
Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Yang, R. Mu, G. Wang, J. Song, H. Tian, Z. Zhao and J. Gong, *Chem. Sci.*, 2019, DOI: 10.1039/C8SC05608K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemical-science

Chemical Science

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Hydroxyl-mediated ethanol selectivity of CO₂ hydrogenation

Chengsheng Yang¹, Rentao Mu¹, Guishuo Wang, Jimin Song, Hao Tian, Zhi-Jian Zhao, and Jinlong Gong*

Oxide-supported Rh nanoparticles have been widely used for CO₂ hydrogenation, especially for the ethanol synthesis. However, this reaction operates under high pressure up to 8 MPa and suffers low CO2 conversion and alcohols selectivity. This paper describes the crucial role of hydroxyl groups bound on Rh-based catalysts supported on TiO₂ nanorods (NRs). The RhFeLi/TiO₂ NRs catalyst shows superior reactivity (\approx 15% conversion) and ethanol selectivity (32%) for CO₂ hydrogenation. The promoting effect can be attributed to the synergism of high Rh dispersion and high-density hydroxyl groups on TiO₂ NRs. Hydroxyls are proven to stabilize formate species and protonate methanol, which is easily dissociated into *CH_x, and then *CH_x is inserted by CO obtained from the reverse water-gas shift reaction (RWGS) to form CH₃CO*, followed by CH₃CO* hydrogenation to ethanol.

Introduction

Carbon dioxide (CO₂) is one of the major components of greenhouse gases, which can result in climate change and ocean acidification. Among the different approaches explored for controlling CO₂ emission, the chemical conversion of CO₂ to high-value-added fuels (oxygenates, alcohols, and olefin et al.) has attracted extensive attention.¹⁻⁴ Compared with C₁ product (CO, CH_4 and CH_3OH), the higher alcohols ($C_{2+}OH$, especially C₂H₅OH), which are mostly produced from biological fermentation, have been widely applied in industries as indispensable higher-energy-densities engine fuel and fuel additive.1 According to the thermodynamic analysis, the formation of ethanol from CO₂ is limited enormously at 1-30 bar due to the preferential production of CO or CH₄, thus the selectivity of ethanol is relatively low.4

Therefore, the production of C₂₊OH by CO₂ hydrogenation is appalling but remains grand challenging. Previous studies have shown that a Pt/Co₃O₄ catalyst⁵ achieved 27.3% selectivity of C2+OH with H2O/DMI as a solvent. Multi-functional composite catalysts, such as CoMoS⁶ (5.5% selectivity of ethanol), physically mixed Fe-based and Cu-based catalysts7 (17.4% selectivity of ethanol) and K/Cu-Zn-Fe catalysts^{8,9} (19.5% selectivity of C2+OH and CH3OH) were also used for alcohols synthesis. Particularly, Rh-based catalysts have been evaluated as promising catalysts for the selective synthesis of ethanol.^{4,10-} ¹¹ In general, promoters such as Fe and Li are frequently used in enhancing ethanol selectivity via changing the electronic state of Rh and increasing the intensity of bridged-bond CO species.

For example, 5 wt% RhFe¹⁰ and RhLi¹¹ supported on SiO₂ showed ethanol selectivities of 16.4% and 15.5%, respectively.

However, there are still some limitations for the alcohols production through CO₂ hydrogenation reaction, such as the difficulties in CO₂ activation, high energy barrier for C-O bond scission and the formation of C₁ by-products.¹ Therefore, the design of efficiently heterogeneous catalysts for ethanol production is of great importance. Tuning the particle size of noble metals can often increase the CO2 conversion and product selectivity.¹²⁻¹⁶ For example, the suitable reducible metal oxide supports, such as TiO₂, ZrO₂, have been extensively applied to tune the particle size.¹⁷⁻¹⁸ The Au/TiO₂ catalyst with abundant oxygen vacancies exhibited high selectivity to ethanol from CO₂ reduction in DMF solvent.¹⁹ Bimetallic Pd₂Cu/P25 catalyst also presented the excellent yield of ethanol with the help of water.²⁰ On the other hand, promotion strategy via hydroxyl groups has been also proved to be an efficient approach towards improving alcohols selectivity in CO hydrogenation.²¹⁻ 23

This work shows that the high yield of ethanol under low pressure can be achieved by the introduction of hydroxyls onto TiO₂ support. Firstly, 1wt% RhFeLi (Rh:Fe:Li =1:1:1) supported on a series of reducible oxides were prepared. The catalysts supported on TiO₂ nanorods (NRs) display highest selectivity of ethanol. Since TiO₂ NRs have been extensively used in a variety of catalytic systems, such as photocatalytic water splitting, CO2 photoreduction and dissociation of CO₂ to CO,²⁴⁻²⁶ we synthesized TiO₂ NRs by the modified hydrothermal method. More importantly, high-density surface hydroxyls can be introduced to the catalytic system after reduction of TiO₂ NRssupported catalysts in H₂. A significant improvement of ethanol yield is observed over Rh-based catalysts supported on TiO2 NRs, which have not been reported in the previous works. Furthermore, the hydroxyl-mediated mechanism of ethanol

formation over RhFeLi/TiO₂ NRs catalysts is investigated.

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China. Email: lqong@tju.edu.cn

[†] Electronic Supplementary Information (ESI) available: Details in Experimental section and supporting figures and tables. See DOI: 10.1039/x0xx00000x

Results and discussion

400°C in H₂ atmosphere.

nanoparticles on TiO₂ NRs present uniform size distribution with

an average diameter of 2.3 ± 1.0 nm (Fig. 1a, c, e). The high-

resolution images of Rh nanoparticles in Fig. 1c and 1d present

a lattice distance of 0.23 nm, corresponding to Rh (111)

planes.²⁷ In contrast, two-times-larger (~ 4.0 nm) Rh

nanoparticles in the range of 1-7 nm are observed on TiO₂ Com

(Fig. 1b, d, f). TEM studies indicate TiO₂ NRs can prevent the Rh

nanoparticles from severe agglomeration after the reduction at

found over RhFeLi/TiO2 Com and RhFeLi/TiO2 NRs when the

loading of Fe is relatively low (~ 1 wt%) (Fig. 2). When the

loading of Fe is increased to 2.5 wt%, the diffraction peak of

d

0

In XRD measurements, no characteristic peak of Fe₂O₃ can be

Catalyst structure

Vanus

Chemical Science Accepted

Journal Name

shows that FeO_x species are well dispersed on TiO₂, NRs, (Fig_1g)e We note that no Raman shift of TiO2 carbie 00384 ved 950 all catalysts (Fig. S2[†]), indicating FeO_x species are deposited on surface rather than doping into TiO₂ bulk. H₂ temperatureprogrammed reduction (H₂-TPR) results of FeO_x/TiO₂ show that the reduction temperature of FeO_x over TiO₂ NRs is 100° C higher than the reduction temperature of FeO_x over TiO₂ Com (Fig. S3a \dagger), suggesting FeO_x species are better dispersed on TiO₂ NRs compared with TiO₂ Com.

H₂-TPR studies of RhFeLi/TiO₂ NRs and RhFeLi/TiO₂ Com were also carried out to investigate the interfacial interaction between Rh and oxide promoters (Fig. S3b[†]). According to previous studies,¹⁰ the peaks below 200° C can be ascribed to the reduction of Rh₂O₃, while the broad peak appearing at higher temperature (300-500°C) can be assigned to the reduction of Fe₂O₃. We find that the reduction temperature of Rh₂O₃ for RhFeLi/TiO₂ NRs is 50°C higher than that on RhFeLi/TiO₂ Com, illustrating smaller Rh size on TiO2 NRs.14 As such, the higher dispersion of Rh-based nanoparticles on TiO2 NRs should increase the number of interfacial sites between Rh and oxide promoters, where C-C coupling occurs via reaction between CO and *CH_x.5-7

To further illustrate the surface structure of RhFeLi/TiO₂ NRs and RhFeLi/TiO₂ Com catalysts, CO titration experiments were conducted. The active loop volume of CO for RhFeLi/TiO₂ Com (0.09 cm³/g), which is consumed by CO adsorption on Rh, is much smaller than that for RhFeLi/TiO₂ NRs (0.69 cm³/g) (Table S2 [†]). The observed low adsorption amount of CO on RhFeLi/TiO₂ Com may be due to the partially encapsulation of Rh sites by oxide overlayers. TEM image also shows the Rh nanoparticles are decorated by oxide overlayers over RhFeLi/TiO₂ Com catalyst (Fig. 1d). Quantitative XPS analysis was also conducted to investigate the surface structure of Rhbased catalysts (Table S3[†]). The surface molar ratio of Rh:Fe

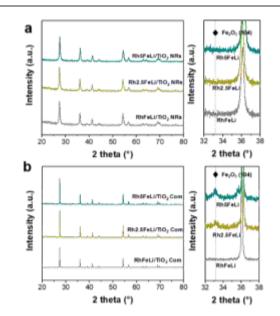


Fig. 1. (a, b) TEM; (c, d) HRTEM images, particle size distributions (Inset figures)

a

С

g

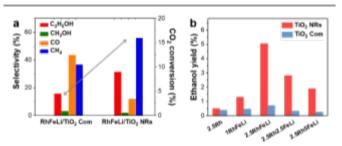
Open Access Article. Published on 11 February 2019. Downloaded on 2/12/2019 11:05:46 AM

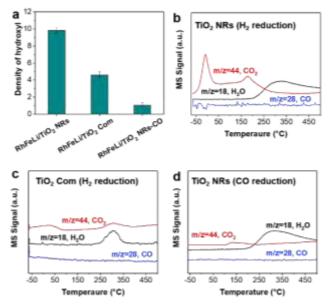
over RhFeLi/TiO₂ NRs is determined to be 58:42, which is close to the bulk molar ratio of Rh:Fe measured by ICP-AES (48:52) and the initial feed ratio. For RhFeLi/TiO₂ Com, XPS investigations show that the surface molar ratio of Rh:Fe is 29:71. However, the bulk molar ratio of Rh:Fe determined by ICP-AES (Rh:Fe = 50:50) still agrees with the initial feed ratio, suggesting the Rh nanoparticles should be partially covered by FeO_x species. Note that the binding energy (BE) of Rh 3d_{5/2} locates at ~ 307.0 eV (Fig. S4b†), corresponding to the metallic state of Rh.²⁸

Catalytic performance

The catalytic performance to CO₂ hydrogenation is studied over Rh-based catalysts supported on different oxide supports. The TiO₂ NRs-supported catalysts present highest ethanol yield (Fig. S5[†]). Additionally, a series of Rh-based catalysts with different promoters were synthesized. Compared with mono-component Rh/TiO₂ catalyst, the selectivity of ethanol over RhFe/TiO₂ is improved significantly (16% for RhFe/TiO2 Com and 25% for RhFe/TiO₂ NRs in Fig. S6[†]). With the loading of Fe increasing, CO₂ conversion and the selectivity of ethanol and CH₄ decrease while the selectivity of CO increases (Fig. 57^{+}). Since FeO_x could catalyze the reverse water-gas shift reaction (RWGS) to produce CO, the changes of CO₂ conversion and product distribution indicate that the excess Fe species has a passive effect on CO2 conversion and ethanol synthesis by blocking the active Rh sites.¹⁰ This blocking effect may be caused by the encapsulation of Rh sites by FeO_x species, which have been proven by XPS measurements combined with CO chemisorption (Table S2[†]). On the other hand, the addition of Li can increase the CO_2 conversion of Rh/TiO₂ by 5%, while the selectivity of ethanol does not change (Fig. S6c †). Based on these results, we conclude the addition of Fe can promote the ethanol selectivity, while the addition of Li accelerates the CO₂ conversion as electronic promoter. As such, higher ethanol selectivity and CO₂ conversion are obtained by adding binary promoters *i.e.*, Fe and Li (Fig. S6d[†]).

More interestingly, we show the ethanol selectivity and CO₂ conversion over RhFeLi/TiO₂ NRs are much higher than that over RhFeLi/TiO₂ Com at 250°C (Fig. S7[†]). For example, 2.5 wt% RhFeLi/TiO₂ NRs (Rh:Fe:Li=1:1:1) catalyst presents more than 30% ethanol selectivity and 15% CO₂ conversion, which is about seven-fold higher for ethanol yield than 2.5 wt% RhFeLi/TiO₂ NRs keeps stable in 20 h stability test (Fig. S7[†]). The superior




Fig. 3. (a) The CO₂ conversion (Grey) and the product selectivity of 2.5 wt% RhFeLi/TiO₂ NRs and 2.5 wt% RhFeLi/TiO₂ Com. (b) The ethanol yield of Rh-based catalyst supported on TiO₂ NRs and TiO₂ Com.

This journal is © The Royal Society of Chemistry 20xx

Promotion effects of the hydroxyl

Firstly, the hydroxyl groups were introduced by pre-reduction of RhFeLi/TiO₂ NRs and RhFeLi/TiO₂ Com catalysts in H₂ atmosphere at 400°C. The fourier transform infrared (FTIR) experiments were carried out to characterize the surface hydroxyl groups on RhFeLi/TiO₂ catalysts. As shown in Fig. S8[†], the broad band at 3450 cm⁻¹ and the sharp peak at 1640 cm⁻¹ are assigned to the stretching and bending vibrations of associative hydroxyls, respectively.²⁹ The density of hydroxyl groups on RhFeLi/TiO₂ NRs is much higher than that on RhFeLi/TiO₂ Com (Fig. 4a), suggesting that high-density hydroxyl groups could be introduced to catalytic system by using TiO2 NRs. Subsequently, the catalytic properties of hydroxyls on TiO₂ NRs is characterized by CO temperature-programmed desorption (CO-TPD). A sharp signal peak of CO2 (m/z=44) at ~ 0°C is observed in CO-TPD profiles for both RhFeLi/TiO₂ NRs and pure TiO₂ NRs (Fig. 4b, Fig. S8a[†]). As reported previously, the CO₂ may origin from water gas shift process, in which the CO adsorbed on Rh sites reacts with hydroxyl groups.²⁹⁻³⁰ However, small CO₂ peak at \sim 0°C is observed over RhFeLi/TiO₂ Com and pure TiO₂ Com due to the lack of hydroxyls (Fig. 4c, Fig. S8a[†]).

The TOF of ethanol formed over RhFeLi/TiO₂ NRs is determined to be 0.12 h⁻¹, which is much higher than that over RhFeLi/TiO₂ Com or RhFeLi/SiO₂ (0.08 h⁻¹) (Table S2 †). Therefore, we suggest that the surface hydroxyl may play an important role in ethanol formation via CO₂ hydrogenation. To verify the role of hydroxyls on ethanol formation, the RhFeLi/TiO₂ NRs catalyst was pre-treated in CO atmosphere (RhFeLi/TiO₂ NRs-CO). The removal process of hydroxyl groups

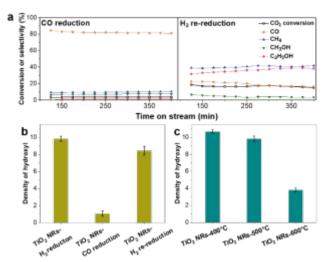
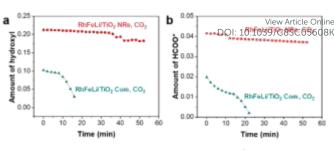


Fig. 4. (a) The peak area of hydroxyls in FTIR normalized by S_{BET} (× 10³) over 2.5 wt% RhFeLi/TiO₂ NRs, 2.5 wt% RhFeLi/TiO₂ Com and 2.5 wt% RhFeLi/TiO₂ NRs-CO. (b) CO-TPD profiles of 2.5 wt% RhFeLi/TiO₂ NRs. Pretreatment: H₂ reduction at 40°C. (c) CO-TPD profiles of 2.5 wt% RhFeLi/TiO₂ Com. Pretreatment: H₂ reduction at 40°C. (d) CO-TPD profiles of 2.5 wt% RhFeLi/TiO₂ NRs. Pretreatment: C) reduction at 35°C.


ARTICLE

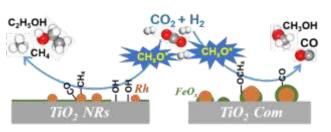
in CO was monitored by in situ diffuse reflectance infrared fourier transform spectroscopy (DRIFTS, Fig. S9a[†]).³¹ We find that the IR peak of hydroxyl stretching vibrations (3450 cm⁻¹) disappears gradually in CO at 350°C. The hydroxyls can be removed completely after ~ 12 minutes of CO-feeding (Fig. S9b \dagger). After the pre-treatment in CO flow at 350° C, the CO₂ peak at ~ 0°C isn't observed in CO-TPD (Fig. 4d), and RhFeLi/TiO₂ NRs-CO catalysts with hydroxyl-deficient surface are prepared (Fig. 4a, Fig. S8b[†]). Compared with RhFeLi/TiO₂ NRs reduced with H₂, RhFeLi/TiO₂ NRs-CO catalyst performs much lower CO₂ conversion (4.7%) and produces almost no ethanol (Fig. 5a). The selectivity of CO reaches ~ 80% among the products and the selectivity of CH₄ decreases from 53.9% to 9.6%. In TEM images (Fig. S10[†]), RhFeLi/TiO₂ NRs and RhFeLi/TiO₂ NRs-CO catalysts show similar size distribution. Besides, there is no BE shift of XPS Rh 3d peak for RhFeLi/TiO2 NRs-CO compared with RhFeLi/TiO2 NRs (Fig. S11[†], Table S4[†]). Therefore, the influences of size effect and chemical state of Rh can be excluded. Instead, the decrease of the selectivity of CH4 and ethanol should be attributed to the lack of hydroxyls. When hydroxyl groups are re-introduced by H₂ exposure (Fig. 5b, Fig. S8b[†]), the promoted catalytic performance is achieved (35% ethanol selectivity and 18% CO_2 conversion), which is very similar with that over fresh RhFeLi/TiO₂ NRs reduced with H₂. These results further indicate hydroxyls play an important role in tuning product distribution and promoting ethanol synthesis through CO₂ hydrogenation.

In sequential experiments, the mixture of CO₂ and H₂ (CO₂:H₂=1:3) are firstly introduced to the *in situ* cell at 250° C, followed by a switch to pure CO₂ flow to investigate the stability of hydroxyls and formate species. In CO₂+H₂ atmosphere (CO₂:H₂=1:3) at 250° C, the bands at 3016, 2965 and 2880 cm⁻¹ in the v_{C-H} region appear stemming from gaseous CH₄ (3016 cm⁻¹) and adsorbed formate species respectively. In the O-C-O

Fig. 5. (a) CO₂ conversion and product selectivity versus time obtained from 2.5 wt% RhFeLi/TiO₂ NRs. CO reduction was conducted at 350°C for 0.5 h. Rereduction in H₂ was carried out at 400°C for 1 h. Reaction conditions: P = 30 atm, T = 250°C, GHSV= 6000 h⁻¹, CO₂/H₂ = 1/3. (b) The peak area of hydroxyls in FTIR normalized by S_{BET} (×10³) over 2.5 wt% RhFeLi/TiO₂ NRs pretreated under different reduction atmospheres. (c) The peak area of hydroxyls in FTIR normalized by S_{BET} (×10³) over 2.5 wt% RhFeLi/TiO₂ NRs calcined at different temperatures.

Fig. 6. (a) The absorbance intensity of hydroxls at 3600 cm⁻¹ in DRIFTS of 2.5 wt% RhFeLi/TiO₂ NRs and 2.5 wt% RhFeLi/TiO₂ com versus time after switching the CO₂+H₂+Ar (CO₂:H₂=1:3) flow to pure CO₂ flow at 250°C. (b) The absorbance intensity of formate at 1595 cm⁻¹ in DRIFTS of 2.5 wt% RhFeLi/TiO₂ NRs and 2.5 wt% RhFeLi/TiO₂ com versus time after switching the CO₂+H₂+Ar (CO₂:H₂=1:3) flow to pure CO₂ flow at 250°C.

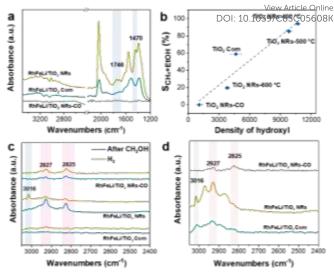
stretching region between 1650 and 1200 cm⁻¹, the bands at 1520 and 1390 cm⁻¹ are assigned to carbonate, while the rest peaks may stem from adsorbed formate (1595, 1370 cm⁻¹, Table S5[†]).³²⁻³⁴ The absorbance intensities of the dissociated hydroxyl stretching vibrations at 3600 cm⁻¹ and OCO asymmetric stretching vibration at 1595 cm⁻¹ in DRIFTS are used to represent the amount of hydroxyls and formate, respectively.34 As shown in Fig. 6, the changes of the hydroxyl amount and the formate amount are plotted as a function of time when switching the CO_2+H_2 flow to pure CO_2 flow at 250°C. We find that the amounts of hydroxyls and formate species over RhFeLi/TiO₂ NRs keep almost unchanged under pure CO₂ flow within 40 mins (Fig. 6, Fig. S12a, c[†]). In contrast, the hydroxyls and formate adsorbed on RhFeLi/TiO2 Com disappears rapidly within 20 min (Fig. 6, Fig. S12b, d[†]). We suggest that the abundant hydroxyl groups over RhFeLi/TiO₂ NRs can stabilize formate species, which has been proposed to be one of intermediates for methanation via formate hydrogenation and then scission of C-O in *CHx-O.18,35


In situ DRIFTS was further carried out to investigate the catalytic role of hydroxyls in ethanol formation. In contrast to RhFeLi/TiO₂ Com, additional bands at 1470 cm⁻¹ and 1746 cm⁻¹ are observed on RhFeLi/TiO₂ NRs under CO₂+H₂ atmosphere (CO₂:H₂=1:3) at 250°C (Fig. 7a). The existence of the band at 1746 cm⁻¹ has been reported for Rh/Al₂O₃³⁵ and Ru/Al₂O₃³⁶ catalysts, which can be attributed to adsorbed formyl (CHO*) species. It is believed that the formation of CHO* is the ratelimiting step of ethanol synthesis (Scheme S1).¹² Also, CHO* is more favored to be dissociated into *CH_x in thermodynamics than CO.^{21-23,37} As expect, significant amounts of *CH₃ species (1470 cm⁻¹) are observed on the surface of RhFeLi/TiO₂ NRs (Fig. 7a).¹⁷⁻¹⁸ Subsequently, these abundant adsorbed *CH₃ species on RhFeLi/TiO₂ NRs can be inserted by CO, which may be responsible for the high ethanol yield.³⁸ Based on the above analysis, a mechanism that hydroxyls stabilize the formate and accelerate the scission of CH_x-O to produce *CH₃ species is proposed (Scheme 1).

With increasing the calcination temperature from 400 to 600°C, the normalized peak area of associative hydroxyl vibration bands over RhFeLi/TiO₂ NRs decreases gradually, indicating the density of hydroxyls is decreased (Fig. 5c, Fig. S8c \dagger). In addition, summed selectivity and TOF of CH₄ and ethanol show a downward trend with increasing the calcination

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Article. Published on 11 February 2019. Downloaded on 2/12/2019 11:05:46 AM


Open Access

Scheme 1. Schematic of CO_2 hydrogenation over Rh-based catalyst with or without hydroxyl groups on TiO₂. The hydroxyls play an important role in accelerating the scission of CH_x-O* and promote the formation of ethanol.

temperature of TiO₂ NRs (Table S2 and S6[†]). Since the RhFeLi nanoparticles show similar size distribution (Fig. S10[†]) and same electronic state of Rh and Fe over TiO₂ NRs calcined at various temperatures (Fig. S11[†], Table S4[†]), the differences in catalytic performance should be attributed to the changes of surface hydroxyls. It is noteworthy that the catalytic performance of RhFeLi/TiO₂ NRs-600°C is comparable to that of RhFeLi/TiO₂ NRs-CO catalyst, because there are few hydroxyls on their surfaces. Similarly, changing the support from TiO_2 NRs to TiO_2 Com can also generate hydroxyl-deficient surface, causing the selectivity of ethanol and CH₄ reduced largely (Table S6[†]). To display the relationship between hydroxyl groups and catalytic performance directly, we take the summed amount of CH₄ and ethanol as the total amount of *CH₃, because these two products stem from *CH₃ hydrogenation and CO insertion, respectively.³⁹ As shown in Fig. 7b, the amount of *CH₃ exhibits linear correlation with the density of hydroxyls, illustrating hydroxyls may accelerate the scission of C-O bond to form *CH₃ species.

The reactions of CH₃OH and H₂ over RhFeLi/TiO₂ were conducted as well to elucidate the role of hydroxyls. The DRIFTS were obtained after pre-treatment with CH₃OH and subsequent feeding with H_2 at 250°C (Fig. 7c). Upon the feeding of CH_3OH , all the samples show similar CH₃O* (2825, 2927 cm⁻¹) species.⁴⁰⁻ ⁴² After the feeding of H₂, the IR peak intensity of CH₃O* over RhFeLi/TiO₂ NRs decreases. Simultaneously, obvious IR peak of gaseous CH₄ (3016 cm⁻¹) can be observed over RhFeLi/TiO₂ NRs. The formation of CH₄ should be attributed to the C-O bond scission in CH₃O* followed by *CH₃ hydrogenation. Hydroxyl groups over RhFeLi/TiO₂ NRs are suggested to promote the C-O bond scission in CH_3O^* to produce $*CH_3$ intermediate. On the contrary, the IR peak intensity of CH₃O* does not decrease, and CH₄ is hardly found over RhFeLi/TiO₂ Com and RhFeLi/TiO₂ NRs-CO after H_2 feeding. Therefore, it is reasonable to infer that hydroxyls on RhFeLi/TiO₂ NRs could protonate CH₃O*, i.e., promoting C-O bond scission in CH₃O* to form *CH₃. Similar phenomenon is observed under CO and H_2 at 250°C (Fig. 7d). The sharp CH₄ peak emerges on RhFeLi/TiO₂ NRs, which is accompanied by formate (2880, 2965 cm⁻¹) and CH_3O^* (2825, 2927 cm⁻¹). In contrast, we find only CH₃O* species adsorbed over RhFeLi/TiO₂ NRs-CO. The IR peaks of gaseous CH₄ and formate are undetectable over RhFeLi/TiO2 NRs-CO and RhFeLi/TiO₂ Com, which should be attributed to the removal of hydroxyls after CO treatment.

Fig. 7. (a) *In situ* DRIFTS over 2.5 wt% RhFeLi/TiO₂ NRs, 2.5 wt% RhFeLi/TiO₂ Com and 2.5 wt% RhFeLi/TiO₂ NRs-CO under CO₂+H₂+Ar (CO₂:H₂=1:3) atmosphere at 250°C. (b) The summed selectivity of CH₄ and ethanol as a function of the peak area of hydroxyls normalized by S_{BET} of the samples obtained from 2.5 wt% RhFeLi supported on different TiO₂. (c) *In situ* DRIFTS over 2.5 wt% RhFeLi/TiO₂ NRs, 2.5 wt% RhFeLi/TiO₂ Com and 2.5 wt% RhFeLi/TiO₂ NRs-CO after CH₃OH+Ar adsorption followed by H₂ adsorption at 250°C. (d) *In situ* DRIFTS over 2.5 wt% RhFeLi/TiO₂ NRs, 2.5 wt% RhFeLi/TiO₂ Com and 2.5 wt% RhFeLi/TiO₂ NRs-CO under CO+H₂+Ar (CO:H₂ = 1:2) atmosphere at 250°C.

Previous works have proposed that ethanol can be synthesized by CO insertion into *CH₃ species to form CH₃CO*, followed by CH₃CO* hydrogenation.³⁷⁻³⁸ To verify this route of ethanol formation, the DRIFTS of RhFeLi/TiO2 NRs and RhFeLi/TiO₂ NRs-CO were obtained after pre-treatment with CH₃OH and subsequent feeding with CO+H₂ (CO:H₂=1:1) at 250°C (Fig. S13a[†]). Both gaseous and liquid products were analyzed in the reaction of CH₃OH+CO+H₂ at 250°C (Fig. S13b[†]), and ethanol is the only C2+ product. Hence, the appearance of methylene peak (2858 cm⁻¹) over RhFeLi/TiO₂ NRs indicates the C-C coupling and formation of ethanol.43 However, the methylene, i.e., ethanol is not formed over RhFeLi/TiO₂ NRs-CO. According to these data, the high ethanol selectivity over RhFeLi/TiO2 NRs might be attributed to the high-density hydroxyls, which enhances the C-O bond scission to produce *CH_x intermediates for the CO insertion.

Surface functionalization with hydroxyls is frequently applied to promote the catalytic performance of catalysts.⁴⁴⁻⁴⁷ The role of surface hydroxyls has often been considered to modulate the local concentration of hydrophilic reactants, such as alcohols, around the active sites. For example, the hydrophobic treatment of Pd/MOF improves the catalytic activity of styrene hydrogenation by increasing the interaction between hydrophobic reactants and Pd sites.48 In formaldehyde oxidation reaction, the abundant hydroxyl groups nearby the Pt active sites can also facilitate formate oxidation through the formation of Pt/Ni(OH)_x interface.⁴⁹ In CO₂ hydrogenation reaction, hydroxyl groups on hydrophilic SiC quantum dots can promote the methanol formation via a H-transfer mechanism, in which the diffusion of H from hydroxyl groups to CO₂ assists the formation of intermediate HCOO*.⁵⁰ Here, our work clearly demonstrates the catalytic role of hydroxyl groups in ethanol

Open Access Article. Published on 11 February 2019. Downloaded on 2/12/2019 11:05:46 AM

View Article Online

synthesis via CO₂ hydrogenation. We show the surface hydroxyl species on RhFeLi/TiO₂ NRs can protonate methanol and reduce the energy barrier for C-O bond scission, facilitating the generation of *CH₃ species. Accordingly, abundant *CH₃ species can be inserted by CO obtained from RWGS to form CH₃CO^{*}, followed by CH₃CO^{*} hydrogenation to ethanol.

Conclusions

ARTICLE

In conclusion, we have demonstrated the crucial role of surface hydroxyls over the RhFeLi/TiO₂ NRs catalyst to synthesize ethanol from CO₂ hydrogenation. Based on in situ spectroscopic characterizations, we propose two advantages of TiO₂ NRs support for CO₂ hydrogenation to ethanol: (i) Rh-based nanoparticles are highly-dispersed on TiO₂ NRs due to the strong interaction between catalysts and TiO₂ NRs support, thus displaying high activity; (ii) abundant hydroxyls over TiO₂ NRs can protonate methanol, which is easily dissociated into *CH_x, thus favored the formation of ethanol upon CO insertion. This work not only provides the detailed understanding of the catalytic role of hydroxyls in heterogeneous catalysis but also opens an avenue for developing efficient catalysts for CO₂ conversion.

Experimental section

Chemicals

TiO₂ NRs were prepared by hydrothermal treatment of a mixture of titanium tetrachloride, nitric acid and water.51-52 Briefly, titanium tetrachloride (TiCl₄, Shanghai Chemical Agent Co., 98%) was dissolved in ultrapure water within an ice-water bath to obtain the 3 M TiCl₄ solution. Subsequently, 35 mL aliquot of concentrated nitric acid (HNO₃, 15 M) was refluxed in a silicone oil bath and heated to 200°C gradually, and then 20 mL 3 M titanium tetrachloride solution was rapidly injected into nitric acid under vigorously stirring. After aging for 20 h, the autoclave was cooled to room temperature. The obtained precipitates were centrifuged and washed several times with deionized water and ethanol. The filtered solid was dried at 100°C in vacuum overnight and calcined at 300, 400, 500 and 600°C for 4 h, respectively (donated as TiO₂ NRs-x°C). Unless otherwise specified, TiO₂ NRs denoted TiO₂ NRs-500°C. The commercial TiO₂ (TiO₂ Com) was purchased from Alfa Aesar Chemical Co. Itd for comparison.

RhCl₃•nH₂O (Huaweiruike Chemical Co., 99%), LiNO₃ (Alfa Aesar Chemical Co. Itd., 98%) and Fe(NO₃)₃•9H₂O (Alfa Aesar Chemical Co. Itd., 98%) were used as precursors and a series of reducible metal oxides (MO) were used as the support. MO (1 g) were impregnated with distilled water (1 mL) containing the precursor by using ultrasonication for 1 h. Generally, the molar ratio of the Rh and promoters was 1:1 unless specified. Subsequently, the sample is dried at room temperature overnight and then at 80°C for 10 h. Finally, the sample is calcined in air at 300-500°C for 4 h and reduced in pure H₂ at 400°C for 2 h. The element loading was based on the weight ratio of Rh and Fe with respect to MO supports.

Hydrogenation of CO₂

All the catalytic reactions were carried out in a fixed-bed microreactor. In a typical experiment, 300 mg of each catalyst with a 20-40 mesh size distribution was mixed with 2.0 g of quartz particles (SiC: granulation of 0.075-0.4 mm) to avoid hot spots and pressure drop across bed and packed in the stainless steel (ϕ 8 × 400 mm) tubular reactor. Prior to each experiment, the catalyst was activated by reducing in H₂ atmosphere (99.99%) with the flow rate of 30 mL/min and the temperature of 400°C for 1 h. The RhFeLi/TiO₂ NRs-CO sample was obtained from the RhFeLi/TiO₂ NRs-500°C reduced under CO flow at 350°C for 0.5 h. After the reduction of catalyst, the reactor was cooled down to reaction temperature. Then the reactant gases (CO₂ and H₂ with molar ratio of 1:3, 30 bar) were introduced into the reactor. The gas hourly space velocity (GHSV) was set at 6000 h⁻ ¹. The product gas was analyzed with an online gas chromatograph (GC, Agilent 7890B) equipped with two detectors. One is flame ionization detector (FID) with a HP-FFAP column using H₂ as a carrier gas to analyze the organic species such as alcohols, oxygenate and hydrocarbons. The other one is thermal conductivity detector (TCD) with columns of MS-5A column and Hayesep Q using He as a carrier gas to monitor the incondensable gas species including H₂, CO₂, N₂, CO and CH₄. All the flows between the reactor and the GC were heated and kept beyond 150°C, to avoid the liquefaction of the alcohols products.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21525626, 21603159, 21676181), the Program of Introducing Talents of Discipline to Universities (B06006) for financial support.

References

- 1 M. Aresta, A. Dibenedetto and A. Angelini, *Chem. Rev.*, 2014, **114**, 1709-1742.
- 2 W. Wang, S. Wang, X. Ma and J. Gong, *Chem. Soc. Rev.*, 2011, **40**, 3703-3727.
- H. Yang, C. Zhang and P. Gao, Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. *Catal. Sci. Technol.*, 2017, 7, 4580-4598.
- 4 A. Swapnesh, V. C. Srivastava and I. D. Mall, *Chem. Eng. Tech.*, 2014, **37**, 1765-1777.
- 5 Z. He, Q. Qian, J. Ma, Q. Meng, H. J. Zhou, H. J. Song, Z. Liu and B. Han, *Angew. Chem. Int. Ed.*, 2016, **128**, 747-751.
- 6 D. L. S. Nieskens, D. Ferrari, Y. Liu and R, Kolonko, Catal. Commun., 2011, 14, 111-113.
- 7 T. Inui, T. Yamamoto, M. Inoue, H. Hara, T. Takeguchi and J. B. Kim, *Appl. Catal., a-Gen.,* 1999, **186**, 395-406.
- 8 M. Takagawa, A. Okamoto, H. Fujimura, Y. Izawa and H. Arakawa, *Stu. Sur. Sci. Catal.*, 1998, **114**, 525-528.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Article. Published on 11 February 2019. Downloaded on 2/12/2019 11:05:46 AM

Open Access

Journal Name

- 9 S. Li, H. Guo, C. Luo, H. Zhang, L. Xiong, X. Chen and L. Ma, *Catal. Lett.*, 2013, **143**, 345-355.
- 10 H. Kusama, K. Okabe, K. Sayama and H. Arakawa, *Energy*, 1997, **22**, 343-348.
- 11 H. Kusama, K. Okabe, K. Sayama and H. Arakawa, *Catal. Today*, 1996, **28**, 261-266.
- Y. Choi and P. Liu, J. Am. Chem. Soc., 2009, **131**, 13054-13061.
 N. Yang, A. J. Medford, X. Liu, F. Studt, T. Bligaard, S. F. Bent and J. K. Norskov, J. Am. Chem. Soc., 2016, **138**, 3705-3714.
- 14 Y. Wang, H. Luo, D. Liang and X. Bao, J. Catal., 2000, **196**, 46-55.
- 15 R. G. Zhang, M. Peng and B. J. Wang, *Catal. Sci. Tech.*, 2017, **7**, 1073-1085.
- 16 J. C. Matsubu, V. N. Yang and P. Christopher, J. Am. Chem. Soc., 2015, 137, 3076-3084.
- 17 S. Kattel, W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu and J. G. Chen, Angew. Chem. Int. Ed., 2016, 55, 7968-7973.
- 18 S. Kattel, P. Liu and J. G. Chen, J. Am. Chem. Soc., 2017, 139, 9739-9754.
- 19 D. Wang, Q. Bi, G. Yin, W. Zhao, F. Huang, X. Xie and M. Jiang, *Chem. Commun.*, 2016, **52**, 14226-14229.
- 20 S. Bai, Q. Shao, P. Wang, Q. Dai, X. Wang and X. Huang, J. Am. Chem. Soc., 2017, 139, 6827-6830.
- 21 R. Burch and M. J. Hayes, J. Catal., 1997, 165, 249-261.
- 22 J. Xu, X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang and T. Zhang, J. Catal., 2016, 333, 227-237.
- 23 R. Zhang, B. Wang, H. Liu and L. Ling, J. Phy. Chem. C, 2011, 115, 19811-19818.
- 24 J. Lee, D. C. Sorescu and X. Y. Deng, J. Am. Chem. Soc., 2011, 133, 10066–10069.
- 25 L. Liu, C. Zhao and Y. J. Li, Phy. Chem. C, 2012, 116, 7904-7912.
- 26 J. Z. Y. Tan, Y. Fernández, D. Liu, M. Maroto-Valer, J. Bian and X. Zhang, *Chem. Phys. Lett.*, 2012, **531**, 149-154.
- 27 J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan and P. Christopher, *Nat. Chem.*, 2017, 9, 120-127.
- 28 T. Huizinga, H. F. J. van 'T Blik, J. C. Vis and R. Prins, Surf. Sci., 1983, **135**, 580-596.
- 29 Z. Xu, J. Yu, and M. Jaroniec, Appl. Catal., B, 2015, 163, 306-312.
- 30 T. Yang, Y. Huo, Y. Liu, Z. Rui and H. Ji, *Appl. Catal.*, B, 2017, 200, 543-551.
- 31 X. Zou, Z. Rui, S. Song and H. Ji, J. Catal., 2016, 338, 192-201.
- 32 J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. Fernandez Sanz and J. A. Rodriguez, *Science*, 2014, **345**, 546-550.
- 33 X. Wang, Y. Hong, H. Shi and J. Szanyi, J. Catal., 2016, 343, 185-195.
- 34 X. Wang, H. Shi and J. Szanyi, Nat. Commun., 2017, 8, 513.
- 35 D. Heyl, U. Rodemerck and U. Bentrup, ACS Catal., 2016, 6, 6275-6284.
- 36 P S. Eckle, H.-G. Anfang and R. J. r. Behm, J. Phy. Chem. C, 2011, 115, 1361-1367.
- 37 R. Zhang, G. Wang, B. Wang and L. Ling, J. Phy. Chem. C, 2014, 118, 5243-5254.
- 38 Y. H. Zhao, K. Sun, X. Ma, J. Liu, D. Sun, H. Y. Su and W. X. Li, Angew. Chem. Int. Ed. Engl., 2011, 50, 5335-5338.
- 39 G. Prieto, P. Concepción, A. Martínez and E. Mendoza, J. Catal., 2011, 280, 274-488.
- 40 J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu and C. Li, Sci. Adv., 2017, 3, e1701290.
- 41 I. A. Fisher and A. T. Bell, J. Catal., 1997, 172, 222-237.
- 42 A. Goguet, F. C. Meunier, D. Tibiletti, J. P. Breen and R. Burch, J. Phy. Chem. B, 2004, 108, 20240-20246.
- 43 M. A. Natal-Santiago and J. A. Dumesic, J. Catal., 1998, 175, 252-268.
- 44 Y. Dai, S. Liu and N. Zheng, J. Am. Chem. Soc., 2014, 136, 5583-5586.

- 45 Q. Sun, B. Aguila, G. Verma, X. Liu, Z. Dai, F. Deng, X. Meng, F.- Mew Article Online S. Xiao and S. Ma, *Chem*, 2016, 1, 628-639.10.1039/C8SC05608K
- 46 F. Liu, W. Kong, C. Qi, L. Zhu and F.-S. Xiao, ACS Catal., 2012, 2, 565-572.
- 47 J.-D. Lin, Q.-Y. Bi, L. Tao, T. Jiang, Y.-M. Liu, H.-Y. He, Y. Cao, and Y.-D. Wang, ACS Catal., 2017, 7, 1720-1727.
- 48 G. Huang, Q. Yang, Q. Xu, S. Yu and H. Jiang, *Angew. Chem. Int. Ed.*, 2016, **55**, 7379-7383.
- 49 T. Yang, Y. Huo, Y. Liu, Z. Rui and H. Ji, *Appl. Catal., B*, 2017, **200**, 543-551.
- 50 Y. H. Peng, L. B. Wang, Q. Q. Luo, Y. Cao, Y. Z. Dai, Z. L. Li, H. L. Li, X. S. Zheng, W. S. Yan, J. L. Yang and J. Zeng, *Chem*, 2018, 4, 613-625.
- 51 Q. Huang and L. Gao, *Chem. Lett.*, 2003, **32**, 638-639.
- 52 Q. Zhang and L. Gao, Langmuir, 2003, 19, 967-971.

This journal is © The Royal Society of Chemistry 20xx