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Abstract—An inexpensive D-galactose was converted into L-ribose and its derivatives via mild reaction conditions. The L-ribosyl
donor was submitted to a glycosidation according to Vorbrüggen’s conditions to give L-ribosides in high yields. © 2001 Elsevier
Science Ltd. All rights reserved.

Recently, the use of L-carbohydrates and their corre-
sponding nucleosides in medicinal applications has
greatly increased. In particular, several modified
nucleosides derived from L-sugars, such as (−)-(2�R,5�S)
-1-(2-hydroxymethyloxathiolan-5-yl)-cytosine (3TC),1

L-thymidine (L-T),2 L-3�-thiacytidine (L-3-TC),3,4 L-5-
fluoro-3�-thia-cytidine (L-FTC),5 L-2�,3�-dideoxycytidine
(L - ddC),6 L - 5 - fluoro - 2�,3� - dideoxy - cytidine (L - 5-
FddC),7,8 and L-2�-fluoro-5-methylarabinofuranosyl
uracil (L-FMAU),9 have shown great potential as useful
antiviral agents. In addition, due to the stereoselectivity
of enzymes, L-ribose modified oligoribonucleotides
become attractive candidates for diagnostic and thera-
peutic uses because L-RNA ligands remain uncleaved in
biological fluids.10 For these reasons, L-carbohydrates,
modified L-nucleosides, especially L-ribose and its
derivatives are of interest. Up to now, several syntheses
of L-ribose and L-ribosides from L-arabinose,11–13 D-
glucose,14 D-ribose,15 L-xylose16 have been reported and
herein we report a stereospecific synthesis of L-ribose 1
and L-ribosides from D-galactose 2.

According to our observations, there exists some useful
information of D-galactose 2 in relation to L-ribose 1,
i.e. D-galactose is a hexose while L-ribose is a pentose
without C-6 and with configurations at both C-3 and
C-4 the same, while C-2 is different. Therefore, the key
conversion of D-galactose into L-ribose in our synthetic
approach includes oxidation cleavage and reduction at
5,6-diol of galactose and the configuration inversion at
2-hydroxy group of resulting arabinose. The synthetic
route to L-ribose is depicted in Scheme 1.

At first, we obtained compound 3, 1,2,5,6-di-O-iso-
propylidene-D-galactofuranose from D-galactose as
described in the literature.17 Chemoselective cleavage of
the 5,6-O-isopropylidene diol of 3 with NaIO4/HIO4

(1.0 eq./0.5 eq.)-ether in one operation or with 10%
AcOH followed by NaIO4 cleavage of the resulting
glycol and then reduction of the aldehyde with sodium
borohydride in one-pot furnished L-arabinose deriva-
tive 4 in 85–92% yield. After some conversions includ-
ing the protection of 3,5-dihydroxyl groups with benzyl
chloride, methanolysis, and methanesulfonylation, a
substrate (7) for configuration inversion was obtained.

Configuration inversion of the 2-hydroxyl group in
compound 7 was attempted by several methods includ-
ing Mitsunobu method and oxidation/reduction proce-
dure, but all of these were unsuccessful. We therefore
reacted 7 with Ac2O, AcOH and H2SO4, this gave only
the 1,5-diacetate 8, but not the 1-acetate, in 89% yield.
The inversion of 2-OH configuration and the hydrolysis
of the diacetate took place with NaOMe/MeOH for the
intramolecular SN2 reaction of methanesulfonyloxy
group with C-1 alkoxide. Then, L-ribose was prepared* Corresponding author.
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Scheme 1. Reagents and conditions : (a) 10% AcOH-H2O, rt, 24 h; (b) NaIO4, MeOH, H2O, rt, 1h; (c) NaBH4, MeOH, H2O, 3
h, three steps in 92% yield; (b�) NaIO4/HIO4 (1.5 eq.), Et2O, rt, 4h; (d) KOH, BnCl, 1,4-dioxane, reflux, 2 h, 95%; (e) 10%
HCl-MeOH, rt, 3h, 96%; (f) MsCl, Et3N, rt, overnight, 98%; (g) Ac2O, AcOH, H2SO4, 4°C, overnight, 89%; (h) NaOMe, MeOH,
rt, 6 h, 83%; (i) 10% Pd-C, MeOH, H2, 2 h; (j) Dowex [H+], H2O, 50°C, 24 h, two steps in 95% yield.

by debenzylation of 9 with 10% palladium-carbon in
methanol followed by hydrolysis of methyl glycoside
with ion-exchange resin (H+ form) in 95% yield. The
resulting structure was confirmed by comparison with a
commercial sample (Aldrich). In conclusion we have
synthesized L-ribose from D-galactose, an inexpensive
material, by using cheap reagents under mild reaction
conditions.

Scheme 2 shows the syntheses of L-ribosides 14. Diac-
etate 11 was prepared by the treatment of 9 with acetic
anhydride and pyridine and converted to 1,2,5-tri-O-
acetyl-3-O-benzyl-L-ribofuranoside 12 as an isolable
mixture (�:�=1:11). According to the Vorbrüggen

method,18 the �-N-glycosidic bond linkages are made
by the L-ribosyl donor 12 and the protected bases. We
therefore obtained 13a, b, c by treatment of 12 with the
protected bases, respectively, in the presence of
TMSOTf and BSA (N,O-bis-trimethylsilylacetamide) in
good yields (92%, 88%, 89% for 13a, b, c, respectively).
The L-ribosides were obtained by deacetylation with
NH3-H2O/MeOH and then debenzylation using 10%
palladium-carbon in methanol in high yield (92%, 91%,
87% for 14a, b, c, respectively).19

For some bases, sensitive to debenzylation, like purine,
5-iodouracil, N6-benzoyl-adenine, N2-O6-diphenylcar-
bamoylguanine, we resorted to another synthetic route

Scheme 2. Reagents and conditions : (a) Ac2O, py, overnight, rt, 92%; (b) AcOH, Ac2O, H2SO4, 4°C, overnight, 83%; (c) Base,
TMSOTf, BSA, solvent, overnight; (d) NH3-H2O, MeOH, 60°C, overnight; (e) 10% Pd-C, H2, rt, 3 h

Scheme 3. Reagents and conditions : (a) Ac2O, py, overnight, rt, 90%; (b) Ac2O, AcOH, H2SO4, 4°C, overnight, 74%; (c) B,
TMSOTf, solvents; (d) NH3/H2O, MeOH, 60°C, overnight.
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(Scheme 3). Protection of the triol 10 with acetic anhy-
dride and pyridine furnished the triacetate 15 and treat-
ment of 15 with Ac2O/AcOH/H2SO4 afforded a
separable mixture 16 (�:�=1:7) of tetra-O-acetyl-L-
ribose. Using the same procedures for glycosidation, we
acquired the L-ribosides (17a, b, c, d) in good yield
(83–94%) on different bases, selecting BSA (N,O-bis-
trimethylsilylacetamide), MFSTA (N-methyl-N-
trimethylsilyl-trifluoroacetamide) and different solvents
(acetonitrile or toluene). The deprotected products 18a,
b, c, d were obtained in high yields (91–94%).

Thus we have synthesized L-ribose from the easily
available 3 in ten steps and in 57% overall yield. These
procedures provide a practical synthesis of L-ribose and
its derivatives. The biological activity of the L-ribosides
and their derivatives are being assessed.
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