the observed rotation of the glycoside

J.C.S. Perkin I

unit.^{32,33} In the case of the 1-axial hydroxy-derivatives (24), (42), and (15) we again observed shielding at C-5 due to the 6-O-glycoside. However, we also observe pronounced shielding at C-1 (-4.0) and a marked reduction in the net deshielding at C-6 to +4.9 to +5.1 indicating that a strong shielding component is present at C-6. The anomeric carbon C-1" is also shielded. The observed shieldings at C-1, C-6, and C-1" are best explained by assuming that the 6-O-glycoside in these 1-epi-hydroxy-derivatives adopts a rotamer approaching that represented by c^{34} about the O-C-6 glycosidic bond. In such a rotamer we would expect C-6 to be shielded by the 1,3-diaxial-type interaction between C-1"-O-5" and C-6-H-6.³⁴⁻³⁷ A non-bonded interaction between 1eq-H and 1eq''-H of the type shown in Figure 2 would be

FIGURE 2 Non-bonded hydrogen interaction

expected to shield both C-1 and C-1" as was observed.³⁸ Shielding of C-1' in a series of 5-deoxy- and 5-*epi*-aminoglycosides has been used earlier as diagnostic proof of a change in rotamer population about the O-C-4 glycosidic bond.³⁹ In all the rotamers a, b, and c we expect the normal *exo*-anomeric effect ⁴⁰⁻⁴³ to be operating.

Epimerization of the 1-amino-group of 2-deoxystreptamine (53) as in 1-epi-2-deoxystreptamine (54) resulted in shielding of all of the carbon atoms in the molecule (Table 3). Similarly in going from 1-N-ethyl-2-deoxystreptamine (55) to 1-epi-N-ethyl-2-deoxystreptamine (56) we also observed shielding of all of the carbon atoms (Table 3). When we consider the aminoglycosides we see a somewhat different picture when the 1-amino- or 1-alkylamino-group is epimerized as in going from (20) to (25), (7) to (16), (26) to (27), (28) to (29), (30) to (31), (32) to (33), (8) to (17), and (18) to (19) (Table 3). In these examples we observe shielding at C-2, C-3, and C-5 which is similar to, or slightly less than that observed in going from (53) to (54), and from (53) to (56). Modest deshielding also occurs at C-4 in these examples. However, greatly enhanced shielding is observed at C-1 and C-6 which is much more than can be accounted for by simply epimerizing the 1-substituent. Pronounced shielding is also observed at C-1" when the 1-amino-group is epimerized. The shielding of C-6 and C-1" was also greater than that observed for the 1-epi-alcohols discussed earlier. Once again when we consider the $\Delta\delta_0$ values in going from the appropriate 1-amino-, 1-epiamino-, 1-alkylamino-, or 1-epi-alkylamino-2-deoxystreptamine to the corresponding aminoglycoside (20), (7), (25), (16), (8), or (17), the reason for this pronounced shielding at C-1, C-6, and C-1" becomes apparent. Gentamicin C_1 (20) adopts rotamer *a* about the O-C-4 glycosidic bond, while sisomicin (7) and

netilmicin (8) both adopt a rotamer in which modest clockwise rotation of the sisosamine moiety has occurred about the O-C-4 glycosidic bond relative to rotamer $a.^{24,33}$ This follows from the reduced net deshielding observed at C-4 in (7) and (8).³³ In all three compounds shielding is observed at C-3. It is also evident from the shielding observed at C-5 and from the net deshielding at C-6 that the 1-equatorially substituted amines (20), (7), and (8) all adopt a rotamer approximating b for the 6-O-glycoside about the O-C-6 glycosidic bond.^{24,33} In the case of the 1-axial amino-lerivatives (25), (16), and (17) we observe enhanced net deshielding at C-5 and also some deshielding at C-5

permits the sugar to rotate in a clockwise direction about the O-C-6 glycosidic bond to give rotamer $c.^{33}$

We shall now consider what happens in the case of 3deamino-3-hydroxygentamicin C_{1a} (47), 3-deamino-3*epi*-hydroxygentamicin C_{1a} (48), and 3-*epi*-gentamicin C_{1a} (50). If we first consider the $\Delta\delta_0$ values (Table 3) in going from the equatorial 3-hydroxy-derivative (47) to the axial 3-hydroxy-derivative (48) we see shielding at C-1, C-2, C-3, C-4, and C-5, with slight deshielding at C-6 as anticipated.²³ Deshielding of C-1' was also evident in going from (47) to (48) (Table 3). When we consider the $\Delta\delta_{\rm C}$ values for the free bases in going from 3-deamino-2deoxy-3-hydroxystreptamine (51) to (47), and from

					γ-E	ffects o	f the 1-N-	alkyl g	groups						
	1-NH ₂ 1-NHC			NHCH,	I, 1-NHCH(CH ₃),			1	1-NHCH2CH3OH			1-NHCH3CH3C4H5			
Gentamicin C ₁ $\delta_C eq$ ax $\Delta \delta_C eq$ ax	Compd. (20) (25)	C-2 36.8 33.4	C-6 87.9 78.7	Compd. (26) (27) (20) \rightarrow (26) (25) \rightarrow (27)	C-2 32.5 30.3 -4.3 -3.1	C-6 86.4 78.7 -1.5 0	$\overbrace{(29)\\(20)\rightarrow(28)\\(25)\rightarrow(29)}^{\text{Compd.}}$	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & -3.3 \\ & & \\ & -1.2 \end{array}$	C-6 87.2 77.9 0.7 0.8	Compd. (30) (31) (20) \rightarrow (30) (25) \rightarrow (31)	C-2 33.2 31.1 -3.6 -2.3	C-6 86.3 78.7 1.6 0	Compd. (32) (33) (20) \rightarrow (32) (25) \rightarrow (33)	C-2 33.1 31.0 -3.7 -2.4	C-6 86.3 78.6 1.6 0.1
	$\begin{array}{c c} & 1-N \\ Sisomicin & \hline Compd. \\ \delta_C eq & (7) \\ \delta_C eq & 16 \\ \Delta_{\delta_C} eq \\ ax & \end{array}$			-NH ₃		1-NHCH ₂ CH ₃ 1-NHCH ₂ CH ₂ CH ₂ N(CH ₃) ₃					H3)8				
				Compd. (7) 16)	C-2 36.4 34.1	C-6 87.8 78.9	$\overbrace{(17)}^{\text{Compd.}}_{(17)}$ $(7) \rightarrow (8)$ $(16) \rightarrow (17)$	C-2 32.7 30.6 -3.7 -3.5	C-6 86.7 78.4 -1.1 -0.5	$\overbrace{(19)}{(7) \rightarrow (}$	pd. C 32 30 (18) -3 (19) -3	2 7 80 7 7 7	C-6 8.8 8.5 1.0 0.4		
							1-NH,		1	-NHCH2CH					
	2-De		$\begin{array}{c} \text{Doxystreptamine} \\ \delta_{\text{C}} eq \\ ax \\ \Delta \delta_{\text{C}} eq \\ ax \end{array}$		Compd. (53) (54)	C-2 37.0 33.9	C-6 28.5 24.8	$\overbrace{(55)}_{(56)}$ $\overbrace{(53)\rightarrow(55)}_{(54)\rightarrow(55)}$	$\begin{array}{c} & & C-2 \\ & & 33.8 \\ & & 30.1 \\ 5) & -3.2 \\ 6) & -3.8 \end{array}$	C-6 76.3 73.9 -2.2 -0.9					

TABLE 5

which appears to be characteristic of these derivatives. The origin of these shifts is not known as changes in the rotamer population about the O-C-4 glycosidic bond would not be expected in these derivatives relative to the gentamicins and sisomicin (7). In the 1-axial aminoderivatives we also observe pronounced shielding at C-1, C-6, and C-1". The latter arises for the same reasons as discussed for the 1-epi-hydroxy-derivatives earlier, leading to the introduction of a strong shielding component at C-6 which results in an observed net deshielding of +3.9 to +4.5 in these compounds. The 6 O-glycoside therefore adopts a rotamer about the O-C 6 glycosidic bond in these 1-epi-amino-compounds, which closely approximates $c.^{33}$ The magnitude of the γ -effects at C-2 and C-6 upon introduction of the 1-Nalkyl substituents are given in Table 5, greater shielding being evident at C-2 than at C-6 in all instances.

1-Deaminogentamicin C_1 (34) exhibited δ_C values (Table 2) and $\Delta\delta_C$ values (Table 3) that were consistent w th removal of the equatorial 1-amino-group. The 4-O-glycosyl resonances remained unchanged indicating that the 4-O-glycoside was present as the usual rotamer *a* about the O-C-4 glycosidic bond.^{1,24-33} Pronounced shielding of C-1" was observed in (34) indicating that the 6-O-glycoside adopts rotamer *c* about the O-glycosidic bond as was observed previously for the 1-*epi*-hydroxyand 1-*epi*-amino-compounds. It is evident from these results that removal of the critical interaction between the equatorial 1-substituent and the 6-O-glycoside, 3-deamino-2-deoxy-3-epi-hydroxystreptamine (52) to (48) (Table 4) we observed shielding at C-3 as expected and also a reduced net deshielding at C-4 relative to that observed in gentamic C_{1a} (35). This indicates that in these molecules the 4-O-glycoside has undergone a modest clockwise rotation about the O-C-4 glycosidic bond relative to rotamer a^{33} Some shielding of C-1' is also evident in (47). We also observe shielding at C-5 and a net deshielding at C-6 of +9.4 and +9.3 in (47) and (48), similar to that observed in gentamicin C_{1a} (35) which indicates that the 6-O-glycoside adopts rotamer babout the O-C-6 glycosidic bond as expected.^{1,24-33} Epimerization of the 3-amino-group in going from gentamicin C_{1a} (35) to 3-epi-gentamicin C_{1a} (50) resulted in shielding at C-1, C-2, C-3, C-4, and C-5, with slight deshielding evident at C-6 (Table 3). When we consider the $\Delta\delta_0$ values for the free bases in going from 2-deoxy-3epi-streptamine (57) to (50) (Table 4) we observed similar shielding at C-3 and net deshielding at C-4 to that observed in the case of the 3-epi-hydroxy-derivative (48) indicating that both adopt the same rotamer about the O-C-4 glycosidic bond. Negligible shielding occurs at C-5 in (50) and the net deshielding observed at C-6 is greater than usually observed. The 6-O-glycoside adopts rotamer b about the O-C-6 glycosidic bond in (50). Further data on the solution conformations of these novel 1- and 3-substituted aminoglycosides at acidic pHs will be discussed in one of the following papers.³³ Similar steric effects to those discussed above have been observed for glycosides having β -methyl groups on the aglycone ⁴⁴⁻⁴⁷ and our results with aminoglycosides are in good agreement with what has been observed previously.

The 1-hydroxy-, 1-epi-hydroxy-, 1-alkylamino-, and 1-epi-alkylamino-derivatives described above were all highly potent antibacterials and their biological activity has been described.² Epimerization of the 1-substituent resulted in no loss of biological potency. On the other hand the 3-hydroxy-, 3-epi-hydroxy-, and 3-epi-amino-derivatives were all essentially devoid of antibacterial activity.

EXPERIMENTAL

All physical data were recorded as described in Part 7.³¹ 1-Deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamicin С, (22).—3,2'-Bis-N-trifluoroacetylgentamicin C_1^{12} (21) (3.34 g) was dissolved in anhydrous methanol (60 ml). 3,5-Di-tbutyl-1,2-benzoquinone (1.12 g) was added and the solution was stirred under dry nitrogen at 25 °C for 24 h. The solution was acidified to pH 2.5-3.0 using 1M-sulphuric acid and the mixture was stirred at 25 °C. The hydrolysis was judged to be complete by t.l.c. after 4 h and the mixture was diluted with distilled water and the solids were filtered off. The aqueous filtrate was extracted with chloroform $(2 \times 200 \text{ ml})$ and then neutralized to pH 6 with Amberlite IRA 40IS (OH⁻) resin. The resin was removed by filtration and the filtrate was evaporated in vacuo to give 1-deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamicin C_1 (22) as the sulphate salt (3.3 g, 86%) the product being an amorphous solid, $[\alpha]_{\rm D}$ +129.5° (H₂O), $\nu_{\rm max}$ (KBr) 3 200, 1 680, 1 540, and 1 100 cm⁻¹, δ (D₂O) 1.21 (3 H, d, J 7 Hz, 6'-CH₃), 1.28 (3 H, s, 4"-CH₃), 2.69 (3 H, s, 6'-NCH₃), and 2.89 (3 H, s, 3"-NCH₃).

1-Deamino-1-hydroxygentamicin C1 (23) and 1-Deamino-1epi-hydroxygentamicin C_1 (24).—1-Deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamicin C_1 (sulphate salt) (22) (1 g) was dissolved in distilled water (30 ml) and the solution was acidified to pH 3 using 0.5M-sulphuric acid. Sodium cyanoborohydride (0.6 g) was added and the solution was stirred at 25 °C for 18 h. Concentrated ammonium hydroxide (10 ml) was added and the solution was stirred at 25 °C for 30 h. The reaction mixture was evaporated to dryness and the residue was chromatographed on a silica gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-deamino-1-hydroxygentamicin C_1 (23) (285 mg, 46%) as a solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization (Found: C, 52.6; H, 8.85; N, 11.5. $C_{21}H_{42}N_4O_8$ requires C, 52.70; H, 8.85; N, 11.71%), $[\alpha]_{\rm p} + 154.0^{\circ} ({\rm H_2O})$, $\nu_{\rm max.}$ (KBr) 3 300 and 1 050 cm⁻¹, δ (D₂O) 1.00 (3 H, d, J 7 Hz, 6'-CH₃), 1.14 (3 H, s, 4"-CH₃), 2.29 (3 H, s, 6'-NCH₃), 2.45 (3 H, s, 3''-NCH₃), 5.09 (1 H, d, $J_{1''eq,2''at}$ 4 Hz, 1''eq-H), and 5.22 (1 H, d, $J_{1'eq,2'ax}$ 4 Hz, 1'eq-H), and the 1-epi-analogue (24) (105 mg, 17%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{+*} , 478.3010. $C_{21}H_{42}N_4O_8$ requires M, 478.3002), $[\alpha]_{\rm p}$ +164.2° (H₂O), δ (D₂O) 1.00 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.15 (3 H, s, 4"-CH₃), 2.29 (3 H, s, 6'-NCH₃), 2.46 (3 H, s, 3"-NCH₃), 4.25 (1 H, m, 1-H), 5.00 (1 H, d, $J_{1''eq,2''ax}$ 4 Hz, 1''eq-N), and 5.11 (1 H, d, $J_{1'eq,2'ax}$ 3.5 Hz, 1'eq-H).

View Article Online

J.C.S. Perkin I

Gentamicin C₁ (20) and 1-epi-Gentamicin C₁ (25).-(a) Ammonium chloride (486 mg) was dissolved in dry methanol (23 ml) and the pH was adjusted to 6 using ammonia in methanol. 1-Deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamic C_1 (sulphate salt) (22) (1 g) was added and the pH was readjusted to 6 by addition of ammonia in methanol. Sodium cyanoborohydride (460 mg) was added and the reaction mixture was stirred at 25 °C for 20 h, the pH being maintained at 5.5-6. Concentrated ammonium hydroxide (20 ml) was added and the mixture was allowed to remain at 25 °C for 72 h. The solution was concentrated to dryness and the residue was chromatographed on a silica-gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give a mixture of 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1-epihydroxygentamicin C₁ (24) (194 mg, 27%) which was obtained as a colourless solid after lyophilization. The more polar fraction from the column consisted of a ca. 1: 1mixture of gentamicin C_1 (20) and 1-epi-gentamicin C_1 (25) (219 mg, 31%) which was obtained as a solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization. The latter could not be separated in any of the usual chromatographic systems and the ¹³C n.m.r. properties are given in Table 2.

(b) Ammonium chloride (121 mg) was dissolved in dry methanol (6 ml) and the pH was adjusted to 6 using ammonia in methanol. 1-Deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamicin C₁ (sulphate salt) (22) (250 mg) was added and the pH was readjusted to 6 by addition of ammonia in methanol. Morpholinoborane (183 mg) was added and the reaction mixture was stirred at 25 °C for 20 h, the pH being maintained at 5.5-6. Concentrated ammonium hydroxide (5 ml) was added and the mixture was allowed to remain at 25 °C for 72 h. The solution was concentrated to dryness and the residue was chromatographed on a silica-gel column (140 \times 1.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give a mixture of 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1-epi-hydroxygentamicin C₁ (24) (83 mg, 46%) which was obtained as a solid after lyophilization. The more polar fraction from the column consisted of a cu. 1:1 mixture of gentamicin C_1 (20) and 1-epi-gentamicin C_1 (25) (20 mg, 11%) which was obtained as a solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization.

1-N-Methylgentamicin C_1 (26) and 1-epi-N-Methylgentamicin C_1 (27).—The pH of a solution of methylamine (480 mg) in dry methanol (23 ml) was adjusted to pH 6 by addition of a solution of methanol saturated with dry hydrogen chloride gas. 1-Deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamicin C_1 (sulphate salt) (22) (1 g) was added and the pH was readjusted to 6 by addition of methylamine. Sodium cyanoborohydride (460 mg) was added and the reaction was stirred at 25 °C for 20 h, the pH being maintained at 5.5-6. Concentrated ammonium hydroxide (20 ml) was added and the mixture was allowed to remain at 25 °C for 100 h. The solution was concentrated to dryness and the residue was chromatographed on a silicagel column (165 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant. The less polar fractions were rechromatographed on a silica-gel column (160 \times 2.5 cm) using initially a chloroform-methanol-concentrated ammonium hydroxide solution (30:10:1 v/v) as the eluant, followed by the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-epi-N-methylgentamicin C_1 (27) (132 mg, 18%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 53.55; H, 9.1; N, 14.05. C₂₂H₄₅N₅O₇ requires C, 53.75; H, 9.23; N, 14.25%), [α]_D \div 193.6° (H₂O), ν_{max} (KCl) 3 300, 1 060, and 1 030 cm⁻¹, δ (D₂O) 0.99 (3 H, d, *J* 6.5 Hz, 6'-CH₃), 1.13 (3 H, s, 4''-CH₃), 2.25 (6 H, s, 1-NCH₃ and 6'-NCH₃), 2.44 (3 H, s, 3''-NCH₃), 2.44 (3 H, s, 3''-NCH₃), 4.93 (1 H, d, $J_{1'eq.2''ax}$ 4 Hz, 1''eq-H), and 5.07 (1 H, d, $J_{1'eq.2'ax}$ 3.5 Hz, 1'eq-H).

The intermediate polarity fractions from the initial column were rechromatographed on a silica-gel column (110 × 1 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-N-methylgentamicin C_1 (26) (25 mg, 3%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{+*} , 491.3340. $C_{22}H_{45}N_5O_7$ requires M, 491.3319), [x]_D + 122.4° (H₂O), δ (D₂O) 1.04 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.18 (3 H, s, 4"-CH₃), 2.29 (3 H, s, 6'-NCH₃), 2.32 (3 H, s, 1-NCH₃), 2.49 (3 H, s, 3"-NCH₃), 4.95 (1 H, d, $J_{1'eq,2''ax}$ 4 Hz, 1"eq-H), and 5.13 (1 H, d, $J_{1'eq,2'ax}$ 3.5 Hz, 1'-eq-H).

The most polar fraction from the initial column afforded a mixture of 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1-*epi*-hydroxygentamicin C_1 (24) (90 mg, 13%) as an amorphous solid after lyophilization.

1-N-Isopropylgentamicin C_1 (28) and 1-epi-N-Isopropylgentamicin C_1 (29).—The pH of a solution of isopropylamine (600 mg) in dry methanol (60 ml) was adjusted to pH 6 by addition of a solution of methanol saturated with dry hydrogen chloride gas. 1-Deamino-1-oxo-3,2'-bis-N-trifluoroacetylgentamicin C_1 (sulphate salt) (22) (1 g) was added and the pH was readjusted to 6 by addition of a drop of isopropylamine. Sodium cyanoborohydride (500 mg) was added and the reaction mixture was stirred at 25 °C for 16 h the pH being maintained at 5.5—6. Concentrated ammonium hydroxide (30 ml) was added and the mixture was allowed to remain at 25 °C for 72 h. The solution was concentrated to drvness and the residue was chromatographed on a silica-gel column (160 imes 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-epi-N-isopropylgentamicin C_1 (29) (25 mg, 3%) as an amorphous solid after passage over Amberlite IRA 40IS (OH^{-}) resin followed by lyophilization (Found: M^{+} , 519.3625. C₂₄H₄₉N₅O₇ requires M, 519.3632), δ (D₂O) 1.00 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.03 [3 H, d, J 6.5 Hz, CH(CH₃)₂], 1.06 [3 H, d, J 6.5 Hz, CH(CH₃)₂], 1.15 (3 H, s, 4"-CH₃), 2.39 (3 H, s, 6'-NCH₃), 2.47 (3 H, s, 3"-NCH₃), 4.87 (1 H, d, $J_{1''eq,2''ax}$ 4 Hz, 1''eq-H), and 5.14 (1 H, d, $J_{1'eq,2'ax}$ 3.5 Hz, 1'eq-H), and 1-N-isopropylgentamicin C_1 (28) (20 mg, $3^{0/2}_{1/0}$) as an amorphous solid after passage over Amberlite IRA 401S (OH⁻) resin followed by lyophilization (Found: M^{+*}) 519.3610. C₂₄H₄₉N₅O₇ requires M, 519.3632), δ (D₂O) 1.00 $(3 \text{ H}, \text{d}, f 6.5 \text{ Hz}, 6'-\text{CH}_3), 1.02 [6 \text{ H}, \text{d}, f 6.5 \text{ Hz}, \text{CH}(\text{CH}_3)_2],$ 1.15 (3 H, s, 4"-CH₃), 2.44 (3 H, s, 6'-NCH₃), 2.49 (3 H, s, 3"-NCH₃), 4.95 (1 H, d, $J_{1^{\prime\prime}eq,\,2^{\prime\prime}ax}$ 4 Hz, 1"eq-H), and 5.20 (1 H, d, J_{1'eq,2'as} 3.5 Hz, 1'ax-H).

The more polar fractions from the column afforded a mixture of 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1-*epi*-hydroxygentamicin C_1 (24) (120 mg, 17°_0}) as an amorphous solid after hyphilization.

2179

1-N-(2-Hydroxyethyl)gentamicin C_1 (30) and 1-epi-N-(2-Hydroxyethyl)gentamicin C_1 (31).—The pH of a solution of 2-hydroxyethylamine (720 mg) in dry methanol (30 ml) was adjusted to pH 6 by addition of a solution of methanol saturated with dry hydrogen chloride gas. 1-Deamino-1oxo-3,2'-bis-N-trifluoroacetylgentamicin C_1 (sulphate salt) (22) (1.3 g) was added and the pH was readjusted to 6 by addition of a few drops of 2-hydroxyethylamine. Sodium cyanoborohydride (600 mg) was added and the reaction mixture was stirred at 25 °C for 17 h, the pH being maintained at 5.5-6. Concentrated ammonium hydroxide (10 ml) was added and the mixture was allowed to remain at 25 °C for 48 h. The solution was concentrated to dryness and the residue was chromatographed on a silica-gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant. The major products were each rechromatographed on a silica-gel column (160 \times 2 cm) using chloroform-methanol-7% ammonium hydroxide solution (1:2:1 v/v) as the eluant in each case to give as the more polar product 1-N-(2-hydroxyethyl) gentamicin C_1 (30) (180 mg, 17%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 52.8; H, 8.95; N, 13.6. C₂₃H₄₇N₅O₈ requires C, 52.95; H, 9.08; N, 13.43%), $[\alpha]_{\rm p}$ +98.0° (H₂O), $\nu_{\rm max.}$ (KBr) 3 300 and 1 060 cm⁻¹, δ (D₂O) 0.99 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.13 (3 H, s, 4''-CH₃), 2.28 (3 H, s, 6'NCH₃), 2.45 (3 H, s, 3''-NCH_3), 4.97 (1 H, d, $J_{1^{\prime\prime}eq,\,2^{\prime\prime}ax}\,4$ Hz, $1^{\prime\prime}eq$ -H), and 5.11 (1 H, d, $J_{1'eq, 2'ax}$ 3.5 Hz, 1'eq-H), and as the less polar product the 1-epi-analogue (31) (150 mg, 15%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{+} . 521.3469. $C_{23}H_{47}N_5O_8$ requires M, 521.3469), $[\alpha]_D + 154.3^\circ$ (H₂O), $\nu_{\rm max}$ (KBr) 3 330 and 1 060 cm⁻¹, δ (D₂O) 0.99 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.14 (3 H, s, 4''-CH₃), 2.27 (3 H, s, 6'-NCH₃), 2.45 (3 H, s, 3"-NCH₃), 4.96 (1 H, d, J_{1"eq,2"ax} 4 Hz, 1''eq-H), and 5.08 (1 H, d, $J_{1'eq.\,2'ax}$ 3.5 Hz, 1'eq-H).

The more polar fractions from the initial column afforded traces of a mixture of 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1-epi-hydroxygentamicin C_1 (24).

1-N-(2-Phenylethyl)gentamicin C1 (32) and 1-epi-N-(2-Phenylethyl)gentamicin C_1 (33).—The pH of a solution of 2phenylethylamine (1.44 g) in dry methanol (30 ml) was adjusted to pH 6 by addition of a solution of methanol saturated with dry hydrogen chloride gas. 1-Deamino-1oxo-3,2'-bis-N-trifluoroacetylgentamicin C₁ (sulphate salt) (22) (1.3 g) was added and the pH was readjusted to 6 by addition of a few drops of 2-phenylethylamine. Sodium cyanoborohydride (600 mg) was added and the reaction mixture was stirred at 25 °C for 19 h, the pH being maintained at 5.5-6. Concentrated ammonium hydroxide (20 ml) was added and the mixture was allowed to remain at 25 °C for 116 h. The solution was concentrated to dryness and the residue was chromatographed on a silica-gel column (160 imes 2.5 cm) using the lower phase of a chloroform-propan-2-ol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-epi-N-(2-phenylethyl)gentamicin C_1 (33) (182 mg, 16%) as an amorphous solid after passage over Amerblite IRA 40IS (OH-) resin followed by lyophilization (Found: C, 59.85; H, 8.6; N, 11.65. C₂₉H₅₁N₅O₇ requires C, 59.87; H, 8.84; N, 12.04%), $[\alpha]_{\rm p}$ +152.1° (H_2O), $\nu_{\rm max}$ (KBr) 3 330, 1 065, and 1 030 cm^-1, δ (D₂O) 0.99 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.12 (3 H, s, 4"-CH₃), 2.27 (3 H, s, 6'-NCH₃), 2.44 (3 H, s, 3"-NCH₃), 4.81 (1 H, d, $J_{1'eq,2'ax}$ 4 Hz, 1''eq-H), 5.05 (1 H, d, $J_{1'eq,2'ax}$ 3.5 Hz, 1'eq-H), and 7.24 (5 H, s, C_6H_5), and 1-N-(2-phenylethyl)gentamicin C_1 (32) (107 mg, 9%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 59.05; H, 8.5; N, 12.7. $C_{29}H_{51}N_5O_7$ requires C, 59.87; H, 8.48; N, 12.04%), $[\alpha]_D$ + 99.4° (H₂O), ν_{max} (KBr) 3 300, 1 050, and 1 030 cm⁻¹, δ (D₂O) 0.99 (3 H, d, J 6.5 Hz, 6'-CH₃), 1.10 (3 H, s, 4''-CH₃), 2.28 (3 H, s, 6'-NCH₃), 2.43 (3 H, s, 3''-NCH₃), 4.88 (1 H, d, $J_{1'eq,2'ax}$ 4 Hz, 1''eq-H), 5.08 (1 H, d, $J_{1'eq,2'ax}$ 3.5 Hz, 1'eq-H), and 7.33 (5 H, s, C_6H_5).

The more polar fractions from the column afforded a mixture of 1-deamino-1-hydroxygentamicin C_1 (23) and 1-deamino-1-*epi*-hydroxygentamicin C_1 (24) (290 mg, 31%) as an amorphous solid after lyophilization.

1-Deamino-1-oxo-3,2',6'-tris-N-(2,2,2-trichloroethoxycar-

bonyl)gentamicin C_{1a} (37).—3,2',6'-Tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} ¹⁸ (36) (3.5 g) was dissolved in anhydrous methanol (70 ml). 3,5-Di-t-butyl-1,2-benzoquinone (770 mg) was added and the solution was stirred under dry nitrogen at 25 °C for 7 h. The solution was acidified to pH 3 using 1M-sulphuric acid and the mixture was stirred at 25 °C for 17 h The solution was neutralized to pH 7 using Amberlite IR 45 resin and filtered, and the filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column (20 × 3.5 cm) by gradient elution using chloroform (1.5 l), 1% methanol in chloroform (1 l), and 5% methanol in chloroform (1 l) as the eluant. Evaporation of the latter fractions afforded the *ketone* (37) (2.35 g, 68%) as an amorphous solid (Found: C, 32.9; H, 4.3; Cl, 32.0; N, 5.3. $C_{28}H_{40}Cl_9N_4O_{14}\cdot 2H_2O$ requires C, 33.2; H, 4.4; Cl, 31.5; N, 5.5%), $[\alpha]_D + 86.4^\circ$ (CHCl₃), v_{max} (KBr) 3 425, 3 350, 1 720, 1 520, 1 100, and 1 040 cm⁻¹.

1-(2,2,2-Trichloroethoxycarbonyl)imidazole.—Imidazole (1 g) was dissolved in tetrahydrofuran (10 ml) and the solution was cooled to 0 °C. 2,2,2-Trichloroethyl chloroformate (1.55 g) in tetrahydrofuran (10 ml) was added dropwise over 1 h. The mixture was then stirred at 25 °C for 1 h, filtered, and concentrated. The resulting solid was washed with water and dried to afford 1-(2,2,2-trichloroethoxycarbonyl)-imidazole (1.96 g, 96%), m.p. 80 °C, v_{max} . (CHCl₃) 3 000, 1 780, 1 400, 1 310, 1 280, 1 235, 1 165, and 1 015 cm⁻¹, δ (CDCl₃) 5.03 (2 H, s, CH₂CCl₃), 7.13 (1 H, m, 4-H), 7.48 (1 H, m, 5-H), and 8.20 (1 H, s, 2-H).

3"-N,4"-O-Carbonyl-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (38).-(a) 1-(2,2,2-Trichloroethoxycarbonyl)imidazole (624 mg) was added to a solution of 3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (36) 18 (500 mg) in dry tetrahydrofuran (10 ml) and the solution was allowed to remain at 25 °C for 24 h. The solution was evaporated and the residue was dissolved in ethyl acetate and washed with water. The ethyl acetate layer was dried (MgSO₄), filtered, and evaporated to dryness, and the residue was chromatographed on a silica-gel column (110 \times 2.5 cm) using 4% v/v methanol-chloroform as the eluant to give the 3"-N,4"-O-carbonyl derivative (38) (290 mg, 56%) as an amorphous solid (Found: C, 33.9; H, 4.0; Cl, 32.6; N, 6.65. $C_{29}H_{40}Cl_9N_5O_{14}$ ·H₂O requires C, 34.15; H, 4.15; Cl, 31.29; N, 6.87%), $[\alpha]_{D} + 78.6^{\circ}$ (CHCl₃), $v_{max.}$ (KBr) 3 375, 2 940, 1 730, and 1 520 cm⁻¹, 8 (CDCl₃), 1.38 (3 H, s, 4"-CH₃), 2.98 (3 H, s, 3"-NCH₃), 4.77br (6 H, s, CH₂CCl₃), 5.08 (1 H, m, 1"-H), and 5.43 (1 H, m, 1'-H).

(b) 1,1'-Carbonyldi-imidazole (5 mg) was added to a solution of 3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)-gentamicin C_{1a} ¹⁸ (36) (30 mg) in tetrahydrofuran (5 ml) and

J.C.S. Perkin I

the solution was allowed to remain at 25 °C for 0.25 h. The mixture was worked up as in (a) above to give the carbonyl derivative (38).

3''-N-Acetyl-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (39).—3,2',6'-Tris-N-(2,2,2-trichloroethoxycarbonylgentamicin C_{1a} ¹⁸ (36) (1.8 g) was dissolved in a solution of tetrahydrofuran (75 ml) and water (38 ml). 1-Acetylimidazole (248 mg) was added and the reaction mixture was kept at 25 °C for 65 h. The solution was evaporated to dryness and the residue was azeotroped with benzene. Chromatography on a silica-gel column (30 × 3 cm) using 10% v/v methanol-chloroform as the eluant afforded 3''-N-acetyl-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (39) (1.32 g, 70%) as an amorphous solid (Found: C, 35.5; H, 4.3; Cl, 31.2; N, 6.5. $C_{30}H_{44}$ - $Cl_9N_5O_{14}$ requires C, 35.4; H, 4.4; Cl, 31.4; N, 6.9%), [a]_p +72.3° (CHCl₃), v_{max} (KBr) 3 350, 2 930, 1 725, and 1 620 cm⁻¹, $\delta_{\rm H}$ (CDCl₃), 1.10br (3 H, s, 4''-CH₃), 2.17 (3 H, s, 3''-NAc), 3.15 (3 H, s, 3''-NCH₃), and 4.72 (6 H, m, OCH₂CCl₃).

3''-N-Acetyl-1-deamino-1-oxo-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (40).-3"-N-Acetyl-3,2',6'tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C₁₈ (39) (8.57 g) was dissolved in methanol (225 ml) and 3,5-di-tbutyl-1,2-benzoquinone (2.04 g) was added. After 16 h at 25 °C, tetrahydrofuran (20 ml), and water (10 ml) were added. Oxalic acid was then added until pH 3 and the mixture was stirred at 25 °C for 24 h. The solution was evaporated and the residue was taken up in chloroform and filtered and the filtrate was evaporated. Chromatography on a silica-gel column (45×3 cm) using 3% v/v methanolchloroform as the eluant afforded the ketone (40) (8.1 g, 94%) as an amorphous solid (Found: C, 35.0; H, 4.4; Cl, 30.8; N, 5.4. $C_{30}H_{41}Cl_9N_4O_{15}H_2O$ requires C, 34.8; H, 4.2; Cl, 30.8; N, 5.4%), $\left[\alpha\right]_{D}$ +95.3° (CHCl₃), $\nu_{max.}$ (KBr) 3 425, 3 325, 2 950, 1 730, and 1 620 cm⁻¹, $\delta_{\rm H}$ (CDCl₃) 1.05br (3 H, s, 4"-CH₃), 2.12 (3 H, s, 3"-NAc), 3.15 (3 H, s, 3"- NCH_3), and 4.74br (6 H, s, OCH_2CCl_3).

1-Deamino-1-hydroxygentamicin C_{1a} (41) and 1-Deamino-1epi-hydroxygentamicin C_{1a} (42).—(a) 1-Deamino-1-oxo-3,2',6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (37) (1.7 g) was dissolved in methanol (50 ml) and the solution was adjusted to pH 3 using 1M-sulphuric acid. Sodium cyanoborohydride (408 mg) was added and the solution was stirred at 25 °C for 18 h. The reaction mixture was evaporated to dryness and the residue was taken up in 10%acetic acid in methanol (50 ml). Powdered zinc (428 mg) was added and the mixture was heated under reflux for 3 h. The solution was filtered and the filtrate was evaporated to dryness and the residue was then azeotroped with toluene. The solid was dissolved in water and the solution was adjusted to pH 3 by addition of 2M-hydrochloric acid. The solution was reconcentrated, azeotroped with toluene, and then dissolved in water and passed over Amberlite IRA 40IS (OH^{-}) resin. The eluate was evaporated to dryness and the residue was chromatographed first on a silica-gel column (160 \times 2.5 cm) using chroform-methanol-10% ammonium hydroxide solution (1:2:1 v/v) as the eluant and then again on a silica-gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-deamino-1-hydroxygentamicin C_{1a} (41) (54 mg, 7%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^+ , 450.2641. C₁₉H₃₈N₄O₈ requires *M*, 450.2689), $[\alpha]_{\rm D}$ +150.7° (H₂O), $\nu_{max.}$ (KBr) 3 340 and 1 050 cm⁻¹, δ (D₂O) 1.17 (3 H,

s, 4''-CH₃), 2.50 (3 H, s, 3''-NCH₃), 5.18 (1 H, d, $J_{1''ax,2''ax}$ 4 Hz, 1''eq-H), and 5.24 (1 H, d, $J_{1'eq,2'ax}$ 3.8 Hz, 1'eq-H), and the 1-epi-analogue (42) (33 mg, 4%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{+*} , 450.2667. C₁₉H₃₈-N₄O₈ requires M, 450.2689), [a]_D + 158.3° (H₂O), v_{max} . (KBr) 3 350, 1 055, and 1 020 cm⁻¹, δ (D₂O) 1.17 (3 H, s, 4''-CH₃), 2.50 (3 H, s, 3''-NCH₃), 4.24 (1 H, m, 1-H), 5.03 (1 H, d, $J_{1'eq,2'ax}$ 4 Hz, 1''eq-H), and 5.20 (1 H, d, $J_{1'eq,2'ax}$ 3.8 Hz, 1'eq-H).

(b) 1-Deamino-1-oxo-3,2'6'-tris-N-(2,2,2-trichloroethoxycarbonyl)gentamicin C_{1a} (37) (1.3 g) was dissolved in ethanol (50 ml) and the solution was adjusted to pH 7 using 1Msulphuric acid in ethanol. Sodium borohydride (494 mg) was added and the mixture was stirred under argon for 3 h at 25 °C. The excess of hydride was destroyed by dropwise addition of acetic acid and the solution was evaporated to dryness. The resulting solid was dissolved in 10% acetic acid in methanol (50 ml) and powdered zinc (338 mg) was added. The mixture was heated under reflux for 4.5 h. The mixture was filtered and the combined filtrate and methanol washings were evaporated to dryness and azeotroped with toluene. The solid was dissolved in water (10 ml) and the solution was adjusted to pH 4 with 2Mhydrochloric acid. The solution was evaporated to dryness and the residue was dissolved in water and passed over Amberlite IRA 40IS (OH-) resin. The eluate was evaporated to dryness and the residue was chromatographed on a silica-gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-10% ammonium hydroxide solution (2:1:1 v/v) as the eluant to give after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization, 1deamino-1-hydroxygentamicin C_{1a} (41) (43 mg, 7%) and 1-epi-analogue (42) (65 mg, 11%) as amorphous solids, which were identical with samples prepared in (a) above.

3,2'6'-Tri-N-acetyl-1-deamino-1-oxosisomicin (10).---3,2'6'-Tri-N-acetylsisomicin ¹⁸ (9) (5 g) was dissolved in anhydrous methanol (200 ml). 3,5-Di-t-butyl-1,2-benzoquinone (1.92 g) was added and the solution was stirred under dry nitrogen at 25 °C for 25 h. The solution was acidified to pH 3 using 1M-sulphuric acid and the mixture was stirred at 25 °C. The hydrolysis was judged to be complete (t.l.c.) after 15 h, and the mixture was diluted with distilled water and extracted with chloroform $(3 \times 50 \text{ ml})$. The aqueous layer was neutralized to pH 7 with 2M-ammonium hydroxide and then passed over Amberlite IR 45 resin. The aqueous eluate was concentrated in vacuo and lyophilized to give 3,2',6'-tri-N-acetyl-1-deamino-1oxosisomicin (10) (5 g, 100%) as an amorphous solid, $[\alpha]_n$ + 186.1° (H₂O), $\nu_{\rm max}$ (KCl) 3 200 and 1 020 cm⁻¹, δ (D₂O) 1.30 (3 H, s, 4″-CH₃), 1.87, 1.91, and 1.96 (9 H, 3 s, NHAc), and 2.90 (3 H, s, 3"-NCH₃).

3''-N-Acetyl-3,2',6'-tri-N-benzoylsisomicin (12).--3,2'6'-Tri-N-benzoylsisomicin (11) ¹⁸ (2.22 g) was dissolved in a mixture of tetrahydrofuran (90 ml) and water (45 ml). 1-Acetylimidazole (483 mg) in tetrahydrofuran (20 ml) was added and the solution was stirred at 25 °C for 16 h. The solution was evaporated to dryness. The residue was azeotroped with benzene and then chromatographed on a silicagel column (30 × 3 cm) using 10% v/v methanol-chloroform as the eluant to give the 3''-N-acetyl derivative (12) as an amorphous solid (2.01 g, 85%) (Found: C, 61.6; H, 6.4; N, 8.6. $C_{42}H_{51}N_5O_{11}$ ·H₂O requires C, 61.5; H, 6.5; N, 8.5%), [α]_D + 120.5° (DMSO), ν_{max} (KBr) 3 325, 2 920, and 1 640 cm⁻¹, $\delta_{\rm H}$ ([²H₆]DMSO) 1.08 (3 H, m, 4''-CH_o), 2.05 (3 H, s, 3"-NAc), 3.10 (3 H, s, 3"-NCH₃), 7.50 (9 H, m, Ar), and 7.95 (6 H, m, Ar).

3''-N-Acetyl-3,2',6'-tri-N-benzoyl-1-deamino-1-oxosiso-

micin (13).—Freshly decarbonated 3"-N-acetyl-3,2',6'-tri-N-benzoylsisomicin (12) (767 mg) was dissolved in methanol (20 ml) and tetrahydrofuran (5 ml). 3,5-Di-t-butyl-1,2benzoquinone (232 mg) was added and the reaction mixture was stirred at 25 °C for 18 h. An aqueous solution of malonic acid was added to pH 4 and the mixture was allowed to remain at 25 °C for 24 h. The solution was evaporated to dryness and chromatographed on a silica-gel column (30 \times 2.5 cm) using 3% v/v methanol-chloroform as the eluant to give the ketone (13) (651 mg, 85%) as an amorphous solid (Found: C, 62.8; H, 6.2; N, 6.9. C42H48- N_4O_{12} requires C, 63.0; H, 6.0; N, 7.0%), $[\alpha]_D + 157.1^\circ$ (DMSO), $\nu_{\rm max.}$ (KBr) 3 300, 2 920, 1 720, and 1 650 cm $^{-1},$ $\delta_{\rm H}$ (CDCl₃) 1.00br (3 H, s, 4"-CH₃), 2.10br (3 H, s, 3"-NAc), 3.10br (3 H, s, 3"-NCH₃), 7.50 (9 H, m, Ar), and 7.90br (6 H, s, Ar).

1-Deamino-1-hydroxysisomicin (14) and 1-Deamino-1-epihydroxysisomicin (15).-(a) 3,2',6'-Tri-N-acetyl-1-deamino-1-oxosisomicin (10) (2 g) was dissolved in methanol-water (8:2 v/v; 100 ml) and the solution was acidified to pH 3 using 1M-sulphuric acid. Sodium cyanoborohydride (880 mg) was added and the solution was stirred under dry argon at 25 °C for 18 h. The solution was filtered and the filtrate was evaporated to dryness in vacuo. The gum was dissolved in 5% w/v aqueous sodium hydroxide (70 ml) and the solution was heated under reflux under argon for 60 h. The solution was cooled and neutralized with Amberlite IRC 50 (H^+) resin, and the latter was washed with water (2 l). The resin was then eluted with 7% ammonium hydroxide solution (2.5 l) and the basic eluate was evaporated to dryness. The resulting gum was chromatographed on a silica-gel column (160 imes 2.5 cm) using the lower phase of a chloroform-methanol-14% ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-deamino-1-hydroxysisomicin (14) (170 mg, 11%) as a solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 49.65; H, 8.0; N, 12.8. C₁₉H₃₆N₄O₈·0.5H₂O requires: C, 49.90; H, 8.15; N, 12.25%), $[\alpha]_{D} + 168.3^{\circ}$ $(\rm H_2O), \, \nu_{max}$ (KCl) 3 350, 1 680, and 1 000 cm^-1, δ (D_2O) 1.22 (3 H, s, 4''-CH_3), 2.52 (3 H, s, 3''-NCH_3), 4.90 (1 H, m, 4'-H), 5.29 (1 H, d, $J_{1''eq,2''ax}$ 4 Hz, 1''eq-H), and 5.38 (1 H, d, $J_{1'eq,2'ax}$ 2 Hz, 1'eq-H). The more polar fractions were rechromatographed on a silica-gel column $(160 \times 2.5 \text{ cm})$ using chloroform-methanol-7% ammonium hydroxide solution (1:2:1 v/v) as the eluant to give the 1-epi-analogue (15) (117 mg, 7%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{+*} , 448.2517. $C_{19}H_{36}N_4O_8$ requires M, 448.2533), $\left[\alpha\right]_{D}$ +145.4° (H₂O), $\nu_{\rm max.}$ (KBr) 3350, 1680, and 1075 cm⁻¹, δ (D₂O) 1.23 (3 H, s, 4"-CH₃) 2.52 (3 H, s, 3"-NCH₃), 4.34 (1 H, m, 1-H), 4.91 (1 H, m, 4'-H), 5.08 (1 H, d, J_{1''eq, 2''ax} 3.5 Hz, 1''eq-H), and 5.39 (1 H, d, $J_{1'eq,2'ax}$ 2.5 Hz, 1'eq-H).

(b) L-Selectride (1M) (2.5 ml) was added dropwise to a solution of 3"-N-acetyl-3,2',6'-tri-N-benzoyl-1-deamino-1-oxosisomicin (13) (1 g) in dry tetrahydrofuran (12 ml) at -78 °C under nitrogen. After 2 h at -78 °C the mixture was oxidized with 5% sodium hydroxide and 50% hydrogen peroxide solutions and then diluted with water and extracted with chloroform. The organic layer was washed with brine, dried (MgSO₄), and evaporated. The residue was heated under reflux with 5% aqueous sodium hydroxide under nitrogen for 40 h. The mixture was cooled, and neutralized

with hydrochloric acid and Amberlite IRC 50 (H⁺) resin. The resin was washed with water and the latter was discarded. Washing with 7% aqueous ammonium hydroxide afforded the crude product which was chromatographed on a silica-gel column (160 \times 3 cm) using the lower phase of a chloroform-methanol-15% ammonium hydroxide solution as the eluant to give 1-deamino-1-hydroxysisomicin (14) (14 mg, 3%) and its 1-epi-analogue (15) (108 mg, 19%) which were identical with the samples prepared in (a) above.

Sisomicin (7) and 1-epi-Sisomicin (16).-Ammonium acetate (2.7 g) was dissolved in dry methanol (100 ml) and the pH was adjusted to 5 using dry hydrogen chloride in methanol. 3,2',6'-Tri-N-acetyl-1-deamino-1-oxosisomicin (10) (2 g) was added and the mixture was stirred at 25 °C for 7 h. Sodium cyanoborohydride (1.8 g) was added and the reaction mixture was stirred at 25 °C for 18 h. The mixture was filtered and the filtrate was evaporated to dryness. The solid was dissolved in 5% aqueous sodium hydroxide (100 ml) and the mixture was heated under reflux for 50 h under argon. The mixture was cooled, neutralized with Amberlite IRC 50 (H⁺) resin, and the resin was washed with water (21). The resin was then eluted with 7% ammonium hydroxide solution (2.5 l) and the basic eluate was evaporated to dryness and the residue was chromatographed on a silica-gel column (160 \times 5 cm) using chloroform-methanol-7% ammonium hydroxide (1:2:1 v/v) as the eluant to give a mixture of 1-deamino-1-hydroxysisomicin (14) and 1deamino-1-epi-hydroxysisomicin (15) as well as a mixture of sisomicin (7) and 1-epi-sisomicin (16).

The amines (7) and (16) were rechromatographed on a silica-gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give sisomicin (7) (76 mg, 5%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization, which was identical (t.l.c. and mass and ¹H n.m.r. spectra) with an authentic sample. The more polar fractions from the column afforded 1-epi-sisomicin (16) (156 mg, 10%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization [Found: $(M + 1)^+$, 448.2728. C₁₉H₃₈N₅O₇ requires M + 1, 448.2771], [α]_p + 117.8° (H₂O), $\nu_{\text{max.}}$ (KBr) 3 350, 1 670, and 1 050 cm⁻¹, δ (D₂O) 1.29 (3 H, s, 4"-CH₃), 2.61 (3 H, s, 3"-NCH₃), 5.02 (1 H, m, 4'-H), 5.10 (1 H, d, $J_{1'req.5'nx}$ 3.5 Hz, 1"eq-H), and 5.46 (1 H, d, $J_{1'req.2'ax}$ 2 Hz, 1'eq-H).

The alcohols (14) and (15) were rechromatographed on a silica-gel column (160 \times 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-deamino-1-hydroxysisomicin (14) (70 mg, 4%) and 1-deamino-1-*epi*-hydroxysisomicin (15) (15 mg, 3%) which were identical with authentic samples (t.l.c.).

1-N-Ethylsisomicin (8) and 1-epi-N-Ethylsisomicin (17). (a) The pH of a solution of ethylamine (1.62 g) in dry methanol (100 ml) was adjusted to pH 5.5 by addition of a solution of methanol saturated with dry hydrogen chloride gas. 3,2',6'-Tri-N-acetyl-1-deamino-1-oxosisomicin (10) (4 g) was added and the reaction mixture was stirred at 25 °C for 7 h. Sodium cyanoborohydride (1.76 g) was added and the reaction mixture was stirred at 25 °C for 18 h during which time the pH of the solution gradually rose from pH 5 to pH 6.9. The solution was concentrated and the residue was taken up in $5^{\circ}_{.0}$ aqueous sodium hydroxide (200 ml) and the mixture was heated under reflux for 50 h under argon. The mixture was cooled and neutralized with

J.C.S. Perkin I

Amberlite IRC 50 (H⁺) resin, and the resin was washed with water (21). The resin was then eluted with 7% ammonium hydroxide solution (2.5 1) and the basic eluate was evaporated to dryness and the residue was chromatographed on a silica-gel column (160 \times 7 cm) using the lower phase of a chloroform-methanol-14% ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-epi-N-ethylsisomicin (17) (633 mg, 19%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 48.95; H, 8.35; N, 13.15. C₂₁H₄₁N₅O₇·H₂O· CO_2 requires C, 49.14; H, 8.06; N, 13.02%), $[\alpha]_D + 195.9^\circ$ (H₂O), ν_{max} (KBr) 3 350, 1 680, 1 050, and 1 020 cm⁻¹, δ (D₂O) 1.12 (3 H, t, J 7.5 Hz, NHCH₂CH₃), 1.27 (3 H, s, 4"-CH₃), 2.57 (3 H, s, 3"-NCH₃), 4.96 (1 H, m, 4'-H), 5.03 (1 H, d, $J_{1''eq, 2''ax}$ 4 Hz, 1''eq-H), and 5.41 (1 H, d, $J_{1'eq, 2'ax}$ 2 Hz, 1'eq-H, and 1-N-ethylsisomicin (8) (339 mg, 10%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization, $[\alpha]_{\rm D} + 129.5^{\circ}$ (H₂O), v_{max} (KBr) 3 350, 1 680, 1 050, and 1 020 cm⁻¹, δ (D₂O) 1.07 (3 H, t, NHCH₂CH₃), 1.21 (3 H, s, 4"-CH₃), 2.53 (3 H, s, 3"-NCH₃), 4.89 (1 H, m, 4'-H), 5.00 (1 H, d, J_{1"eq,2"ar} 4 Hz, 1''eq-H), and 5.36 (1 H, d, $J_{1'eq, 2'ax}$ 2 Hz, 1'eq-H).

The more polar fractions from the column afforded 1deamino-1-hydroxysisomicin (14) (320 mg, 10%), 1-deamino-1-*epi*-hydroxysisomicin (15) (176 mg, 6%), and sisomicin (7) (159 mg, 4%) as amorphous solids.

(b) To a suspension of sodium hydride (379 mg, 57%; washed with hexane) in dry dimethoxyethane (4 ml) under nitrogen, was added a solution of diethyl N-ethylphosphoramidate (43) (814 mg) in dimethoxyethane (6 ml). The mixture was heated to 50 °C for 1.5 h and allowed to cool. The clear solution was transferred via a syringe to a clean flask under nitrogen. A solution of 1-N-acetyl-3,2',6'-tri-N-benzoyl-1-deamino-1-oxosisomicin (13) (340 mg) in dimethoxyethane (5 ml) was added dropwise and the mixture was heated at 50 °C for 1 h. The solution was cooled to -78 °C and L-Selectride (0.85 ml) was added dropwise. After 2 h at -78 °C the excess of L-Selectride was quenched with methanol. 5% Sodium hydroxide (1.5 ml) and 50% hydrogen peroxide (0.75 ml) solutions were added and the reaction was warmed slowly to 25 °C. Water was added and the mixture was extracted with chloroform. The organic extracts were washed with brine, dried (Na_2SO_4) , and evaporated. The residue was heated under reflux with 5% aqueous sodium hydroxide under nitrogen for 40 h. The mixture was cooled and neutralized with hydrochloric acid and Amberlite IRC 50 (H⁺) resin. The resin was washed with water and the latter was discarded. Elution with 7% aqueous ammonium hydroxide followed by evaporation afforded 1-epi-N-ethylsisomicin (17) (30 mg, 15%) which was identical with that prepared in (a) (t.l.c.).

1-N-(3-Dimethylaminopropyl)sisomicin (18) and 1-epi-N-(3-Dimethylaminopropyl)sisomicin (19).—The pH of a solution of 3-dimethylaminopropylamine (2.08 g) in dry methanol (100 ml) was adjusted to pH 5.7 by addition of a solution of methanol saturated with dry hydrogen chloride gas. 3,2',6'-Tri-N-acetyl-1-deamino-1-oxosisomicin (10) (2.13 g) was added and the reaction mixture was stirred under dry argon at 25 °C for 7 h. Sodium cyanoborohydride (857 mg) was added and the reaction mixture was stirred at 25 °C for 18 h. The solution was concentrated and the residue was taken up in 5% aqueous sodium hydroxide (100 ml) and the mixture was heated under reflux for 50 h under argon. The solution was cooled, neutralized with Amberlite IRC 50 (H⁺) resin, and the resin was washed with water (1.5 l). The resin was eluted with 7% ammonim hydroxide solution (21) and the basic eluate was evaporated to dryness. The residue was chromatographed on a silicagel column (160 \times 5 cm) and then again on a silica-gel column (160 \times 3.5 cm) using in each case the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant, to give 1-epi-N-(3dimethylaminopropyl)sisomicin (19) (139 mg, 7%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{+*} , 532.3541. $C_{24}H_{48}N_6O_7$ requires *M*, 532.3584), $[\alpha]_D^{26} + 162.5^{\circ}$ (H_2O) , v_{max} (KBr) 3 325, 1 675, 1 050, and 1 020 cm⁻¹, δ (D₂O) 1.21 (3 H, s, 4"-CH₃), 2.19 [6 H, s, -N(CH₃)₂], 2.52 (3 H, s, 3''-NCH₃), 4.90 (1 H, m, 4'-H), 5.00 (1 H, d, $J_{1''eq,2''ax}$ 4 Hz, 1'eq-H), and 5.38 (1 H, d, $J_{1'eq, 2'ax}$ 2 Hz, 1'eq-H), and 1-N-(3-dimethylaminopropyl)sisomicin (18) (106 mg, 5%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: M^{++} , 532.3543. $C_{24}H_{48}N_6O_7$ requires *M*, 532.3584), $[\alpha]_D + 112.3^{\circ}$ (H₂O), ν_{max} (KBr) 3 350, 1 680, 1 055, and 1 020 cm⁻¹, δ (D₂O), 1.20 (3 H, s, 4"-CH₃), 2.19 [6 H, s, $-N(CH_3)_2$], 2.50 (3 H, s, 3"-NCH₃), 4.88 (1 H, m, 4'-H), 4.97 (1 H, d, J_{1"eq,2"ax} 4 Hz, 1''eq-H), and 5.34 (1 H, d, $J_{1'eq,2'ax}$ 2 Hz, 1'eq-H).

The more polar fractions from the column afforded 1deamino-1-hydroxysisomicin (14) (68 mg, 4%) and 1deamino-1-epi-hydroxysisomicin (15) (68 mg, 4%) as amorphous solids.

1-Deaminogentamicin C1 (34).-1-Deamino-1-oxo-3,2'bis-N-trifluoroacetylgentamicin C_1 (22) (990 mg) was dissolved in dimethylformamide (10 ml) and sulpholan (10 ml). Toluene-p-sulphonyl hydrazide (300 mg) and toluene-psulphonic acid (30 mg) were added and the mixture was heated at 70 °C for 30 min. Sodium cyanoborohydride (300 mg) was added and the mixture was heated at 85 °C for 15 h. After cooling to 25 °C, concentrated ammonium hydroxide (12 ml) was added and the solution was allowed to remain at 25 °C for 16 h. The mixture was neutralized by addition of Amberlite IRC 50 (H⁺) resin and the resin was washed with water and then eluted with 20% aqueous ammonium hydroxide which on evaporation gave a gum. Chromatography on a silica-gel column (100 \times 3.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant, followed by rechromatography of the appropriate fractions on a silica-gel column (160 imes 2.5 cm) using the lower phase of a chloroform-methanol-14% ammonium hydroxide solution (2:1:1 v/v) as the eluant afforded 1-deaminogentamicin C_1 (34) (23 mg, 3%) as an amorphous solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization (Found: M^{+*} , 462.3053. $C_{21}H_{42}N_4O_7$ requires M, 462.3078), $\left[\alpha\right]_{\rm D}$ +155.9° (H₂O), δ (D₂O) 0.97 (3 H, d, J_{6',7'} 6.5 Hz, 7'-CH₃), 1.14 (3 H, s, 4''-CH₃), 2.23 (3 H, s, 6'-NCH₃), 2.44 (3 H, s, 3''-NCH₃), 2.54 (1 H, d, J_{2''ax,3''ax} 10.5 Hz, 3"ax-H), 3.25 (1 H, d, J_{5"ax,5"eq} 12.5 Hz, 5"ax-H), 3.67 (1 H, dd, J_{1''eq,2''ax} 4, J_{2''ax,3''ax} 10.5 Hz, 2''ax-H), 3.93 (1 H, d, $J_{5''ax,5''eq}$ 12.5 Hz, 5''eq-H), 4.98 (1 H, d, $J_{1''eq,2''ax}$ 4 Hz, 1''eq-H), and 5.05 (1 H, d, $J_{1'eq,2'ax}$ 4 Hz, 1'eq-H).

O-2-Amino-2,3,4,6,7-pentadeoxy-6-methylamino- α -Dglycero-D-erythro-heptopyranosyl- $(1 \longrightarrow 4)$ -O-[3-deoxy-4-C-methyl-3-methylamino- β -L-arabinopyranosyl- $(1 \longrightarrow 2)$]-1,2,4-trihydroxybenzene (44).—1-Deamino-1-oxo-3,2'-bis-Ntrifluoroacetylgentamicin C₁ (22) (2.4 g) was dissolved in concentrated ammonium hydroxide (30 ml) and the mixture was allowed to remain at 25 °C for 24 h. The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column (110 × 2.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give the *phenol* (44) (800 mg, 51%) as an amorphous solid (Found: C, 57.0; H, 7.9; N, 9.4. $C_{21}H_{35}N_3O_7$ requires C, 57.1; H, 8.0; N, 9.5%), [α]_D + 227.8° (H₂O), λ_{max} (MeOH) 220 (ε 6 200) and 285 nm (3 500), ν_{max} (Nujol) 3 350, 1 630, 1 515, 1 470, and 1 060 cm⁻¹, δ (D₂O) 1.05 (3 H, d, $f_{6',7'}$ 7 Hz, 7'-CH₃), 1.17 (3 H, s, 4''-CH₃), 2.28 (3 H, s, 6'-NCH₃), 2.52 (3 H, s, 3''-NCH₃), 5.27 (1 H, d, $f_{1'eq,2''ax}$ 3 Hz, 1''eq-H), 5.46 (1 H, d, $f_{1'eq,2'ax}$ 4 Hz, 1'eq-H), 6.72 (2 H, m, Ar), and 6.87 (1 H, m, Ar).

1,2',6',3''-Tetrakis-N-benzyloxycarbonyl-3-deamino-3-oxogentamicin C_{1a} (46).---1,2',6'3''-Tetrakis-N-benzyloxycarbonylgentamicin C_{1a} (45) ¹⁸ (4 g) and 3,5-di-t-butyl-1,2benzoquinone (1 g) were dissolved in methanol (35 ml) and the mixture was allowed to remain at 25 °C for 17 h. Oxalic acid (1.8 g) in 50% (v/v) aqueous methanol (16 ml) was added and the mixture was stored at 25 °C for 6 h and at 0-5 °C for 18 h. The solution was diluted with water, extracted with chloroform, and the chloroform layer was evaporated to dryness. The residue was chromatographed rapidly on silica gel (100 g) using 0.25% v/v methanol-chloroform as the eluant to elute the impurities followed by 1.5% v/v methanol-chloroform to give the 3-deamino-3-oxo-derivative (46) (3.3 g, 90%) as a pale yellow amorphous solid which was homogeneous on t.1.c.

3-Deamino-3-hydroxygentamicin C1a (47) and 3-Deamino-3-epi-hydroxygentamicin C_{1a} (48).-1,2',6',3''-Tetrakis-Nbenzyloxycarbonyl-3-deamino-3-oxo-gentamicin C_{1a} (46) (1.1 g) in methanol (10 ml) was treated with sodium borohydride (0.2 g) in water (1 ml). After 1 h at 25 °C, the mixture was diluted with chloroform, washed with water, dried (MgSO₄), and evaporated. The residue in dry tetrahydrofuran (15 ml) was added to a solution of sodium (0.5 g)in redistilled liquid ammonia (50 ml) at -80 °C. After 10 min, methanol (5 ml) was added and the ammonia was allowed to evaporate. The residue was dissolved in water (20 ml) and the solution was adsorbed onto Amberlite IRC 50 (H^+) resin. The resin was washed with water and then eluted with 2m-ammonium hydroxide solution. The eluate was evaporated to dryness and the residue was chromatographed on silica gel (60 g) using chloroform-methanolconcentrated ammonium hydroxide (4:2:1 v/v) as the eluant to give first 1-deamino-1-hydroxygentamicin C_{1a} (47) (190 mg, 34%) as an amorphous solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization (Found: C, 47.9; H, 8.75; N, 11.6. $C_{19}H_{38}N_4O_8 \cdot 1.5H_2O$ requires C, 47.8; H, 8.65; N, 11.7%), $[\alpha]_{D} + 163.9^{\circ}$ (H₂O), $\delta_{\rm H}$ (D₂O) 1.17 (3 H, s, 4"-CH₃), 2.48 (3 H, s, 3"-NCH₃), ca. 4.0 (1 H, m, $W_{\frac{1}{2}}$ ca. 20 Hz, 3ax-H), 5.05 (1 H, d, $J_{1''eq,2''ax}$ 4 Hz, 1''eq-H), and 5.12 (1 H, d, J_{1'eq,2'ax} 4 Hz, 1'eq-H), and then the 1-epi-analogue (48) (90 mg, 16%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 48.0; H, 8.7; N, 11.85. C₁₉H₃₈N₄O₈·1.5H₂O requires C, 47.8; H, 8.65; N, 11.7%), $[\alpha]_{D} + 140.6^{\circ} (H_{2}O)$, $\delta_{H} (D_{2}O) 1.17 (3 H, s, 4''-CH_{3})$, 2.49 (3 H, s, 3"-NCH₃), 4.23 (1 H, m, $W_{\frac{1}{2}}$ ca. 8 Hz, 3eq-H), 4.99 (1 H, d, $J_{1''eq.2''ax}$ 4 Hz, 1''eq-H), and 5.08 (1 H, d, J_{1'eq.2'ax} 4 Hz, 1'eq-H).

3-epi-Gentamicin C_{1a} (50).—1,2',6',3''-Tetrakis-N-benzyloxycarbonyl-3-deamino-3-oxogentamicin C_{1a} (46) (2.1 g), ammonium acetate (5 g), and sodium cyanoborohydride (0.5 g) were dissolved in methanol (20 ml) and acetic acid (0.5 ml) and the mixture was stirred at 25 °C for 2.5 h. The reaction mixture was diluted with IM-ammonium hydroxide and extracted with chloroform. The chloroform layer was evaporated to dryness and the residue was chromatographed on silica gel (80 g) using 3% v/v methanol-chloroform as the eluant to give 1,2',6',3''-tetrakis-N-benzyloxycarbonyl-3epi-gentamicin C_{1a} (49) (0.44 g, 21%) and 1,2',6',3"-tetrakis- \hat{N} -benzyloxycarbonylgentamicin C_{1a} (45) (0.59 g, 28%). The latter was identical to the material used to prepare the 3-oxo-derivative (46). The axial amine (49) was dissolved in dry tetrahydrofuran (5 ml) and the solution was added to sodium (0.3 g) in distilled liquid ammonia (20 ml) at -80 °C. After 5 min, methanol was added, and the mixture was evaporated. The residue in water (20 ml) was adsorbed into Amberlite IRC 50 (H^+) resin. The resin was washed with water and then eluted with 2M-ammonium hydroxide solution to give 3-epi-gentamicin C_{1a} (50) (0.12 g, 57%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization, $[\alpha]_n$ $+130.4^{\circ}$ (H₂O), $\delta_{\rm H}$ (D₂O) 1.17 (3 H, s, 4^{''}-CH₃), 2.48 (3 H, s, 4"-NCH₃), 4.97 (1 H, d, $J_{1"eq,2"ax}$ 4 Hz, 1"eq-H), and 5.05 (1 H, d, $J_{1''eq.2''ax}$ 4 Hz, 1'eq-Ĥ).

1-Deamino-2-deoxy-1-hydroxystreptamine (51) .-- A crude sample of (51) (143 mg) obtained by reduction of 1-deamino-2-deoxy-1-oxo-3-N-(4-methoxybenzyloxycarbonyl)streptamine followed by deprotection with trifluoroacetic acid, was chromatographed on a silica-gel column (40 imes 1 cm) using chloroform-methanol-7% ammonium hydroxide $(1:2:1\ v/v)$ as the eluant to give 1-deamino-2-deoxy-1hydroxystreptamine (51) (23 mg) as an amorphous solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization (Found: C, 40.25; H, 6.15; N, 6.52. C₆H₁₃-NO•CO₂ requires C, 40.6; H, 6.33; N, 6.76%), $[\alpha]_{D} + 101.9^{\circ}$ (H₂O), m/e 164 (M + 1), $\delta_{\rm H}$ (D₂O) 1.37 (1 H, ddd, $J_{1ar,2ar}$ 12, $\int_{5eq, 2ax} 12$, $\int_{2ax, 3ax} 12$ Hz, 2ax-H) and 2.11 (1 H, ddd, $\int_{1ax, 2eg} 4$, $\int_{2eq, 2ax} 12$, $\int_{2eq, 3ax} 4$ Hz, 2eq-H).

1-Deamino-2-deoxy-1-epi-hydroxystreptamine (52).-1-Deamino-1-epi-hydroxysisomicin (15) (200 mg) was dissolved in 6M-hydrochloric acid (50 ml) and the solution was heated under reflux for 18 h. The solution was cooled and Amberlite IRA 40IS (OH⁻) resin was added until the pH reached 10.0. The resin was then filtered off and washed with water (11) and the combined filtrates were evaporated to dryness. The residue was chromatographed on a silica-gel column $(40 \times 1 \text{ cm})$ using chloroform-methanol-3% ammonium hydroxide (1:2:1 v/v) as the eluant to give 1-deamino-2deoxy-1-epi-hydroxystreptamine (52) (73 mg, 77%) as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization (Found: C, 39.85; H, 8.2; N, 7.5. C₆H₁₃NO₄·H₂O requires C, 39.77; H, 8.34; N, 7.73%), $[\alpha]_{\rm D}$ +97.7° (H₂O), m/e 164 (M + 1), $\nu_{\rm max}$ (KBr) 3 400 cm⁻¹, $\delta_{\rm H}$ (D₂O) 1.35 (1 H, ddd, $J_{1eq, 2eq}$ 4, $J_{2eq, 2ax}$ 14, J_{2ax, 3ax}11 Hz, 2ax-H) and 1.93 (1 H, ddd, J_{1eq, 2eq} 4, J_{2eq, 2ax} 14, J 2eq. 3ax 4 Hz, 2eq-H).

I-epi-2-Deoxystreptamine (54).--A mixture of garamine (58) and 1-epi-sisomicin (16) (150 mg) was dissolved in 6Mhydrochloric acid (50 ml) and the solution was heated under reflux for 18 h. The solution was cooled and Amberlite IRA 40IS (OH⁻) resin was added until the pH reached 10.0. The resin was filtered off and washed with distilled water (1 l) and the combined filtrates were evaporated to dryness. The residue was chromatographed on a silica-gel column $(60 \times 2.5 \text{ cm})$ using chloroform-methanol-3% ammonium hydroxide (1:2:1 v/v) as the eluant to give a mixture of 1epi-2-deoxystreptamine (54) and 2-deoxystreptamine (53) (23 mg) which could not be separated. The sample was

J.C.S. Perkin I

obtained as an amorphous solid after passage over Amberlite IRA 40IS (OH⁻) resin followed by lyophilization which was used to obtain the ¹³C n.m.r. data for (54), m/e 163 (M + 1).*

1-epi-N-Ethyl-2-deoxystreptamine (56).-1-epi-N-Ethylsisomicin (17) (200 mg) was dissolved in 6M-hydrochloric acid (60 ml) and the solution was heated under reflux for 2 h. The solution was cooled and Amberlite IRA 40IS (OH⁻) resin was added until the pH reached 10.8. The resin was filtered off and washed with water (1 l) and the eluate was concentrated. The resulting solid was chromatographed on a silica-gel column (50 \times 1.5 cm) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution as the eluant to give 1-epi-N-ethyl-1-deoxystreptamine (56) (52 mg). The latter was rechromatographed on a silica-gel column (110 imes 1.5 cm) using the same solvent system to give pure (56) (35 mg, 44%) as an amorphous solid after passage over Amberlite IRA 40IS (OH-) resin followed by lyophilization [Found: $(M + 1)^+$, 191.1396. $C_8H_{19}N_2O_3$ requires M + 1, 192.1393], $[\alpha]_{\rm p} + 52.2^{\circ}$ (H₂O) $\delta_{\rm H}$ (D₂O) 1.11 (3 H, t, J 7 Hz, NHCH₂CH₃), and 2.63 (2 H, q, J 7 Hz, NHCH₂CH₃).

We thank Mr. J. McGlotten and his staff for providing the analytical and spectral data.

[0/1620 Received, 21st October, 1980]

* As a pure sample of (54) free of (53) could not be obtained the ¹³C n.m.r. assignments for (54) should be regarded as tentative.

REFERENCES

¹ Part 8, D. H. Davies, M. Kugelman, P. Lee, C. E. Luce, A. K. Mallams, J. B. Morton, S. S. Saluja, J. J. Wright, G. Detre, M. Tanabe, and D. M. Yasuda, preceding paper.

² A. K. Mallams, D. H. Davies, D. L. Boxler, H. F. Vernay, and P. Reichert, 17th Interscience Conference on Antimicrobial Agents and Chemtherapy, New York, October 12-14, 1977,

paper 251. ³ P. W. K. Woo, H. W. Dion, and Q. R. Bartz, Tetrahedron Lett., 1971, 2617. ⁴ P. W. K. Woo, Tetrahedron Lett., 1971, 2621. ⁴ W. Dion and O. R. Bart

⁵ P. W. K. Woo, H. W. Dion, and Q. R. Bartz, Tetrahedron Lett., 1971, 2625

⁶ S. Horii, I. Nogami, N. Mizokami, Y. Arai, and M. Yoneda, Antimicrob. Agents Chemother., 1974, 5, 578. 7 E. Akita, T. Tsuruoka, N. Ezaki, and T. Niida, J. Antibiot.,

1970, **23**, 173.

8 T. H. Haskell, R. Rodebaugh, N. Plessas, D. Watson, and

R. D. Westland, *Carbohydr. Res.*, 1973, 28, 263.
⁹ H. Tsukiura, K. Fujisawa, M. Konishi, K. Saito, K. Numata, H. Ishikawa, T. Miyaki, K. Tomita, and H. Kawaguchi, J. Antibiot., 1973, 26, 351.

¹⁰ H. Kawaguchi, T. Naito, S. Nakagawa, and K. Fujisawa, J. Antibiot., 1972, 25, 695.

¹¹ T. Naito, S. Nakagawa, Y. Narita, S. Toda, Y. Abe, M. Oka, H. Yamashita, T. Yamasaki, K. Fujisawa, and H. Kawaguchi, J. Antibiot., 1974, 27, 851.

 ¹² P. J. L. Daniels, J. Weinstein, and T. L. Nagabhushan, J. Antibiot., 1974, 27, 889.
 ¹³ J. J. Wright, A. Cooper, P. J. L. Daniels, T. L. Nagabhushan, D. Rane, W. N. Turner, and J. Weinstein, J. Antibiot., 1976, 29, 714.

¹⁴ J. J. Wright, J. Chem. Soc., Chem. Commun., 1976, 206.

¹⁵ G. H. Miller, G. Arcieri, M. J. Weinstein, and J. A. Waitz, Antimicrob. Agents Chemother., 1976, **10**, 827.

¹⁶ E. J. Corey and K. Achiwa, J. Am. Chem. Soc., 1969, 91, 1429.

¹⁷ P. J. L. Daniels, A. K. Mallams, J. Weinstein, J. J. Wright, and G. W. A. Milne, J. Chem. Soc., Perkin Trans. 1, 1976, 1078.

¹⁸ T. L. Nagabhushan, A. B. Cooper, W. N. Turner, H. Tsai, S. McCombie, A. K. Mallams, D. Rane, J. J. Wright, P. Reichert, D. L. Boxler, and J. Weinstein, J. Am. Chem. Soc., 1978, **100**,

5253.

¹⁹ J. J. Wright, unpublished observations.

- 20 W. S. Wadsworth and W. D. Emmons, J. Am. Chem. Soc.,
- 1962, 84, 1316. ²¹ W. S. Wadsworth and W. D. Emmons, J. Org. Chem., 1964,
- ²² R. O. Hutchins, B. E. Maryanoff, and C. A. Milewski, J. Am. Chem. Soc., 1971, 93, 1793.
- ²³ D. E. Dorman, S. J. Angyal, and J. D. Roberts, J. Am. Chem. Soc., 1970, 92, 1351.

- ²⁷ D. H. Davies, D. Greeves, A. K. Mallams, J. B. Morton, and R. W. Tkach, J. Chem. Soc., Perkin Trans. 1, 1975, 814.
- 28 M. Kugelman, A. K. Mallams, H. F. Vernay, D. F. Crowe, and M. Tanabe, J. Chem. Soc., Perkin Trans. 1, 1976, 1088.
- 29 M. Kugelman, A. K. Mallams, and H. F. Vernay, J. Chem.
- Soc., Perkin Trans. 1, 1976, 1113. ³⁰ A. K. Mallams, S. S. Saluja, D. F. Crowe, G. Detre, M. Tanabe, and D. M. Yasuda, J. Chem. Soc., Perkin Trans. 1, 1976,
- 1135.
 ³¹ P. J. L. Daniels, C. E. Luce, A. K. Mallames, J. B. Morton, S. S. Saluja, H. Tsai, J. Weinstein, J. J. Wright, G. Detre, M. Tanabe, and D. M. Yasuda, J. Chem. Soc., Perkin Trans. 1, paper
- 32 A. K. Mallams, J. B. Morton, and P. Reichert, following paper. ³³ P. J. L. Daniels, A. K. Mallams, S. W. McCombie, J. B.

- Morton, T. L. Nagabhushan, D. F. Rane, P. Reichert, and J. J.
- Wright, J. Chem. Soc., Perkin Trans. 1, 2209.
 ³⁴ S. H. Grover and J. B. Stothers, Can. J. Chem., 1974, 52, 870.
 ³⁵ S. H. Grover, J. P. Guthrie, J. B. Stothers, and C. T. Tan,
- J. Magn. Reson., 1973, 10, 227. ³⁶ S. J. Angyal and G. S. Bethell, Aust. J. Chem., 1976, 29, 1249.
- ³⁷ P. Bartner, D. L. Boxler, R. Brambilla, A. K. Mallams, J. B.

- Morton, P. Reichert, F. D. Sancilio, H. Surprenant, G. Tomalesky, G. Lukacs, A. Olesker, T. T. Thang, L. Valente, and S. Omura, J. Chem. Soc., Perkin Trans. 1, 1979, 1600. ³⁸ H. Beierbeck and J. K. Saunders, Can. J. Chem., 1975, **58**, 1907 1307.
- ³⁹ P. J. L. Daniels, 14th Interscience Conference on Anti-microbial Agents and Chemotherapy, San Francisco, California, 39 P. 11-13 September, 1974.
- ⁴⁰ R. U. Lemieux, A. A. Pavia, J. C. Martin, and K. A. Watan-abe, *Can. J. Chem.*, 1969, **47**, 4427.
 ⁴¹ R. U. Lemieux and J. C. Martin, *Carbohydr. Res.*, 1970, **13**,
- 139.
- ⁴² R. U. Lemieux, Ann. N.Y. Acad. Sci., 1973, 222, 915.
 ⁴³ R. U. Lemieux and S. Koto, Tetrahedron, 1974, 30, 1933.
 ⁴⁴ K. Tori, S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, A. Kota, A
- and H. Ishi, Tetrahedron Lett., 1976, 4167.
- ⁴⁵ R. Kasai, M. Suzus, J. Asakawa, and O. Tanaka, *Tetra-*hedron Lett., 1977, 175.
 ⁴⁶ K. Tori, S. Seo, Y. Nishimura, H. Arita, and Y. Tomita,
- Tetrahedron Lett., 1977, 179. ⁴⁷ S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am.
- Chem. Soc., 1978, 100, 3331.