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ABSTRACT: The performance of a water-soluble cobalt porphyrin (CoTPPS) as a catalyst for the photoreduction of CO2 in fully 
aqueous media has been investigated under visible light irradiation using [Ru(bpy)3]2+ as a photosensitizer and ascorbate as a 
sacrificial electron donor. CO is selectively produced (> 82%) with high efficiency (926 TONCO). Upon optimization, selectivities 
of at least 91% are achieved. Efficiencies up to 4000 TONCO and 2400 h-1 TOFCO are reached at low catalyst loadings, albeit with 
loss in selectivity. This work successfully demonstrates the ability of CoTPPS to perform highly efficient photoreduction of CO2 
in water while retaining its high selectivity for CO formation.  

KEYWORDS: CO2 reduction, cobalt porphyrin, photocatalysis, selectivity, molecular catalysis 

Photocatalytic conversion of CO2 into chemical feed-
stocks is considered as a promising but challenging strategy 
to achieve an energy sustainable society.1 One of the key 
goals is to develop systems capable of selectively and effi-
ciently photocatalyzing CO2 reduction under visible light 
irradiation.2 From a practical viewpoint, the CO2 reduction 
must be coupled with water oxidation in order to gain the 
electrons and protons required to drive the reduction pro-
cesses.3 Moreover, our intention has been to pursue a possi-
bility of driving all reactions in fully aqueous media in hope 
to achieve the more practically useful photosynthetic systems. 
Nevertheless, the presence of water often promotes the pho-
tocatalytic proton reduction, thermodynamically and kinet-
ically more favorable, resulting in decreased efficiency and 
selectivity for CO2 reduction.4  

Up to now, a large number of homogeneous5 and hetero-
geneous2 photocatalytic systems for CO2 reduction have been 
developed. Most of them exhibit reasonably high catalytic 
performances when the photochemical reactions are con-
ducted in either non-aqueous solvents6 or water-organic 
solvent mixtures.7 However, photocatalytic systems showing 
both high activity and high selectivity in fully aqueous media 
are extremely rare and are predominantly noble metal-
based.8 Selected examples of first-row transition metal cata-
lysts for photocatalytic CO2-to-CO conversion in water, of 
major interest in this study, are presented in Figure 1 (see 
also Table S1), highlighting the best performances in terms of 
selectivity and/or efficiency.9 Co and Ni tetra-azamacrocycles 
were reported to promote photocatalytic CO2-to-CO conver-

sion when photo-driven by [Ru(bpy)3]2+ in the presence of 
ascorbate (AscHNa) as a sacrificial electron donor 
(SED).9a,9b,10 For [Ni(cyclam)]2+ derivatives, it was shown that 
the TONCO value can be maximized to 38 but with loss in 
selectivity (SelCO2 < 10%). On the contrary, SelCO2 can be 
maximized up to 94% but by sacrificing the efficiency 
(TONCO = 2.2).10c,11 The overall catalytic performances of 
[Ni(cyclam)]2+ derivatives were significantly improved by 
using ZnSe quantum dots as visible light photosensitizer (PS) 
even though the selectivity still remained relatively low 
(TONCO = 283; SelCO2 = 34%).9e Similarly, the photocatalysis 
of CdS quantum dots anchored with nickel terpyridine cata-
lysts under visible light resulted in high selectivity but low 
TONCO values (TONCO = 20; SelCO2 = 90%).9c Furthermore, 
Robert and co-workers reported that the trimethylamine-
functionalized iron tetraphenylporphyrin (FeTMA) can 
achieve high selectivity for CO formation (SelCO2 = 95%) 
when used in a photocatalytic system driven by an organic 
dye, in a H2O:CH3CN (9:1 v/v) solvent mixture.9d For this 
system the TONCO value was reported to be 120 after 4 days 
of visible light irradiation. More recently, Weiss and co-
workers assembled the positively charged FeTMA catalyst 
with negatively charged colloidal CuInS2/ZnS quantum dots 
to reduce CO2 to CO with high selectivity (SelCO2 = 99%) in 
water (TONCO = 450 after 30 h of irradiation).12 Importantly, 
the highly selective systems show rather low activity, and the 
overall efficiency is often raised only by sacrificing the selec-
tivity, although one excellent example of a cobalt catalyst 
achieving both high efficiency and high selectivity 
(TONCO=1380, SelCO2 =95%) was very recently reported while 
this study was under the review process.13 
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Figure 1. Selected photocatalytic systems for CO2-to-CO 
reduction in aqueous media (PS: photosensitizer). 

Herein we report on the performance of CoTPPS, [{meso-
tetra(4-sulfonatophenyl)porphyrinato}cobalt(III)], as a cata-
lyst for CO2-to-CO photoconversion when employed in the 
[Ru(bpy)3]2+/sodium ascorbate (AscHNa) system. We have 
found that CoTPPS is an outstanding catalyst not only due to 
its unprecedentedly high activity (TONCO = 4000, TOFCO = 
2400 h-1, SelCO2 = 41 %) but also due to its ability to yield a 
high TONCO value (TONCO = 926) while also retaining a high 
selectivity for CO2-to-CO conversion (SelCO2 = 82%) under 
optimal conditions (Figure 1). Moreover, selectivities of at 
least 91% are achieved with high efficiency (TONCO = 400). 
We note that the previous studies of cobalt porphyrins in 
photocatalytic CO2 reduction were only carried out under 
non-aqueous conditions.14,15 

Photocatalytic CO2 reduction assays were performed us-
ing CO2-saturated aqueous bicarbonate buffer (pH 6.7) in the 
presence of AscHNa (0.1 M) under visible light irradiation 
(Figures 2A and 2B). Photoirradiation of the solution con-
taining CoTPPS (10 µM) and [Ru(bpy)3]2+ (500 µM) affords 
CO as a major product (92.6 µmol, 2.26 mL, TONCO = 926, 
TOFCO = 456 h-1) (Figure 2A). Dihydrogen (19.7 µmol of H2) 
also evolves, together with a trace amount of formate (6.6 
µmol). The selectivity for CO2 reduction vs. water reduction 
(SelCO2 = mol (CO)/(mol (H2) + mol (CO)) is estimated to be 

82% (Table S2, entry 1), which is considerably high among 
those previously reported for the photocatalytic CO2-to-CO 
conversion in fully aqueous media (Figure 1 and Table S1). 

Control experiments were performed and are summa-
rized in Table S2 (see also Figures S1 and S2). In the absence 
of CoTPPS in CO2-saturated solution (Table S2, entry 2), only 
a trace amount of CO forms (4.2 µmol), but a remarkably 
large amount of H2 (36.8 µmol) evolves. Importantly, only a 
trace amount of formate is generated in both the presence 
and absence of CoTPPS (6.6 µmol and 5.0 µmol, respectively). 
In the absence of CO2 (under N2-saturated condition), small 
amounts of CO and H2 form only when CoTPPS is present 
(Figure 2B and Table S2, entries 3 and 4). Neither CO nor H2 
evolves in the absence of CoTPPS under N2. As mentioned 
above, H2 production significantly increases in the absence of 
CoTPPS under CO2 atmosphere, suggesting that the degrada-
tion of [Ru(bpy)3]2+ is greatly enhanced by the presence of 
CO2 to yield the chemical species catalytically active for H2 
evolution (Figure 2B). This behavior is consistent with the 
reports by Grant et al. and others, in which the [Ru(bpy)2]n+ 
carbonyl-type photodegradation products, such as 
[Ru(bpy)2(CO)H]+ and [Ru(bpy)2(CO)2]2+, were proposed to 
be the active catalysts for H2 and formate production.8a,10b,16 
Furthermore, no reduced products form in the absence of 
either the photosensitizer or a suitable sacrificial electron 
donor (SED) (Table S2, entries 5 and 6). It was also con-
firmed that the pH remained unchanged after the photolysis 
experiments and that the substantial diminishment is seen in 
SelCO2 (45%) at pH 5.3 (CO2-purged phosphate buffer). All 
these results indicate that the cobalt porphyrin is necessary 
to catalyze the CO2 reduction into CO. An isotopic labelling 
experiment conducted under a 13CO2 atmosphere led to the 
formation of 13CO as a major product, thus confirming that 
CO is originated from CO2 reduction (Figure S1). 

Catalytic assays employing CoCl2 and/or the metal-free 
TPPS ligand in equimolar loadings yield a negligible amount 
of CO, while the amount of H2 generated is higher than that 
formed using CoTPPS (Table S2, entries 7-9). Mercury poi-
soning experiments and assays performed with cobalt nano-
particles (Co NP, size 28 nm) demonstrate the homogeneous 
nature of the catalysis by CoTPPS (Table S2, entries 10 and 11, 
Figures S3 and S4). The effect of varying either the AscHNa 
concentration or the light intensity was also examined (Fig-
ures S6-S10).  

Figure 2. A) Photocatalytic activity of CoTPPS. Amount (circles) and rate (triangles) profiles for CO (red) and H2 (blue) produc-
tion. B and C) Amounts of products at 4 h irradiation in the presence and the absence of CoTPPS measured for N2- or CO2-
saturated solutions in a bicarbonate (B) (Table S2, entries 1-4) and phosphate (C) buffer.17 Photolysis carried out in a 10 mL CO2-
saturated solution containing CoTPPS (10 µM), [Ru(bpy)3]Cl2 (500 µM), 0.1 M buffer, and 0.1 M AscHNa, at 25 ºC, for 4 h using Xe 
lamp irradiation (λ > 400 nm, 179 mW·cm-2). The experiments were performed at least in duplicate (error 1-15%). 
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Figure 3. Kinetic studies by varying A) [Ru(bpy)3
2+] using 10 µM CoTPPS and B-D) [CoTPPS] using 500 µM [Ru(bpy)3]2+. E 

and F) Selectivities for the experiments shown in A and B, respectively. Photolysis carried out in a 10 mL CO2-saturated solution 
containing CoTPPS, [Ru(bpy)3]Cl2, 0.1 M NaHCO3, and 0.1 M AscHNa, at 25 ºC, for 4 h using Xe lamp irradiation (λ > 400 nm, 179 
mW·cm-2). 

The quantum yield (ΦCO), estimated on the basis of the 
amount of photons absorbed (see Experimental Section), was 
determined as 0.81% using a 428-nm light, in agreement with 
the multistep nature of the photocatalytic CO2 reduction. 
The corresponding value for the photocatalysis using an iron 
porphyrin catalyst and a tris(phenylpyridinato)iridium(III) 
photosensitizer in acetonitrile was reported as ΦCO = 
0.0013%.18    

Employing a phosphate buffer (pH =6.9), the superior se-
lectivity of CoTPPS for CO2 reduction vs. water reduction at 
the same pH can be verified by observing the products in the 
presence and absence of CO2 (Figure 2C and Figure S11). The 
H2 evolution under N2 is largely enhanced by the presence of 
CoTPPS, confirming that it is indeed an active H2 evolution 
catalyst.19 Remarkably, though, in the presence of CO2, CO is 
formed preferentially over H2 (SelCO2 = 82%).  

Although the CO formation ceases after 4 h (Figure 2A), a 
similar CO production profile and high selectivity (SelCO2 = 
91%) can be restored by adding the initially added amount of 
[Ru(bpy)3]Cl2 (50 µM) (Figure S12). In contrast, the re-
addition of CoTPPS and/or AscHNa did not restore the initial 
activity. The degradation of [Ru(bpy)3]2+ is thus concluded to 
be the major cause for the cease of photocatalysis, as also 
demonstrated by photostability experiments (Figures S13 and 
S14). Upon increasing the [Ru(bpy)3]2+ concentration, both 
the rate and the total amount of CO formation saturate at 
about 400 µM (Figures 3A, S15, and S16). Therefore, in the 
lower [Ru(bpy)3]2+ concentration domain, the photosensiti-
zation limits the overall rate of photocatalysis. 

The net performance is also dependent on the catalyst 
concentration, where two different regimes are identified 
(Figures 3, B-E, and S17). In agreement with the molecular 
nature of the catalysis, at low catalyst concentrations, the CO 
formation rate shows an enhancement with increasing [CoT-

PPS], reaching its maximum at around 30 µM. However, the 
rate gradually decreases at higher catalyst loadings. This 
behavior is attributable to the increased light absorption by 
CoIITPPS (ε412 nm = 1.6 x 105 M-1cm-1), interfering with the light 
absorption at the MLCT band of [Ru(bpy)3]2+ (ε450 nm = 1.4 x 
104 M-1cm-1) (Figure S18).20 The TONCO exponentially increas-
es with decreasing [CoTPPS]. Under the optimal conditions 
which maximize the TONCO, values of TONCO = ca. 4000 and 
TOFCO = 2400 h-1 are attained at [CoTPPS] = 0.5 µM, albeit 
with a lower apparent21 selectivity for CO formation (SelCO2 = 
41%) (Figure 3D). To the best of our knowledge, these values 
are among the highest values yet reported for the first-row 
transition metal molecular catalysts for the photocatalytic 
reduction of CO2 to CO under visible light in fully aqueous 
media (Table S1). In sharp contrast, H2 generation is marked-
ly prevented by raising the catalyst concentration over the 
entire range studied, strongly supporting the conclusion that 
H2 evolution is predominantly catalyzed by the degradation 
products of [Ru(bpy)3]2+ (e.g., cis-[Ru(bpy)2(CO)H]+), as 
discussed above. Perhaps, the efficient catalytic cycle of CO2 
reduction by CoTPPS plays a role as an inhibitor for either 
the generation of the [Ru(bpy)2(CO)H]+ species or the cata-
lytic cycle of H2 generation itself. This inhibition effect be-
comes more obvious at higher [CoTPPS]/[Ru(bpy)3

2+] ratios, 
resulting in the maximum SelCO2 value of 91% when the 
[Ru(bpy)3]2+ concentration is minimized (50 µM) (Figures 3E 
and 3F). Under these conditions, the photocatalytic activity 
remains sufficiently high (TONCO = 400, TOFCO = 31 h-1).  

Interestingly, the present photocatalytic system preserves 
its activity even in the presence of a large amount of O2 in 
the headspace (p(O2)= 0.3, [O2]= 12.3 mM, even though inhi-
bition in CO formation occurs due to the concomitant pro-
motion of O2 reduction (Figures S19-S21).22 
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On the basis of our experimental and theoretical results, 
together with those described in the literature,23,24 a possible 
catalytic cycle is proposed in Scheme 1. The starting diaqua-
cobalt(III) species [CoIIITPPS(H2O)2]+ (pKa1=7.02)25 is readily 
reduced to the CoII species [CoIITPPS(H2O)]26 in the presence 
of a large excess of AscH- (Scheme 1 and Figures S22 and 
S23).27 The photocatalytic cycle is initiated via light absorp-
tion by [Ru(bpy)3]2+, reductive quenching of [Ru(bpy)3]2+* by 
AscH- (kq = 1.9 x 107 M-1·s-1) (Figures S24 and S25), and elec-
tron transfer from [RuII(bpy)2(bpy•-)]+ (Ep

 = -1.49 V vs. SCE) to 
[CoIITPPS(H2O)] (E1/2 = -0.92 V) to afford [CoITPPS]- (Figure 
4A-C).  

The electrochemistry results (Figure 4) reveal that this 
species is further reduced to give a porphyrin-reduced inter-
mediate [CoI(TPPS•-)]2- at -1.26 V vs. SCE (Figure 4C; both CV 
and SWV), which appears to be coupled with the rise of 
catalytic current. We note that upon introduction of CO2 
there is no meaningful change at the first reduction wave 
(E1/2 = -0.92 V vs. SCE) (Figure 4A). Under the catalytic CO2 
reduction conditions, the reduction potential of [Ru(bpy)3]2+ 
(-1.49 V vs. SCE, Figure 4B) is negative enough to reduce 
[CoITPPS]- and generate the reactive [CoI(TPPS•-)]2- species. 
Importantly, the above-mentioned second reduction peak 
potential is consistent with that computed by DFT in this 
work (-1.32 V vs. SCE; see Figure 5). Moreover, these values 
are also in line with the porphyrin-based reduction poten-
tials reported for the free TPPS ligand as well as for some 
M(TPPS) derivatives (M = Zn, Pd) in aqueous media (-1.16 V 
to -1.23 V vs. SCE).28 The CO2-binding with [CoI(TPPS•-)]2- has 

exothermic path (ΔG = -4.2 kcal·mol-1) with a lower activa-

tion barrier (ΔG╪ = 7.6 kcal·mol-1) to form CO2-bound spe-

cies in comparison with the CO2-binding path with 
[CoITPPS]- (see Figure 5). However, we do not completely 
rule out the latter path, since it can also result in the same 
porphyrin-reduced species [CoIII(TPPS•-)(CO2

2-)]2- and is only 

slightly uphill in energy (ΔG = 1.2 kcal·mol-1, ΔG╪ = 9.9 kcal·
mol-1) (Table S23). We thus assume that the CO2-binding to 
[CoI(TPPS•-)]2- is the major path under these experimental 
conditions. Although some reports describe the CO2-bound 
species as [CoI(P•-)(CO2)]2- (P = porphyrin),24b based on our 
DFT results we adopt the formulation of [CoIII(TPPS•-)(CO2

2-

)]2- (see SI for details), in accord with the results of XANES 
measurements carried out for the CO2-bound cobalt catalysts 
with tetra-azamacrocyclic ligands.29 The spin density plots as 
well as the spin density values shown in Tables S4 and S7 
provide strong support for the anion radical form of the 
porphyrin (e.g., TPPS•-), indicating that the major radical 
character is delocalized over the porphyrin ring system.  

Notably, under CO2, the formation of [CoIII(TPPS•-)(CO2
2-

)]2- is significantly preferred over the formation of hydride 
species (e.g., [CoIII(TPPS•-)(H)]-) leading to H2 evolution, as 
demonstrated by the high SelCO2 values (Figures 2 and 3). 
Our DFT results also indicate that further reduction of the 
porphyrin-reduced intermediate [CoIII(TPPS•-)(CO2

2-)]2- into 
[CoIII(TPPS2-)(CO2

2-)]3- (Ecalc = -1.71 V vs. SCE) by 

[RuII(bpy)2(bpy•-)]+ is rather uphill by 5.1 kcal·mol-1, not likely 
to compete well with the alternative protonation path shown 
in Scheme 1 and Figure 5.  

 

Figure 4. A) Cyclic voltammograms (CV) of CoTPPS (1 mM) 
in a 0.1 M phosphate buffer under CO2 (red) and under Ar 
(blue) at pH 6.7. B) Square-wave voltammogram (SWV) of 
[Ru(bpy)3]Cl2 (1 mM) in a 0.1 M NaHCO3 buffer under CO2 at 
pH 6.7. C) CV (red) SWV (green) of CoTPPS (1 mM) in a 0.1 
M NaHCO3 buffer under CO2 at pH 6.7. Scan rate 0.1 V·s-1, T 
= 21 ºC. 

 

Scheme 1. Proposed reaction scheme for the CO2-to-CO 
photoconversion in the [Ru(bpy)3]2+/ascorbate/CoTPPS sys-
tem in water. The peripheral charges of the sulfonated 
groups are neglected for simplicity and clarity. 
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Figure 5. Free energy diagram computed by DFT for the catalytic cycle by CoIIP(H2O) (P = non-substituted porphyrin), promot-
ed by the reductive equivalent of the [Ru(bpy)3]2+/[Ru(bpy)3]+ couple at pH = 6.7 (see Figure S27 for details)

The next step in the photocatalytic cycle is the protona-
tion of [CoIII(TPPS•-)(CO2

2-)]2- into [CoIII(TPPS•-)(CO2H-)]-, 

which is downhill by -3.1 kcal·mol-1 (Figure 5). The subse-
quent C-O bond cleavage coupled with protonation and 

water elimination is more highly downhill (by -17.2 kcal·mol-

1), affording [CoIITPPS(CO)], for which the low-spin CoII d7 

configuration is confirmed by DFT (Tables S6 and S9). Final-

ly, simple dissociation of CO from [CoIITPPS(CO)] (G = -0.6 

kcal·mol-1) may occur to give [CoIITPPS], but the aqua-
ligated species [CoIITPPS(H2O)] is computed to be the major 
species in solution (Figure 5). 

In conclusion, while CoTPPS efficiently catalyzes the re-
duction of water to H2 under N2, it selectively and efficiently 
catalyzes CO2-to-CO conversion under CO2 even in fully 
aqueous media. Among the first-row transition metal mo-
lecular catalysts promoting CO2-to-CO photoconversion in 
water, CoTPPS exhibits high activity while retaining its high 
selectivity for CO2 reduction vs. water reduction. Further 
studies focused on the detection and characterization of the 
key intermediates are still needed. We also note the im-
portance of developing new photosensitizers robust enough 
to avoid in situ generation of any active water reduction 
catalysts. The extended studies are in progress in our group. 

 All solvents and reagents were 
of the highest quality available and were used as received. 
TPPS (meso-tetrakis(4-sulfophenyl)porphyrin) was pur-
chased from Tokyo Chemical Industry Co., Ltd. and it was 
used as received. All other reagents were purchased from 
Kanto Chemicals Co., Inc. and used without further purifica-
tion. Purification of water (0.055 µS) was performed with a 
RFD250RB water distillation apparatus.  

 UV-Visible absorption spectra were 
recorded on a Shimadzu UV2450SIM spectrophotometer. All 

the sample solutions were maintained at 25 ºC during the 
spectrophotometric measurements. ESI-TOF mass spectra 
were recorded on a JEOL JMS-T100LC mass spectrometer in 
positive or negative ion mode. 1H NMR spectra were acquired 
on a JEOL JNM-ESA 600 MHz spectrometer. Luminescence 
spectra were recorded on a Shimadzu RF5300PC spectro-
fluorophotometer. Cyclic voltammetric experiments were 
recorded on a BAS ALS Model 602DKM electrochemical 
analyzer using a three electrode system consisting of a glassy 
carbon working electrode, a platinum wire counter electrode, 
and a saturated calomel reference electrode (SCE) for the 
measurements in aqueous solutions. All reported potentials 
are given relative to SCE. The quantification of gases was 
done using a Shimadzu GC-14A gas chromatograph equipped 
with a molecular sieve 13X-S Å column of 2 m x 3 mm i.d., at 
30 ºC. The injection of the sample gas (200 µL) was per-
formed manually using a gas-tight syringe and the output 
signal from the thermal conductivity detector of the gas 
chromatograph was analyzed using a Shimadzu C-R8A inte-
grator. The CO and H2 peaks were determined using a cali-
bration curve which had been previously obtained employing 
standard CO and H2 gases. Photoirradiation experiments 
were carried out with an ILC Technology CERMAX LX-300 
Xe lamp (179 mW·cm-2, 220 A) equipped with a CM-1 cold 

mirror which reflects lights in the range of 400 << 800 nm. 
The photolysis vial (21 mL) was immersed in a 25 ºC water 
bath to remove IR radiation and to eliminate the tempera-
ture effects. 

 In a typical photocatalytic run, a 10 mL 
aqueous solution containing CoTPPS (10 µM), [Ru(bpy)3]Cl2 
(500 µM), sodium ascorbate (0.1 M), and NaHCO3 (0.1 M), 
was purged with CO2 (purity ≥ 99.995 %) for 15 min prior to 
irradiation. The temperature was held constant at 25 ºC 
throughout the experiment. The gases generated from the 
reaction during the photolysis were quantified by GC-TCD 
measurements of 200 µL aliquots from the reaction vial 
headspace. The experiments were performed at least in du-
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plicate (error 1-15%). It was found during this study that the 
purity of the compounds is very important for the reproduci-
bility of the photocatalytic experiments. 

 A 2.5 mL aqueous solution 
containing CoTPPS (10 µM), [Ru(bpy)3]Cl2 (500 µM), sodium 
ascorbate (0.1 M), and phosphate buffer (0.1 M), was purged 
with Ar for 15 min, followed by 13CO2 bubbling (pHfinal= 6.7). 
The 13CO generated during irradiation was detected by GC-
MS (HP 6890 Series GC SYSTEM, 5973 Mass Selective Detec-
tor). The 13CO2 gas was produced by adding water to a mix-
ture of ascorbic acid with NaH13CO3 (99 atom % 13C, Cam-
bridge Isotope Laboratories, Inc.). 

 The amount of formate in the 
liquid phase was determined by the following method. After 
4 hours of irradiation, the reaction solvent was removed by 
freeze-drying. The resulting residue was dissolved in 0.8 mL 
D2O and 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium 
salt (TSP-d4, 2 µmol) was added. After filtering the solution 
through Celite, the 1H NMR spectrum was measured and the 
amount of formate was determined using the relative inte-
grated intensity of its signal with respect to that of TSP-d4 
added as an internal standard. 

 Cata-
lytic reactions varying the amount of O2 in the reaction ves-
sel were performed in a 10 mL aqueous solution containing 
CoTPPS (70 µM), [Ru(bpy)3]Cl2 (500 µM), sodium ascorbate 
(0.1 M), NaHCO3 (0.1 M), purged with CO2 (purity ≥ 
99.995 %) for 15 min. After the CO2 purging, the correspond-
ing amount of O2 was introduced into the reaction vessel 
with a syringe through the septum. Before irradiation, the 
solution was vigorously shaken during 1 min and left under 
stirring for 30 min in order to dissolve the O2 into the solu-
tion. The gases generated from the reaction during the pho-
tolysis were quantified by the analysis of an aliquot of gas 
(200 µL) from the headspace of the reaction vial by GC-TCD 
measurements. The experiments were performed at least in 
duplicate (error 1-15%). 

Determination of the Quantum Yield.18 Considering 
the fact that the reduction of CO2 to CO is a two-electron 
process, the overall quantum yield of the process (ΦCO) was 
calculated using the following equation: 

𝛷𝐶𝑂 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑂 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑥 2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 𝑥 100 

The number of CO molecules can be determined from 
the moles of CO in the sample headspace (obtained by GC 
measurements as described above) and Avogadro’s number 
(6.022×1023). The number of photons absorbed (1.81×1018 
photons·s-1) was estimated by measuring the incident light 
power inside the reaction vessel (140 mW·cm-2) (an Optical 
Power Meter TQ8210 with Optical Sensor Q82017A from 
Advantest was used), taking the photon wavelength equal to 
428 nm (a set of interference filters L39 + SV490 (380 < λ < 
490 nm) was used) and considering an illuminated area of 6 
cm2. Under our conditions the complete absorption of pho-
tons is satisfied due to the high absorbance of the solution at 
the wavelength adopted. The obtained quantum yield is 
0.81% at 1 hour of irradiation. 

 CoTPPS [{meso-tetra(4-
sulfonatophenyl)porphyrinato}cobalt(III)]·12H2O was prepa-
red as previously described.30. CoCl2·6H2O (0.143 g, 6 mmol), 
and TPPS (0.090 g, 1 mmol) were dissolved in water (25 mL). 

After adjusting the pH at 7.5 by adding 1 M NaOH, the solu-
tion was refluxed for 24 h and allowed to cool to room tem-
perature. The solution was then filtered for the removal of 
insoluble materials. The filtrate was then reduced and passed 
through a column containing a Dowex 50W-X8 cation-
exchange resin in the H+ form (50-100-mesh) in order to 
remove residual cobalt ions present in the reaction mixture. 
The CoTPPS was precipitated as a purple solid from a wa-
ter/acetone solvent mixture. The precipitate was collected by 
filtration, washed with acetone and diethyl ether, and dried 
in vacuo. Yield 65%. MS (ESI – MeOH, negative mode) (m/z): 
328.98 [C44H24N4S4O12Co]3- (100%) (calcd: 328.99). Elemental 
analysis of CoTPPS calcd: (%) for C44H27N4S4O12Co·12H2O 
(1207.1): C 43.78, H 4.26, N 4.64; found: C 44.07, H 4.26, N 
4.63. 

 Density functional theory (DFT) calcu-
lations were performed using the Gaussian 09 package of 
programs31 to better understand the electronic structures of 
some possible intermediates and the energy diagram for the 
catalytic cycle of CO2 reduction by the cobalt porphyrin. In 
our calculations, the simplest non-substituted cobalt porphy-
rin system (P) (e.g., without the four sulfonatophenyl moie-
ties in CoTPPS) has been adopted. Therefore, for the com-
puted model systems, descriptions such as [CoIIP] and [CoIP]- 
will be used to describe the species of interest. The structures 
were fully optimized at the B3LYP level of calculations with 
the effect of solvation in water taken into consideration by 
using the polarizable continuum model (PCM) method.32 
Calculations were typically performed using the 6-31G* basis 
set applied to all atoms. For some of the species, calculations 
were also performed using the SDD basis set adopted for the 
Co ion with the 6-31G* basis set applied to the remaining 
HCNO atoms. Plots showing the spin density distribution 
were generated using GaussView 5.0.9.33 Detailed description 
is given in SI. 
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Water-soluble cobalt porphyrins are highly efficient catalysts for the CO2-to-CO photoreduction in fully aqueous 
media while retaining a high selectivity in CO formation vs. H2 formation. 
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