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Abstract: Substituted trans-10-benzyl-9-anthranols 5a,b and sub-
stituted 10,10-dibenzyl-9-anthranol 8e undergo intramolecular cy-
clization in the presence of formic or oxalic acid to give
homotriptycenes 9a,b,e. Depending on the amount of acid used, a
competitive 1,4-dehydration to anthracene derivatives 10a,b was
observed for 5a,b. The latter process was the only reaction pathway
for anthranols that do not possess electron-donating substituents on
benzyl moiety (5c,d → 10c,d).

Key words: aromatization, condensation, electrophilic substitu-
tion, transannular ring closure

Triptycene and its derivatives have attracted great atten-
tion because of (1) their rigid aromatic three-dimensional
structure and conformational properties,1 (2) unique elec-
trochemical and photochemical properties,2 (3) potential
pharmaceutical properties,3 and (4) applications in mate-
rials science and supramolecular chemistry.4 However,
only a few examples for the synthesis of homotriptycenes
have been reported. Cristol5 synthesized homotriptycene
and its derivatives by ring enlargement of 1-aminoethyl-
triptycene, but the route was lengthy and required a te-
dious separation from the concomitant isomers. Szeimies6

reported an interesting route for the preparation of homo-
triptycene using a thermal dehydrogenation of annulated
dibenzohomobarrelene, but this method has limited appli-
cations, because a multi-step synthesis was required for
the starting propellane and there was also a limited varia-
tion of substituents that could be introduced into the ho-
motriptycene skeleton. Saito7 also reported an alternative
method using the cycloaddition of the strained benzocy-
clopropene to anthracenes. We now describe a simple
route for the preparation of homotriptycenes from 9-an-
thranols (Scheme 1, Table 1).

9-Anthranol 1, which is in equilibrium with its tautomer
anthrone 1¢, reacted with substituted benzaldehydes 2a–d
to give 10-benzylidene-9-anthrones 3a–d in pyridine–pi-
peridine.8 Catalytic hydrogenation (5% Pd/C) of 3a–d af-
forded 10-benzyl-9-anthrones 4a–d in 58–90% yield.
Subsequent reduction of 4 with NaBH4 then produced 10-
benzyl-9,10-dihydro-9-anthranols 5a–d in 87–92% yield.
The trans-configuration of compounds 5a–d was estab-

lished by a 2D NOESY NMR study. The proton 9-H
shows a cross-peak to the enantiotopic protons of the CH2

group, but not to the proton 10-H.

Alternatively, 10,10-disubstituted-9-dihydro-9-anthranol
8e was obtained by bisalkylation of anthrone 1¢ with 6e to
generate 7e (50%). Subsequent reduction of the carbonyl
group by NaBH4 then gave 8e in 94% yield.

Treatment of the mono- or dialkylated anthranol deriva-
tives 5a–d and 8e, respectively, with formic or oxalic acid
led to homotriptycenes 9a,b,e9 and/or to the anthracenes
10a–d. Protonation of the hydroxy group leads to a carbe-
nium ion which then acts as an electrophile to promote the
electrophilic aromatic substitution of the benzene ring of
the benzyl moiety. This route 5 → 9 represents formally a
1,7-elimination of H2O, which competes with a 1,4-elim-
ination of H2O. The latter process furnishes the an-
thracene derivatives 10. Whereas the 1,7-elimination
pathway is an almost quantitative process for 5a and 5b,
it does not work for compounds 5c and 5d, which do not
contain activated electron-donating substituents at the
correct positions in the benzene ring. Therefore 5c and 5d
underwent the 1,4-elimination to give 10c and 10d, re-
spectively.

The 10,10-dibenzyl substituted compound 8e, on the other
hand, does not have the possibility of undergoing 1,4-
elimination and thus homotriptycene 9e was the exclusive
reaction product upon treatment with acids.

We also observed that the reaction rates were also depen-
dent upon the amount of acid for the 1,4-elimination
(Table 2). Table 2 demonstrates that the ratio of 9:10 be-
comes higher with increasing amount of formic acid. Ob-
viously, formic acid is involved in the rate determining
step of the 1,7-elimination, whereas this is not the case, or
at least to a minor extent (medium effect), for the 1,4-
elimination.

The structural identities of compounds 5, 8, 9 and 10 were
established by one- and two-dimensional 1H NMR and
13C NMR spectroscopy. The characteristic data were sum-
marized in Table 3 and Table 4.

Since the starting materials 5 or 8 are easily accessible,
this reported facile preparation of homotriptycenes 9 is a
more convenient route than other reported procedures.
The final ring closure described here is related to a reac-
tion that was found in an addition product between anthra-
nol with lignin model quinone methides.10
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Table 2 Product Distribution of the Acid-Catalyzed Dehydration of 
5a in CH2Cl2 at Room Temperature

Entry Molar ratio 
of 5a:HCOOH

Time 
(h)

Conversion 
(%)

Ratio of 
9a:10aa

1 1:0.67 2 100 64:36

2 1:2 2 100 67:33

3 1:12 0.5 100 92:8

4 1:56 0.5 100 96:4

a Determined by 1H NMR spectroscopy.
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Table 1 Preparation of Homotriptycenes from 9-Anthranols

R1 R2 R3 Yield of 9 (%)a Mp (°C) Yield of 10 (%)a Mp (°C)

a OMe H H 96 165 4 133

b OMe OMe H 96 174 4 107

c H OMe H – 100 140

d H H H – 100 133

e Benzyloxy H 3,5-Dibenzyloxybenzyl 100 198 –
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analysis, which shall be published later.
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Table 4 Selected 1H NMR and 13C NMR Data of Homotriptycenes 9a,b,e in CDCl3
a

Compd 1-H 9-H a-CH2 OCH3 or OCH2 C-1 C-9 a-CH2 OCH3 or OCH2

9a 5.69 4.19b 3.21b 3.63, 3.89 41.9 45.6 37.4 55.1, 56.1

9b 5.55 4.21c 3.21c 3.67, 3.81, 4.02 43.4 45.6 36.9 55.8, 60.8, 61.8

9e 5.84 – 3.03, 3.90 4.65, 4.83, 5.11 44.7 46.9 40.1, 42.6 69.8, 70.0, 70.7

a TMS as internal standard.
b 3J = 2.6 Hz.
c 3J = 3.9 Hz.

Table 3 Selected 1H NMR and 13C NMR Data of Compounds 5a–d and 8e in CDCl3
a

Compd 9-H 10-H a-CH2 OH C-9 C-10 a-CH2

5a–d 4.90 ± 0.13
3J = 10.8 Hz

4.25 ± 0.03
3J = 6.3 Hz

2.91 ± 0.03
3J = 6.3 Hz

1.99 ± 0.04
3J = 10.8 Hz

66.8 ± 0.1 48.2 ± 0.3 45.5 ± 0.7

8e 5.01
3J = 11.6 Hz

3.61, 3.40 0.32
3J = 11.6 Hz

67.5 49.0 52.4, 48.5

a TMS as internal standard.
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