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New C2-symmetric tetrafluorobenzobarrelene ligands were

prepared and applied successfully to the rhodium-catalyzed

asymmetric addition of arylboronic acids to aromatic aldehydes

giving chiral diarylmethanols in high yield with high enantio-

selectivity.

Chiral dienes have recently been developed as a new class of

chiral ligands for transition metals, realizing highly efficient

and enantioselective reactions.1 Of diene ligands bearing diverse

bicyclic skeletons, tetrafluorobenzobicyclo[2.2.2]octatriene

(tetrafluorobenzobarrelene; tfb; 1a) and its derivatives2 are

attractive compounds because of their high coordination

ability toward transition metals due to their small bite angle

and electron-deficient character.3 In addition, the synthesis of

tfb dienes is easy; e.g. tfb 1a is prepared in one step by the

formal [4 + 2]-cycloaddition of benzene with tetrafluorobenzyne

generated from pentafluorophenyl-lithium or -magnesium

(Scheme 1, route a).2 The use of 1,4-disubstituted benzenes

provides chiral tfb dienes. Recently, we reported the synthesis

of enantiomerically-pure disubstituted tfb dienes (1b and 1c)

via the cycloaddition of tetrafluorobenzyne with 1,4-disubstituted

benzenes, and their application to rhodium- and iridium-

catalyzed asymmetric additions of arylboronic acids.4 One

drawback of the direct preparation of chiral tfb dienes is the

difficulty of synthesizing tfbs 1 substituted with aromatic

groups. Provided that enantiopure ditriflate 2 is obtained, it

is possible to prepare diverse chiral tfb dienes by transition

metal-catalyzed cross-coupling reactions (route b). Here,

we report the development of C2-symmetric disubstituted

tetrafluorobenzobicyclo[2.2.2]octatrienes 1 and their successful

application to the rhodium-catalyzed asymmetric arylation of

aldehydes with arylboronic acids.

Chiral ditriflate 2 and tfb ligands 1d–f were prepared

through straightforward pathways (Scheme 2). The [4 + 2]-

cycloaddition of 1,4-diisopropoxybenzene to tetrafluorobenzyne,

followed by hydrolysis, gave dl-3 in 40% yield.5 The resolution

of diketone dl-3 by the use of a chiral stationary phase column

(Chiralpak IA)6 gave both enantiomers (+)-3 and (�)-3,
which were transformed into ditriflate 2.7 Enantiopure

ditriflate 2 was subjected to cross-coupling reactions with

benzylmagnesium chloride,8 phenylboronic acid9 and ferrocenyl-

zinc chloride,10 leading to 1d, 1e and 1f, respectively, in good

yields. The reaction of chiral dienes 1d–f with [RhCl(C2H4)2]2
gave rhodium complexes [RhCl(1)]2 in high yields (Scheme 3).

The absolute configuration of (S,S)-1f was assigned by the

X-ray crystallographic analysis of its rhodium complex

Rh(1f)[(Z6-C6H5)BPh3] (Scheme 3, Fig. 1).11

The asymmetric synthesis of diarylmethanols by the enantio-

selective arylation of aldehydes remains a very important

objective in organic synthesis.12 A successful development

has been achieved in the asymmetric addition of arylzinc

reagents to aldehydes by the use of chiral ligands.13

Scheme 1 Tetrafluorobenzobarrelenes (tfbs).

Scheme 2 Synthesis of C2-symmetric tetrafluorobenzobarrelenes

(tfb*).
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The transition metal-catalyzed asymmetric addition of organo-

metallic reagents to aldehydes is another useful method for the

synthesis of chiral diarylmethanols, where arylboronic acids

are used as attractive arylating reagents. Since the first report

of the rhodium-catalyzed asymmetric arylation of aldehydes

by Miyaura et al. in 1998,14a Rh,1k,14 Ni15 and Ru16-catalyzed

reactions have been developed.

The new rhodium complexes with tfb ligands, 1d–1f, were

tested in the asymmetric arylation of aldehydes with arylboronic

acids. Ligands 1b, 1c and Ph-bod 41c,d were also used for

comparison. The treatment of 1-naphthaldehyde (5a) with

phenylboronic acid (6m) in the presence of [RhCl(1b)]2
(3 mol% of Rh) and KOH (1.5 equiv.) in 1,4-dioxane/H2O

(4 : 1) at 30 1C for 12 h gave diarylmethanol 7am in low yield

and ee (25%, 16% ee) (Table 1, entry 1). The yields of 7am

were also low in the reaction when tfb ligands substituted with

alkyl groups were used (1c and 1d; Table 1, entries 2 and 3).

On the other hand, Ph-tfb* 1e displayed a higher catalytic

activity and enantioselectivity, giving 7am in 94% yield with

49% ee (Table 1, entry 4). The same yield and enantio-

selectivity were observed in the reaction using Ph-bod* 4,

which has phenyl groups on a bicyclo[2.2.2]octadiene skeleton

(Table 1, entry 5). These results imply that the electron-

deficient character of the diene substituted with phenyl groups

improves the catalytic activity. A higher enantioselectivity was

obtained with the tfb ligand 1f (Fc-tfb*) substituted with

ferrocenyl groups, where the ee of 7am was 72% (Table 1,

entry 6). The reaction solvents had a significant influence on

the enantioselectivity. Thus, reactions in protic solvents

improved the ee of 7am (Table 1, entries 7–9), and the highest

enantioselectivity (86% ee) was observed in tert-butyl alcohol

(Table 1, entry 9). The reaction with a catalyst loading of

Scheme 3 Synthesis of rhodium complexes.

Fig. 1 ORTEP illustration of Rh((S,S)-1f)[(Z6-C6H5)BPh3] with

thermal ellipsoids drawn at the 50% probability level. The solvent

molecule (CH2Cl2) and hydrogens are omitted for clarity.

Table 1 The asymmetric addition of 6m to 5aa

Entry Ligand Solvent
Yield
(%)b

ee
(%)c

1 1b 1,4-Dioxane/H2O (4 : 1) 25d 16 (S)
2 1c 1,4-Dioxane/H2O (4 : 1) 30d 43 (S)
3 1d 1,4-Dioxane/H2O (4 : 1) 49d 27 (S)
4 1e 1,4-Dioxane/H2O (4 : 1) 94 49 (S)
5 4 1,4-Dioxane/H2O (4 : 1) 94 49 (S)
6 1f 1,4-Dioxane/H2O (4 : 1) 94 72 (S)
7 1f Methanol 99 78 (S)
8 1f 2-Propanol 99 84 (S)
9 1f tert-Butyl alcohol 94 86 (S)
10e 1f tert-Butyl alcohol 95 86 (S)

a Reaction conditions: [RhCl(diene)]2 (3.75 mmol, 3 mol% of Rh),

5a (0.25 mmol), 6m (0.50 mmol), KOH (0.38 mmol), solvent (1.0 mL),

30 1C, 12 h. b Isolated yield. c Determined by HPLC analysis with a

chiral stationary phase column (Chiralcel OD-H). d Unreacted 5a was

observed. e Performed with [RhCl((S,S)-1f)]2 (1 mol% of Rh) for 3 h.

Table 2 The asymmetric addition of arylboronic acids (6) to
aromatic aldehydes 5a

Entry Ar1 Ar2
Yield
(%)b ee (%)c

1 1-Naphthyl (5a) Ph (6m) 95 (7am) 86 (S)
2 2-ClC6H4 (5b) Ph (6m) 97 (7bm) 84 (S)
3 2-BrC6H4 (5c) Ph (6m) 95 (7cm) 84 (S)
4 2-MeOC6H4 (5d) Ph (6m) 99 (7dm) 85 (S)
5 2-MeC6H4 (5e) Ph (6m) 98 (7em) 86 (S)
6 3-MeC6H4 (5f) Ph (6m) 96 (7fm) 80 (S)
7 4-MeC6H4 (5g) Ph (6m) 99 (7gm) 78 (S)
8 4-BrC6H4 (5h) Ph (6m) 85 (7hm) 78 (S)
9 2-Naphthyl (5i) Ph (6m) 93 (7im) 82 (S)
10 3,4-(OC2H4O)C6H3

(5j)
Ph (6m) 94 (7jm) 79 (S)

11 Ferrocenyl (5k) Ph (6m) 94 (7km) 85 (S)
12 1-Naphthyl (5a) 3,5-Me2C6H3 (6n) 90 (7an) 87 (S)d

13e 1-Naphthyl (5a) 4-MeC6H4 (6o) 90 (7ao) 85 (S)
14 1-Naphthyl (5a) 3-MeC6H4 (6p) 93 (7ap) 87 (S)d

15e 1-Naphthyl (5a) 2-MeC6H4 (6q) 87 (7aq) 91 (S)
16e 1-Naphthyl (5a) 2-ClC6H4 (6r) 91 (7ar) 86 (R)d

17e 1-Naphthyl (5a) 2-MeO-5-MeC6H3

(6s)
97 (7as) 85 (R)d

18e 1-Naphthyl (5a) 2,6-(MeO)2C6H3

(6t)
80 (7at) 84 (R)d

19e 1-Naphthyl (5a) Mesityl (6u) 87 (7au) 94 (R)
20e 2-ClC6H4 (5b) Mesityl (6u) 70 (7bu) 94 (S)d

21e 2-MeC6H4 (5e) Mesityl (6u) 87 (7eu) 93 (R)d

22e 2-BrC6H4 (5c) 2-MeC6H4 (6q) 87 (7cq) 86 (S)d

23e Ferrocenyl (5k) Mesityl (6u) 85 (7ku) 84 (S)d

24e Ferrocenyl (5k) 2-MeC6H4 (6q) 98 (7kq) 86 (S)

a Reaction conditions: [RhCl((S,S)-1f)]2 (1 mol% of Rh), Ar1CHO

(0.25 mmol), Ar2B(OH)2 (0.50 mmol), KOH (0.38 mmol), t-BuOH

(1.0 mL), 30 1C, 3 h. b Isolated yield. c Determined by HPLC

analysis. d The absolute configuration was assigned by analogy with

entry 1. e Performed with [RhCl((S,S)-1f)]2 (3 mol% of Rh) for 12 h.
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1 mol% rhodium was complete within 3 h (Table 1, entry 10).

The absolute configuration of 7am, produced by the use of

(S,S)-1f, was determined to be (S) by comparisons of its

specific rotation and retention time in chiral HPLC with those

values reported previously.14

Table 2 summarizes the results obtained for the reactions of

several aldehydes 5 with arylboronic acids 6, which were

carried out in the presence of [RhCl((S,S)-Fc-tfb*(1f))]2
(1 or 3 mol% of Rh). The scope of the aldehydes was broad,

examples variously substituted with electron-withdrawing

groups and electron-donating groups were good substrates

and produced diarylmethanols in high yields (Table 2,

entries 1–11). Enantioselectivities in the phenylation of

aldehydes having ortho-substituents (Table 2, entries 1–5) on

the benzene ring were higher than those obtained with meta-

or para-substituted aromatic aldehydes (Table 2, entries 6–9).

The scope of arylboronic acids was also broad (Table 2,

entries 12–24), where the use of ortho-substituted arylboronic

acids displayed higher enantioselectivities of diarylmethanols 7

(Table 2, entries 13–15 for MeC6H4B(OH)2). Thus, the present

catalytic system is effective for the asymmetric synthesis of

diarylmethanols having ortho-substituents on both aromatic

rings, the enantioselectivity ranging between 84 and 94% ee

(Table 2, entries 15–22). The asymmetric double arylation of

isophthalaldehyde (8) was also successful, using mesityl-

boronic acid (6u) to give a 98% ee of chiral diol 9 (75% yield,

chiral : meso = 85 : 15) (Scheme 4).17

This work was supported by a Grant-in-Aid for Scientific

Research (S) (19105002) from the MEXT, Japan.
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1999, 1295; (c) W.-S. Huang and L. Pu, J. Org. Chem., 1999, 64,
4222; For selected examples of the asymmetric addition of diaryl-
zinc generated from arylboron reagents, see: (d) C. Bolm and
J. Rudolph, J. Am. Chem. Soc., 2002, 124, 14850; (e) S. Dahmen
and M. Lormann, Org. Lett., 2005, 7, 4597; (f) J.-X. Ji, J. Wu, T.
T.-L. Au-Yeung, C.-W. Yip, R. K. Haynes and A. S. C. Chan,
J. Org. Chem., 2005, 70, 1093; (g) X. Y. Liu, X. Y. Wu, Z. Chai,
Y. Y. Wu, G. Zhao and S. Z. Zhu, J. Org. Chem., 2005, 70, 7432;
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