10-Hydroxyacenaphtho[1,2-b]quinoline (13): light yellow solid; mp 309-310 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); yield 92%; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 7.4-8.5(\mathrm{~m}, 10 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 84.7 ; \mathrm{H}, 4.1 ; \mathrm{N}, 5.2$. Found: C, 84.6; H, 4.0; N, 5.0.

General Method for the Preparation of Quinones 7 and 14. To an aqueous solution of Fremy's salt $\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2} \mathrm{NO}(3.9 \mathrm{mmol})$ in 100 mL of $0.16 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ at $5^{\circ} \mathrm{C}$ was added dropwise with stirring a solution of the phenol (6 or 13) in 50 mL of HMPA. The mixture was stirred at $5-7^{\circ} \mathrm{C}$ for $2-2.5 \mathrm{~h}$ and then left overnight at $0^{\circ} \mathrm{C}$. The solid separated was filtered, washed well with water, and dried.

10,11-Diox0-10,11-dihydrodibenz[a,h]acridine (7): purple violet solid; $\mathrm{mp} 235-237{ }^{\circ} \mathrm{C}$ dec; yield 97%; IR (KBr) $\nu_{\text {max }} 1615$, $1645,1660 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 81.5 ; \mathrm{H}, 3.5 ; \mathrm{N}, 4.5$. Found: C, 81.3; H, 3.4; N, 4.2.

10,11-Dioxo-10,11-dihydroacenaphtho[1,2-b]quinoline (14): brick red solid; $\mathrm{mp}>350^{\circ} \mathrm{C}$; yield 100%; IR (KBr) $\nu_{\text {max }} 1615,1640$, $1655 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{NO}_{2}$: C, 80.5; $\mathrm{H}, 3.2 ; \mathrm{N}, 5.0$. Found: C, 80.3; H, 2.9; N, 4.7.

General Procedure for the Preparation of the trans-Dihydrodiols 8 and 15. To a suspension of the quinone (7 or 14) $(0.3 \mathrm{mmol})$ in ethanol (15 mL) was added an excess of NaBH_{4} $(200 \mathrm{mg})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 48 h with a constant blow of oxygen and keeping the volume of solvent constant by addition of ethanol. The color of the reaction mixture changed from orange to faint yellow during this time. After decomposing the complex with ice-water, the organic portion was extracted with an ethyl acetate-ether mixture, washed with water, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent in vacuo followed by purification by preparative TLC (silica gel/ethyl acetate-ether, 1:1) furnished the trans-diols.
trans-10,11-Dihydroxy-10,11-dihydrodibenz[a, h]acridine (8): faint yellow solid; mp $226-229^{\circ} \mathrm{C}$ (lit. $.^{10} \mathrm{mp} 230-231{ }^{\circ} \mathrm{C}$; yield 25%; MS (m / ε) $313\left(\mathrm{M}^{+}\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 4.3(\mathrm{~d}$, 1 H), 4.9 (d, 1 H), 6.1 (dd, 1 H), 7.6-8.5 (m, 8 H), 8.9 (d, 1 H), 9.7 ($\mathrm{s}, 1 \mathrm{H}$) ppm.
trans-10,11-Dihydroxy-10,11-dihydroacenaphtho[1,2-b]quinoline (15): faint yellow solid; $\mathrm{mp} 225-227^{\circ} \mathrm{C}$; yield 40%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 4.1(\mathrm{~m}, 1 \mathrm{H}), 5.2(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz})$, $6.5(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 7.3-8.5(\mathrm{~m}, 5 \mathrm{H}), 8.6(\mathrm{~d}, 1$ $\mathrm{H}, J=6 \mathrm{~Hz}$), $9.1(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 79.4 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.9$. Found: C, 79.1; H, 4.3; N, 4.5.

Acknowledgment. Thanks to CSIR, New Delhi, for financial support.

A Case of Self-Induced Anisochrony in the Proton Nuclear Magnetic Resonance Spectra of 1,5-Benzothiazepines

Claudio Giordano,* Angelo Restelli, and Marco Villa
Istituto di Ricerca Chimica "G. Zambon", Zambon Group S.p.A., Via Cimabue, 26/28, 20032 Cormano (Milano), Italy

Rita Annunziata

Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy

$$
\text { Received June 13, } 1990
$$

The NMR spectra of enantiomers may be different when they are of solutions in a nonracemic chiral solvent ${ }^{18}$ or of solutions in an achiral solvent containing a nonracemic chiral additive, such as a lanthanide shift reagent. ${ }^{1 \mathrm{~b}}$ In the

[^0]

$\mathrm{X}=\mathrm{OCCH}_{3}$	$\mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{HCL}$	Cis	2S,3s	(+)-1a
$X=H$	$Y=H$	Cis.	2S,3S	(+)-1b
$X=H$	$Y=H$	Cis	2B,3B	$(-)-16$
$\mathrm{X}=\mathrm{OCCH}_{3}$	$Y=H$	Cis.	2S,3S	$(+)-1 c$
$\mathrm{X}=\mathrm{OCCH}_{3}$	$Y=H$	Cis	2B,38	(-) -1 c
$X=H$	$\mathrm{Y}=\mathrm{CH}_{3}$	Cis	2S,3S	(+)-1d
$X=H$	$\mathrm{Y}=\mathrm{CH}_{3}$	cis.	2B,3日	(-) -1d
$X=H$	$Y=H$	Trans	2S** $3 \mathrm{~B}^{*}$	$(+)-1 e$
$X=H$	$Y=H$	Irans	2S'* ${ }^{\text {+ }}{ }^{*}$	$(-)-1 e$

Figure 1.

Figure 2. p-Methoxy proton resonances of (a) 95% (+)-1b, 5% $(-)-1 b$, and (b) $60 \%(+)-1 \mathrm{~b}, 40 \%(-)-1 \mathrm{~b}$.
absence of any added nonracemic chiral substance, the notion that enantiomers and racemates show identical NMR spectra holds true only at high dilution. To the extent that there is some degree of solute aggregation, they may exhibit different NMR spectra. ${ }^{1 \mathrm{a}, 2-8}$ Generally, the differences under such circumstances are so small that they are not detectable.

Now, we report a new example of the self-discrimination of enantiomers which can be conveniently used for the determination of the enantiomeric purity of 1,5 -benzothiazepines 1 (Figure 1) by ${ }^{1} \mathrm{H}$ NMR methods. In this case, enantiomeric purity is of particular importance because

[^1]Table I. ${ }^{1}{ }^{H}$ NMR Spectral Data (300 MHz) of Pure (+)-1b, Pure (-)-1b, and Mixtures of Different Concentrations in CDCl_{3} at $22{ }^{\circ} \mathrm{C}$. Chemical Shifts (δ, ppm) of the p-Methoxy Group Protons

	chemical shift: δ, ppm				
$(+)-\mathbf{l b}:(-)-\mathbf{1 b}$	$9.3 \times 10^{-2} \mathrm{M}$	$4.6 \times 10^{-2} \mathrm{M}$	$9.3 \times 10^{-3} \mathrm{M}$	$9.3 \times 10^{-4} \mathrm{M}$	$9.3 \times 10^{-6} \mathrm{M}$
$100: 0$	3.741	3.758	3.797	3.816	3.819
$90: 10$	$3.747,3.811$	$3.763,3.812$	$3.790,3.817$	$3.813,3.820$	3.819
$80: 20$	$3.753,3.800$	$3.765,3.805$	$3.800,3.816$	$3.813,3.818$	3.820
$50: 50$	3.774	3.783	3.808	3.818	3.820
$20: 80$	$3.800,3.755$	$3.806,3.769$	$3.815,3.799$	$3.819,3.814$	3.819
$10: 90$	$3.810,3.748$	$3.810,3.760$	$3.817,3.800$	$3.821,3.814$	3.819
$0: 100$	3.741	3.756	3.798	3.817	3.820

the 1,5 -benzothiazepines (+)-1b ${ }^{9}$ and (+)-1c (Figure 1) are intermediates in the synthesis of diltiazem [$(+)$-1a], an enantiomerically pure drug with calcium antagonist activity. ${ }^{9}$

Enantiomerically pure $(+)$-1b or $(-)$-1b and a racemic mixture of the two show nonequivalence of ${ }^{1} \mathrm{H}$ NMR spectra at the same concentration in chloroform- d solution (Table I). When the proportions of $(+)-1 \mathrm{~b}$ and $(-)-1 \mathrm{lb}$ in a mixture deviate from 1:1, two sets of signals appear for both the p-methoxy group protons and the aromatic protons. The ratio of the integrals of the two sets of signals gives the enantiomeric ratio. The signals that best define the nonequivalence of the spectra of the enantiomers are those due to the p-methoxy group protons (Figure 2), for those of the aromatic protons overlap. The chemical shifts of the protons of the p-methoxy group of the pure enantiomers, the racemate, and mixtures thereof, recorded at different concentrations, are shown in Table I.
An analysis of the data reveals the following. (i) The difference in the values of the chemical shift ($\Delta \delta$) of the two p-methoxy group proton signals decreased as the mixture approached racemic composition. (ii) $\Delta \delta$ was concentration dependent: at higher concentrations, correspondingly larger $\Delta \delta$ were observed, whereas at high dilution ($9.3 \times 10^{-5} \mathrm{M}$), $\Delta \delta$ was too small to be detected (Table I). (iii) The chemical shift of the protons of the racemic mixture differed from that of the pure enantiomers. (iv) The pure enantiomers and mixtures equally enriched by one enantiomer or the other showed identical spectra: the signals due to the protons of the enantiomer present in the higher concentration always appeared at higher field. (v) There was a linear relationship ($R=0.999$) between enantiomeric purity and $\Delta \delta^{10}$ (Table I).
These findings have analytical significance: for a saturated ($9.3 \times 10^{-2} \mathrm{M}$) solution in CDCl_{3} of a mixture of $(+)-1 \mathrm{~b}$ and $(-)-1 \mathrm{~b}$, the concentration ratio of the enantiomers could be determined from 99:1 to 54:46 with an accuracy of ± 1. The same result was obtained by the use of a chiral shift reagent like $\operatorname{Pr}(\mathrm{hfbc})_{3}$. However, the reagent caused splitting of the p-methoxy group proton signals, with broadening of the signals.
The phenomenon was strongly solvent dependent. Halogenated solvents ($\mathrm{CCl}_{4}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3}$) and aromatic solvents (benzene, toluene) were useful for the detection of the phenomenon, but CDCl_{3} was the solvent of choice for solubility reasons. In contrast, the phenomenon was not observed in N, N-dimethylformamide- d, dimethyl-sulfoxide- d_{6}, or methanol- d.

We attribute the manifestation of two signals to a fast exchange of monomers among dimers of the type $R R, R S$, and $S S$. Thus, at a slow exchange rate, there should be two signals, one (A) for the hetero dimer RS (or its

[^2]

Figure 3.
equivalent, $S R$) and one (B) for the sum of the homo dimers $R R+S S$. In this case, integration of the signals would not match the relative proportions of R and S. When, on the other hand, the exchange rate is fast, there is a coalescence of peaks proportional to their contribution to each of the static peaks. Because peak B, the peak due to the homo dimer, is the sum of the signals for $R R$ and SS, and because the spectrum of R (or S) at a fast exchange rate would be affected only by the equilibrium $R S$ $\rightleftarrows R R$ (or $S R \rightleftarrows S S$), it can be seen that, for an unequal amount of R and S, two peaks would be predicted for the fast exchange limit. Integration of the signals would now reflect the relative proportions of R and S.

In order to obtain information on the influence of substituents on this self-discrimination, we investigated the ${ }^{1} \mathrm{H}$ NMR behavior of the O-acetyl $[(+)$ - and $(-)-1 \mathrm{c}]$ and N-methyl $[(+)$ - and (-)-1d] derivatives (Figure 1). Compounds ic showed the phenomenon, but it was of reduced magnitude. Thus, for a $9.3 \times 10^{-2} \mathrm{M}$ solution in CDCl_{3} at $22^{\circ} \mathrm{C}, \Delta \delta=0.03 \mathrm{ppm}$. In contrast, compounds 1 d did not display self-discrimination under a large variety of conditions of concentration, solvent, and temperature. The different spectroscopic behavior of 1 c and 1 d suggested that $\mathrm{N}-\mathrm{H}$, and not $\mathrm{O}-\mathrm{H}$, hydrogen bonding permitted the molecular associations depicted in Figure 3.

Moreover, solute aggregation in solution also depended on the relative configurations of $\mathrm{C}-2$ and $\mathrm{C}-3$. Thus, in contrast to the cis isomers $[(+)$ - and $(-)-1 \mathrm{lb}]$, the trans isomers $[(+) \text { - and }(-)-1 e]^{11}$ did not display the phenomenon under a large variety of conditions.

Experimental Section

NMR spectra were recorded with a Varian XL 300 spectrometer at 300 MHz for ${ }^{1} \mathrm{H}$ and at 75.4 MHz for ${ }^{13} \mathrm{C}$. The temperature was controlled to $\pm 1^{\circ} \mathrm{C}$. Chemical shifts are reported in ppm (δ) relative to internal tetramethylsilane. Optical rotations were measured in a 1 -dm cell with a Perkin-Elmer 241 polarimeter. Merck silica gel (230-400 mesh) was used for flash column

[^3]chromatography. Melting points were determined with a Kofler apparatus and are uncorrected. Isobutane chemical ionization mass spectra were recorded at 110 eV with a Finnegan MAT 8220 instrument equipped with a Data General Nova 4X data system. References to the removal of solvents under reduced pressure mean the evaporation of the solvent at ca. 20 mmHg with a Büchi rotary evaporator. The solutions for ee determinations were prepared by mixing, or by mixing and diluting with $\mathrm{CDCl}_{3}, 9.3$ $\times 10^{-2} \mathrm{M}$ solutions of enantiomerically pure (+)-1b and (-)-1b in CDCl_{3}.

Compounds $(+)-1 \mathrm{~b}$ and (-)-1b. Compounds (+)-1b and $(-)-1 \mathrm{~b}$ were prepared by a literature method. ${ }^{9}(+)-1 \mathrm{~b}: \mathrm{mp} 207-210^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} 208-210^{\circ} \mathrm{C}$); $[\alpha]^{25}{ }_{\mathrm{D}}=+55.2^{\circ}\left(c 1.0 ; \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, J $=6.88 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{A}$ part of an AB system, $J=6.88 \mathrm{~Hz}$), 6.9-7.7 (8 H , aromatic H), $8.2(\mathrm{br}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right)} \delta 55.20$ (q), 57.50 (d), 69.30 (d), 113.64 (d), 123.06 (d), 126.28 (s), 126.89 (d), 127.36 (s), 130.03 (d), 131.12 (d), 134.70 (d), 140.34 (s), 159.93 (s), 173.7 (s); CI MS m/e $302(\mathrm{M}+1)^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.76 ; \mathrm{H}, 5.02 ; \mathrm{N}, 4.65 ; \mathrm{O}, 10.64 ; \mathrm{S}, 15.93$. Found: C, 63.75; H, 5.01; N, 4.63; O, 10.62; S, 15.87.

Compounds (+)-1c and (-)-1c. Acetic anhydride ($1.73 \mathrm{~g}, 17$ $\mathrm{mmol})$ was added to a suspension of $(+)-1 \mathrm{~b}$ or $(-)-1 \mathrm{~b}(5 \mathrm{~g}, 16.6$ mmol) in toluene (15 mL). The mixture was refluxed for 2 h . The mixture was then cooled to room temperature and was poured into 10% aqueous sodium carbonate (40 mL). The organic layer was separated, washed with water, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent under reduced pressure gave a crude product, which was purified by flash chromatography to give pure (+)-1c or (-)-1c ($5.14 \mathrm{~g}, 15 \mathrm{mmol}$), in 90% yield. (+)-1c: mp 153-155 ${ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{12} \mathrm{mp} 152-153{ }^{\circ} \mathrm{C}\right) ;[\alpha]^{20} \mathrm{D}=+40^{\circ}\left(c 0.5 ; \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 5.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, $J=7.1 \mathrm{~Hz}$), 5.33 (d, $1 \mathrm{H}, \mathrm{A}$ part of an AB system, $J=7.1 \mathrm{~Hz}$, $6.7-7.7(8 \mathrm{H}$, aromatic H$), 8.4(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.19$ (q), 54.98 (q), 54.98 (d), 71.08 (d), 113.50 (d), 123.33 (d), 126.47 (d), 126.75 (s), 126.84 (s), 130.28 (d), 130.38 (d), 134.48 (d), 140.82 (s), 159.53 (s), 169.19 (s), 169.56 (s); CI MS m/e 344 $(\mathrm{M}+1)^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.95 ; \mathrm{H}, 4.99 ; \mathrm{N}$, 4.08; 0, 9.34; S, 18.64. Found: C, 62.07 ; H, 5.04; N, 4.03; 0, 9.11; S, 19.35.

Compounds (+)-1d and (-)-1d. Methyl iodide ($1.37 \mathrm{~g}, 9.6$ mmol) was added to a stirred mixture of (+)-1b or $(-)-1 \mathrm{~b}(1 \mathrm{~g}$, 3.32 mmol) and potassium carbonate ($1 \mathrm{~g}, 7.25 \mathrm{mmol}$) in acetone $(8 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then cooled to room temperature, poured into water $(30 \mathrm{~mL})$, and extracted with methylene chloride $(2 \times 30 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent under reduced pressure gave (+)-1d or $(-)$-1d in 95% yield. (+)-1d: $\mathrm{mp} 87-92{ }^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}=+85^{\circ}\left(\mathrm{c} 0.5 ; \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, $J=6.8 \mathrm{~Hz}$), $4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{A}$ part of an AB system, $J=6.8 \mathrm{~Hz}), 6.9-7.7(8 \mathrm{H}$, aromatic H$)$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 36.3$ (q), 55.18 (q), 56.74 (d), 69.29 (d), 113.58 (d), 123.65 (d), 126.19 (s), 127.25 (d), 127.96 (s), 130.32 (d), 131.20 (d), 135.09 (d), 145.96
(12) Susumu, N.; Katsuhiko, K.; Nobuyuki, F.; Hidemi, K.; Toshio, T. U.S. Patent, 4,416,819, 1983; Chem. Abstr. 1984, 100, P85733X.
(s), $159.80(\mathrm{~s}), 171.55(\mathrm{~s}) ; \mathrm{CI} \mathrm{MS} m / e 316(\mathrm{M}+1)^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.71 ; \mathrm{H}, 5.43 ; \mathrm{N}, 4.44 ; \mathrm{O}, 10.17 ; \mathrm{S}, 15.22$. Found: C, 64.53; H, 5.48; N, 4.48; 0, 10.12; S, 15.39.

Compounds (+)-1e and (-)-1e. Sodium bicarbonate (4.2 g , 50 mmol) and 2 -aminothiophenol ($31.4 \mathrm{~g}, 251 \mathrm{mmol}$) were added under nitrogen to a stirred suspension of (\pm)-trans-2,3-epoxy3 -(4-methoxyphenyl)propionic acid methyl ester ($50 \mathrm{~g}, 240 \mathrm{mmol}$) in methanol (500 mL). The mixture was stirred for 3 h at room temperature and then poured into a 0.1 M potassium phosphate buffer (pH 7) (100 mL). The methanol was evaporated under reduced pressure, and the residue was diluted with water and extracted with methylene chloride ($2 \times 100 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent under reduced pressure gave a solid residue ($83 \mathrm{~g}, 240 \mathrm{mmol}$). Sodium hydroxide ($12 \mathrm{~g}, 300 \mathrm{mmol}$) was added, with vigorous stirring, at $25^{\circ} \mathrm{C}$ to a suspension of the residue ($83 \mathrm{~g}, 240 \mathrm{mmol}$) in water $(415 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was extracted with methylene chloride $(2 \times 100 \mathrm{~mL})$. Aqueous $1 \mathrm{~N} \mathrm{HCl}(250 \mathrm{~mL})$ was added to the aqueous phase, which had been diluted with water (500 mL). The precipitate that formed was collected by filtration, washed with water, and dried under reduced pressure. (R)-$(+)$-Phenylethylamine ($20.8 \mathrm{~g}, 172 \mathrm{mmol}$) was added to the solid $(50 \mathrm{~g}, 156 \mathrm{mmol})$ suspended in water $(990 \mathrm{~mL})$. The suspension was refluxed, with stirring, until a transparent solution was produced. The solution was then cooled to $20^{\circ} \mathrm{C}$ over 2 h . The solid that precipitated from the cooled solution was collected by filtration and recrystallized three times from water (800 mL). Aqueous $\mathrm{HCl}, 1 \mathrm{~N}(90 \mathrm{~mL})$, was added to a suspension of the solid in water (1.8 L), and the suspension was stirred at room temperature for 1 h . The mixture was then filtered, and the solid that was collected was washed with water (200 mL). The solid was dried under reduced pressure to give pure erythro-(+)-3-((2-aminophenyl)thio)-2-hydroxy-3-(4-methoxyphenyl)propionic acid ($14 \mathrm{~g}, 44.0 \mathrm{mmol}$). An analytical sample of the acid was treated with diazomethane to give the corresponding methyl ester, which was enantiomerically pure by ${ }^{1} \mathrm{H}$ NMR analysis in the presence of $\operatorname{Pr}(\mathrm{hfbc})_{3}$. A stirred suspension of the acid ($14 \mathrm{~g}, 44.0$ mmol) in xylene (210 mL) was refluxed for 10 h . The reaction mixture was then cooled to room temperature, and the suspended solid was collected by filtration and dried under reduced pressure to afford (-)-1e $(9.8 \mathrm{~g}, 32.5 \mathrm{mmol}): \mathrm{mp} 194-200^{\circ} \mathrm{C} ;[\alpha]^{20}=-720^{\circ}$ (c $0.5 ; \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, $J=10 \mathrm{~Hz}), 4.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{A}$ part of an AB system, $J=10 \mathrm{~Hz}, 6.85-7.7(8 \mathrm{H}$, aromatic H$), 8.2(\mathrm{br}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 55.37$ (q), 57.69 (d), 72.04 (d), 114.28 (d), 123.28 (d), 126.11 (s), 127.36 (d), 128.32 (d), 130.46 (d), 134.65 (s), 135.82 (d), 139.63 (s), 159.38 (s), 173.94 (s); CI MS m/e $302(\mathrm{M}+1)^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.76 ; \mathrm{H}, 5.02 ; \mathrm{N}, 4.65 ; \mathrm{O}, 10.64 ;$ S, 15.93. Found: C, 63.67 ; H, 4.99; N, 4.63; O, 10.62; S, 15.82 . $(+)-1 \mathrm{e}\left(\mathrm{mp} 195-200{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}=+721^{\circ}\left(\mathrm{c} 0.5 ; \mathrm{CHCl}_{3}\right)\right.$) was prepared in a similar manner, using (-)-(S)-phenylethylamine in place of $(+)-(R)$-phenylethylamine in the resolution step.

Acknowledgment. We thank Mr. R. Casagrande for technical assistance and Professor Jay S. Siegel of the University of California for stimulating discussions.

[^0]: (1) Morrison, J. D., Ed. Asymmetric Synthesis; Academic Press Inc.: New York, 1983. (a) Weismann, G. R, Chapter 8, pp 153-171. (b) Fraser, R. R., Chapter 9, p 173.

[^1]: (2) Williams, T.; Pitcher, R. G.; Bommer, P.; Gutzwiller, J.; Uskoković, M. J. Am. Chem. Soc. 1969, 91, 1871.
 (3) Horeau, A.; Guetté, J. P. Tetrahedron 1974, 30, 1923.
 (4) Harger, M. J. P. J. Chem. Soc., Chem. Commun. 1976, 555. Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 1977, 1882; 1978, 326.
 (5) Kabachnik, M. I.; Mastryukova, T. A.; Fedin, E. I.; Vaisberg, M. S.; Morozov, L. L.; Petrovsky, P. V.; Shipov, A. E. Tetrahedron 1976, 32, 1719; Russ. Chem. Rev. 1978, 47, 821.
 (6) Thong, C. M.; Marraud, M.; Neel, J. C. R. Seances Acad. Sci., Ser. C 1975, 281C, 691.
 (7) Dobashi, A.; Saito, N.; Motoyama, Y.; Hara, S. J. Am. Chem. Soc. 1986, 108, 307.
 (8) For an example of chiral self-recognition by NMR in the presence of an achiral amplifying agent, see: Luchinat, C.; Roelens, S. J. Am. Chem. Soc. 1986, 108, 4873.

[^2]: (9) Kojić-Prodiç, B.; Ružiç-Toros̆, Z̆.; Šunjič, V. Helv. Chim. Acta 1984, 67, 916.
 (10) In contrast to Horeau's prediction (Tetrahedron Lett. 1969, 3121), a linear relationship between $[\alpha]^{d} \mathrm{D}$ and ee at a given concentration in CHCl_{3} was found.

[^3]: (11) The enantiomerically pure trans isomers (+)-1e and (-)-1e are described here for the first time (see Experimental Section). The absolute configurations ($2 R, 3 S ; 2 S, 3 R$) have not been assigned.

