
Noncompetitive Antagonist-Binding Sites of Rat and House¯y

-Aminobutyric Acid Receptors Display Di�erent

Enantiospeci®cities for
tert-Butyl(isopropyl)bicyclophosphorothionate

Xiu-Lian Ju and Yoshihisa Ozoe*

Department of Life Science and Biotechnology, Shimane University, Matsue, Shimane 690-8504, Japan

Received 8 May 2000; accepted 8 June 2000

AbstractÐThe enantiomers of 4-tert-butyl-3-isopropyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-sul®de (TBIPPS) were pre-
pared in nine steps from diethyl tert-butylmalonate, and their abilities to compete with [3H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-
trioxabicyclo[2.2.2]octane (EBOB), a noncompetitive antagonist of ionotropic g-aminobutyric acid (GABA) receptors, at their
binding site were investigated using rat brain and house¯y head membranes. The (S)-(ÿ)-isomer of TBIPPS (IC50=398 nM) was
more potent than was the (R)-(+)-isomer of TBIPPS (IC50=1220 nM) in rat receptors, while the potencies of (S)-TBIPPS
(IC50=104 nM) and (R)-TBIPPS (IC50=94.4 nM) in house¯y receptors were almost the same. The di�erent enantiospeci®cities of
rat and house¯y receptors indicate that the three-dimensional structure of the binding site might be di�erent between these receptors.
In a region of the rat binding site there might be a steric bulk that interacts less favorably with (R)-TBIPPS than with (S)-TBIPPS,
while in the corresponding region of the house¯y binding site there might not be such a steric bulk that leads to speci®city for these
compounds. # 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Electrophysiological and biochemical studies have
demonstrated that bicyclophosphorothionates (2,6,7-
trioxa-1-phosphabicyclo[2.2.2]octane 1-sul®des) act as
noncompetitive antagonists of ionotropic g-aminobutyric
acid (GABA) receptors in both invertebrate and verte-
brate nervous systems.1ÿ7 Noncompetitive antagonists
inhibit the inhibitory action of GABA during synaptic
neurotransmission by binding to an allosteric site within
GABA receptor-operated chloride channels to exert toxi-
city in animals.8 One of the antagonists selective for insect
GABA receptors, ®pronil, is used as an insecticide.9

We recently reported that the introduction of an isopropyl
group into the 3-position of bicyclophosphorothionates
leads to noncompetitive antagonists with increased a�n-
ity and selectivity for house¯y (Musca domestica L.)
GABA receptors versus rat GABA receptors.10 We noted
that tert-butylbicyclophosphorothionate (TBPS), which
has a 4-tert-butyl group but no substituent at the 3-
position, was much more selective for rat receptors than

for house¯y receptors, as determined by binding assays
using the GABA antagonist [3H]1-(4-ethynylphenyl)-4-
n-propyl-2,6,7-trioxabicyclo[2.2.2]octane (EBOB) (IC50

rat/
IC50

¯y=0.0384). The addition of an isopropyl group into
the 3-position of TBPS led to tert-butyl(isopropyl)bicyclo-
phosphorothionate (TBIPPS), or 4-tert-butyl-3-isopropyl-
2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-sul®de, with
an IC50

rat/IC50
¯y ratio of 13.8. The selectivity value for house-

¯y receptors was thus increased 359-fold by the introduc-
tion of an isopropyl group, compared with the selectivity
value of TBPS. These ®ndings indicate that the structure
of the binding site might be di�erent between rats and
house¯ies; that is, there might be an ample space that
accommodates the 3-isopropyl group of TBIPPS in the
house¯y binding site but not in the rat binding site.

As TBIPPS is a chiral compound, the separation of the
enantiomers may provide more information regarding
species di�erences in the structure of the 3-substituent-
interacting area that allows the receptor selectivity. To
gain a better understanding of the molecular interaction
of TBIPPS with the rat and house¯y binding sites, we
prepared the enantiomers of TBIPPS, investigated their
abilities to compete with [3H]EBOB at the binding site,
and report herein the results.
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Results and Discussion

Chemistry

The enantiomers of TBIPPS were prepared as outlined in
Scheme 1. Racemic alcohol 1 was synthesized as pre-
viously described.10 (S)-(ÿ)-2-Methoxy-2-tri¯uoromethyl-
phenylacetic acid (MTPA) reacted via its acid chloride
with 1 to give a pair of diastereomeric MTPA esters 2.
Isopropylidene ketal 2 underwent hydrolysis in acetic
acid to a�ord a diastereomeric mixture of diols (R,S)-
and (S,S)-3, which were separated using a chiral HPLC
column (Sumichiral OA-2000) with hexane:2-propanol
(49:1). The absolute stereochemistry of the diaster-
eomers was determined based on their NMR chemical
shifts using Mosher's method.11,12 The proton signal of
the tert-butyl group of the (R,S)-diastereomer was

observed at a higher ®eld position than that of the (S,S)-
diastereomer, because the former is more shielded by
the p cloud of the phenyl group of the MTPA moiety
(Fig. 1). In contrast, the proton signals of the isopropyl
group of the (R,S)-diastereomer were centered at a
lower ®eld position than those of the (S,S)-diastereo-
mer, because the latter is more shielded by the p cloud
of the phenyl group of the MTPA moiety. (R,S)- and
(S,S)-3 were then converted into triols (R)-(+)- and (S)-
(ÿ)-4, respectively, using diisobutylaluminum hydride
(DIBAL) as a reducing agent. The target compounds
((R)-(+)- and (S)-(ÿ)-TBIPPS) were ®nally obtained by
the reaction of (R)-(+)- and (S)-(ÿ)-4 with thiophos-
phoryl chloride, respectively. The overall yields of (R)-
and (S)-TBIPPS in nine steps from diethyl tert-butyl-
malonate were 1.4 and 1.3%, respectively.

Scheme 1. Preparation of enantiomers of TBIPPS.

Figure 1. NMR spectra of (A) diastereomeric 3, (B) (R,S)-3, and (C) (S,S)-3.
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Receptor binding

We examined (R)- and (S)-TBIPPS for their potencies to
inhibit speci®c binding of [3H]EBOB, a noncompetitive
GABA receptor antagonist, to membranes prepared
from rat brains and house¯y heads. (S)-TBIPPS (IC50=
398 nM) was more potent than (R)-TBIPPS (IC50=
1220 nM) in rat brain membranes (Table 1); their con-
centration±inhibition curves are shown in Figure 2. In
contrast, the potencies of (S)-TBIPPS (IC50=104 nM)
and (R)-TBIPPS (IC50=94.4 nM) were almost the same
in house¯y head membranes (Table 1); these concentra-
tion±inhibition curves are shown in Figure 3. The pre-
viously reported IC50 value of racemic TBIPPS was
intermediate between those of (R)- and (S)-TBIPPS in
the case of rat receptors, while the IC50 value of each
enantiomer was not signi®cantly di�erent from that of
racemic TBIPPS in the case of house¯y receptors (Table 1).
The selectivity for house¯y GABA receptors estimated
in terms of IC50

rat/IC50
¯y was >3-fold higher in (R)-

TBIPPS than in (S)-TBIPPS.

The di�erent enantiospeci®cities of rat and house¯y
receptors indicate that the three-dimensional structure
of the binding site might be di�erent between these

receptors, although the binding site of noncompetitive
antagonists is thought to be located in a highly
homologous region within GABA receptor-operated
chloride channels.13ÿ17 In a region of the rat binding site
there might be a steric bulk that interacts less favorably
with (R)-TBIPPS than with (S)-TBIPPS, while in the
corresponding region of the house¯y binding site there
might not be such a steric bulk exhibiting speci®city for
these compounds. In particular, the 3-subsitituent-
interacting area in house¯y receptors appears to be
wider than that in rat receptors, because the former can
accommodate both enantiomers. These ®ndings support
the ®ndings in our previous work that there are structural
di�erences in the noncompetitive antagonist-binding site
between insect and mammalian receptors.10,18,19 Further
synthesis of the enantiomers of other bicyclophos-
phorothionate GABA antagonists and the application
of three-dimensional quantitative structure±activity
relationship analysis would help us to establish model-
ing of the binding site and to understand the molecular
topography of the antagonist-binding sites of rat and
house¯y ionotropic GABA receptors.

Experimental

Chemistry

General. Optical rotations were determined with a
JASCO DIP-140 digital polarimeter. 1H NMR spectra
were obtained in CDCl3 at 400MHz with a JEOL JNM-
A-400 NMR spectrometer, and chemical shifts are
reported in parts per million relative to tetramethylsilane
as an internal standard. Mass spectra were obtained on
a Hitachi M-80B spectrometer. Melting points were
determined with a Yanako PM-500D apparatus and are
uncorrected. Elemental analyses were performed by
Elemental Analysis Center, Faculty of Science, Kyushu

Table 1. Potencies of (R)- and (S)-TBIPPS in inhibiting [3H]EBOB

binding to rat brain and house¯y head membranes

Compound IC50 (nM) IC50
rat/IC50

¯y

Rat House¯y

(R)-TBIPPS 1220 (990±1500a) 94.4 (52.8±169) 12.9
(S)-TBIPPS 398 (319±497) 104 (64.5±166) 3.83
Racemic TBIPPSb 706 (565±883) 51.2 (33.5±78.2) 13.8

a95% con®dence interval.
bData from ref 10.

Figure 2. Concentration±inhibition curves of (R)- and (S)-TBIPPS in
inhibiting speci®c [3H]EBOB binding to rat brain membranes.

Figure 3. Concentration±inhibition curves of (R)- and (S)-TBIPPS in
inhibiting speci®c [3H]EBOB binding to house¯y head membranes.

X.-L. Ju, Y. Ozoe / Bioorg. Med. Chem. 8 (2000) 2337±2341 2339



University. Reagents were purchased from Wako Pure
Chemical Industries, Ltd. [3H]EBOB (1406GBq/mmol)
was purchased from NEN Life Science Products, Inc.

(S) -2 -Methoxy-2 - tri¯uoromethylphenylacetyl chloride
(MTPA-Cl). A mixture of (S)-(ÿ)-2-methoxy-2-tri¯uoro-
methylphenylacetic acid (MTPA) (3.0 g, 12.8mmol),
thionyl chloride (6mL), and sodium chloride (36mg) was
re¯uxed for 50h. After excess thionyl chloride was
removed by vacuum evaporation, the residue was distilled
under reduced pressure to give 2.7 g (84%) of MTPA-Cl:
bp 72±74 �C (3mm Hg) [lit.11 bp 54±56 �C (1mm Hg)].

5-tert-Butyl-5-[1-((2S)-2-methoxy-2-tri¯uoromethylphenyl-
acetoxy)-2-methylpropyl]-2,2-dimethyl-1,3-dioxane (2). 5-
tert-Butyl-5-(1-hydroxy-2-methylpropyl)-2,2-dimethyl-
1,3-dioxane (1) was synthesized as previously reported.10

A mixture of (S)-MTPA-Cl (0.21 g, 0.83mmol), 5-tert-
butyl-5-(1-hydroxy-2-methylpropyl)-2,2-dimethyl-1,3-
dioxane (0.14 g, 0.57mmol), 4-dimethylaminopyridine
(140mg), dry pyridine (1mL), and dry carbon tetra-
chloride (1mL) was stirred for 48 h at room temperature.
After the addition of water (10mL), the solution was
extracted with ethyl acetate (10mL�3). The extract was
washed with saturated brine, dried (Na2SO4), and con-
centrated under reduced pressure. The residue was puri®ed
by chromatography on silica gel with hexane:ethyl acetate
(9:1) to give 0.15 g (58%) of a diastereomeric mixture of
2 as a colorless liquid: CIMS (isobutane) m/z 461
(M+1); 1H NMR d 0.84, 0.88 (2s, (CH3)3C), 0.96, 0.97,
1.08, 1.09 (4d, J=6.8Hz, (CH3)2CH), 1.31 (s, (CH3)2C),
2.52 (m, (CH3)2CH), 3.41±3.76 ((CH2O)2), 3.49, 3.54
(2CH3O), 5.22, 5.24 (2d, J=2.9, 3.2Hz, (CH3)2CHCH),
7.41 (m, Ar), 7.58 (m, Ar).

2-tert-Butyl-2-[1-((2S)-2-methoxy-2-tri¯uoromethylphenyl-
acetoxy)-2-methylpropyl]-1,3-propanediol (3). A mixture
of 2 (0.20 g, 0.43mmol), acetic acid (2mL), and water
(1mL) was heated to 60 �C for 1 h with stirring. After
the mixture was cooled, a saturated sodium hydrogen
carbonate solution (5mL) was added to it. The solution
was extracted with ether (5mL�4), and the extract was
dried (Na2SO4) and concentrated. The residue was
puri®ed by chromatography on silica gel with hexane:
ethyl acetate (5:1) to give 117mg (65%) of a diaster-
eomeric mixture of 3 as a colorless liquid: CIMS (iso-
butane) m/z 421 (M+1); 1H NMR d 0.94 (d, J=6.8Hz,
(CH3)2CH)), 0.96 (s, (CH3)3C), 0.98 (s, (CH3)3C), 1.01
(d, J=6.8Hz, (CH3)2CH), 1.03 (t, J=7.1Hz,
(CH3)2CH), 2.34 (m, (CH3)2CH), 2.47 (m, OH), 2.56 (t,
OH), 2.62 (t, OH), 3.47 (m, CH3O), 3.55 (dd, CH2O),
3.57 (m, CH3O), 3.64 (dd, CH2O), 3.71 (d, CH2O), 3.72 (d,
CH2O), 3.78 (dd, CH2O), 3.80 (dd, CH2O), 3.91 (dd,
CH2O), 3.92 (dd, CH2O), 5.29 (dd, J=1.7Hz,
(CH3)2CHCH), 5.38 (dd, J=2.0Hz, (CH3)2CHCH),
7.45 (m, Ar), 7.59 (m, Ar).

Separation of the diastereomers of 3. The diastereomers
of 3 were separated using a Sumichiral OA-2000 HPLC
column (Sumika Chemical Analysis Service, Ltd., 5 mm,
8mm id�25 cm); mobile phase, hexane:2-propanol
(49:1); ¯ow rate, 3mL/min; detector, 254 nm. 2-tert-
Butyl-2-[(1R)-1-((2S)-2-methoxy-2-tri¯uoromethylphe-

nylacetoxy)-2-methylpropyl]-1,3-propanediol ((R,S)-3)
was obtained as a colorless solid: retention time
22.7min; mp 75±77 �C; CIMS (isobutane) m/z 421
(M+1); 1H NMR d 0.96 (9H, s, (CH3)3C), 1.03 (6H, t,
J=7.1Hz, (CH3)2CH), 2.34 (1H, m, (CH3)2CH), 2.47
(2H, br, OH), 3.55 (1H, d, CH2O), 3.57 (3H, s, CH3O),
3.65 (1H, d, CH2O), 3.77 (1H, d, CH2O), 3.91 (1H, d,
CH2O), 5.29 (1H, d, J=1.5Hz, (CH3)2CHCH), 7.44
(3H, m, Ar), 7.58 (2H, m, Ar). 2-tert-Butyl-2-[(1S)-1 -
((2S) - 2 -methoxy - 2 - tri¯uoromethylphenylacetoxy) - 2 -
methylpropyl]-1,3-propanediol ((S,S)-3) was obtained
as a colorless liquid: retention time 25.6 min; CIMS
(isobutane) m/z 421 (M+1); 1H NMR d 0.94 (3H, d,
J=6.8Hz, (CH3)2CH), 0.98 (9H, s, (CH3)3C), 1.01 (3H, d,
J=6.8Hz, (CH3)2CH), 2.33 (1H, m, (CH3)2CH), 2.59
(2H, br, OH), 3.47 (3H, s, CH3O), 3.69 (1H, d,
J=12.2Hz, CH2O), 3.74 (1H, d, J=12.2Hz, CH2O), 3.80
(1H, d, J=12.0Hz, CH2O), 3.92 (1H, d, J=12.0Hz,
CH2O), 5.38 (1H, d, J=1.7Hz, (CH3)2CHCH), 7.46 (3H,
m, Ar), 7.60 (2H, m, Ar).

(R)- and (S)-2-tert-Butyl-2-hydroxymethyl-4-methyl-1,3-
pentanediol (4). A 1.5-M solution of DIBAL in toluene
(0.5mL, 0.75mmol) was added to a solution of (R,S)-3
(45mg, 0.11mmol) in dry ether (2mL) with stirring at
0 �C under a nitrogen atmosphere. After stirring at
ambient temperature for 2 days, the reaction solution
was added to a 10% sulfuric acid solution (5mL), and
the reaction solution was extracted with ether (5mL�4).
The combined ether extract was dried (Na2SO4) and con-
centrated. The residue was puri®ed by chromatography
on silica gel with hexane:ethyl acetate (1:1) to give 13.3mg
(59%) of (R)-4 as a colorless solid: mp 49±50 �C; CIMS
(isobutane) m/z 205 (M+1); 1H NMR d 0.98 (9H, s,
(CH3)3C), 1.07 (6H, 2d, J=6.8Hz, (CH3)2CH), 2.23
(1H, m, (CH3)2CH), 3.02 (3H, br, OH), 3.79 (1H, s),
3.85 (1H, d, J=11.7Hz), 4.03 (2H, s), 4.13 (1H, d,
J=11.7Hz); [a]d20 (c 1.33, ethanol)=+18.1�. A similar
reaction of (S,S)-3 (41mg) a�orded 13.2mg (66%) of
(S)-4: [a]d20 (c 1.32, ethanol)=ÿ17.2�. (S)-4 gave very
similar MS and NMR spectra to those of (R)-4.

(R)- and (S)-4-tert-Butyl-3-isopropyl-2,6,7-trioxa-1-phos-
phabicyclo[2.2.2]octane 1-sul®de (TBIPPS). (R)-TBIPPS
(4.5mg, 26%) was prepared from (R)-4 (13.3mg) and
thiophosphoryl chloride (11mg) using a previously
reported method:10 [a]d20 (c 1.20, chloroform)=+33.3�;
HREIMS m/z calcd for C11H21O3PS 264.0949 (M+),
found 264.0952. Anal. calcd for C11H21O3PS: C, 49.98;
H, 8.01. Found: C, 50.10, H, 7.83. (S)-TBIPPS (3.7mg,
22%) was prepared from (S)-4 (13.2mg) and thiophos-
phoryl chloride (11mg) in the same manner: [a]d20 (c
1.01, chloroform)=ÿ33.6�; HREIMS m/z calcd for
C11H21O3PS 264.0949 (M+), found 264.0928. Anal.
calcd for C11H21O3PS: C, 49.98; H, 8.01. Found: C,
49.34; H, 7.69. The 1H NMR spectra of these two
enantiomers were the same as that of racemic TBIPPS.10

Binding assays

Rat brain and house¯y head P2 membranes were prepared
by a previously reported method.10 Experiments of
[3H]EBOB binding to rat brain and house¯y head
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membranes were performed in a manner similar to the
methods of Cole and Casida20 and Deng et al.,21 respec-
tively. In brief, a mixture of DMSO (4 mL), [3H]EBOB
(5 nM) in 10mM phosphate bu�er (pH 7.5) containing
300mM sodium chloride (0.1mL), and rat brain mem-
branes (125 mg protein/0.9mL of the same bu�er) was
used for determination of total binding. The DMSO
was replaced with unlabeled 1.25mM EBOB in DMSO
(4 mL) for determination of nonspeci®c binding, and
di�erent concentrations of (R)- and (S)-TBIPPS in
DMSO (4 mL) were substituted for DMSO to determine
the inhibition caused by the compounds. These mixtures
were incubated for 90min at 37 �C, followed by Brandel
M-24 harvester ®ltration on Whatman GF/B ®lters and
two rinses with 5mL of ice-cold binding bu�er. The ®lters
were subjected to counting in toluene±Methylcellosolve-
based scintillation ¯uid with a Beckman LS 6000 SE
scintillation spectrometer. Experiments with house¯y
head membranes (200 mg protein) were performed using
the same procedure except that the incubation time and
temperature were 70min and 22 �C, respectively. The
percent inhibition values were calculated. Six to eight
concentrations of each test compound were used for
determination of the IC50 values, which were obtained
by the Probit method.
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