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The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-
resolution transmission electron microscopy (HRTEM), photoluminescence spectroscopy and absorption
spectra. The PL spectra excited at 257 nm have a broad and strong blue emission band maximum at 457 nm,
corresponding to the self-activated luminescence of the niobate octahedra group [NbO6]7−. The optical
absorption spectra of the 700 ◦C sample exhibited the band-gap energies of 3.53 eV.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

The electro-optical and the luminescent properties of metal nio-
ates of LiNbO3 [1], KNbO3 [2], LnNbO4 (Ln = La, Gd, and Y) [3,4] and
Nb2O6 (A = Ba, Sr and Ca) [5–7] compounds have been studied
xtensively. The initial investigations of calcium niobate CaNb2O6
as of interest because this particular crystal has shown to be a

trong source of coherent light that could be useful in holography
pplications [8]. CaNb2O6 exhibits very strong blue luminescence
ith excitation by ultraviolet radiation of 253 nm, even at room

emperature [9]. Ballman et al. [10], as well as Yariv and Gordon
11], reported that it was used both as a laser and a laser host mate-
ial. It was also proposed as a low cost lamp phosphor when doped
ith Eu3+ and co-doped with Ti4+ [12].

The main purpose of this work is to explore a sol–gel syn-
hetic route for the preparation of single phase CaNb2O6 oxides
ith a columbite structure (orthorhombic, space group Pbcn). The
ajor advantage of sol–gel processing is that there is a low-

emperature processing. Chemically synthesized ceramic powders
ften posses better chemical homogeneity and a finer particle
ogether with better control of particle morphology than those
roduced by the mixed oxide route [13]. Recently, works of the
iobate-based complex formed by the citric gel method are few.

herefore, the luminescence and optical absorption properties of
aNb2O6 nanocrystals have been investigated by a sol–gel for the
rst time.

∗ Corresponding author. Tel.: +886 6 2757575x62968; fax: +886 6 2382800.
E-mail address: enphei@mail.ncku.edu.tw (Y.-H. Chang).
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. Experiments

The CaNb2O6 powders were prepared by the sol–gel method
sing calcium nitrate Ca(NO3)2, niobium chloride (NbCl5), ethylene
lycol (EG) and citric acid anhydrous (CA). Their purities are over
9.9%. First, the stoichiometric amount of cadmium nitrate, and nio-
ium ethoxide were dissolved in distilled water. Niobium ethoxide,
b(OC2H5)5, was synthesized from niobium chloride and ethanol,
2H5OH, according to the general reaction as follows:

bCl5 + 5C2H5OH → Nb(OC2H5)5 + 5HCl. (1)

ufficient amount of citric acid were added to the former solu-
ion as a chelating agent to form a solution. Citric acid to the total

etal ions in the molar ratio of 3:2 was used for this purpose. EG is
lso added to the above solution as a stabilizing agent. The precur-
or containing Ca and Nb were dried in an oven at 120 ◦C for 10 h
nd then the CaNb2O6 powders were obtained after calcinations at
00–700 ◦C for 3 h in air.

The burnout behaviors of powders were analyzed by differen-
ial thermal analysis and thermogravimetry analysis (DTA–TGA,
E–DMA 7). The phase identification was performed by X-
ay powder diffraction (Rigaku Dmax-33). The morphology
nd microstructure were examined by transmission electron
icroscopy (HR-TEM, HF-2000, Hitachi). The excitation and emis-
ion spectra were recorded on a Hitachi-4500 fluorescence
pectrophotometer equipped with xenon lamp. The absorption
pectra were measured using a Hitachi U-3010 UV–vis spectropho-
ometer. All of the above measurements were taken at room
emperature.

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:enphei@mail.ncku.edu.tw
dx.doi.org/10.1016/j.jallcom.2008.07.142
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Fig. 1. DTA and TG curves for CaNb2O6 precursor.

. Results and discussion

The TG and DTA curves of the dry CaNb2O6 precursor are shown
n Fig. 1. The endothermic peak at about 110 ◦C in DTA accounted
or 10% of the initial weight loss in TG, was assigned to the loss of
thanol and free water. A fast weight loss stage of about 46% in the
ange of 110–400 ◦C that was accompanied by one exothermic peak
t 370 ◦C. The exothermic peak at 370 ◦C was due to the burnout
f the low boiling organic species and the other exothermic peak
riginated from the burnout of the organic groups in citric acid. In
ddition, a manifest exothermic peak around 610 ◦C, that was asso-
iated with the decomposition the amorphous gel into main phase
aNb2O6. In this experiment, the possible chemical reactions for
he synthesis of CaNb2O6 powders can be expressed as following:

Ca(NO3)2 + 2Nb(OC2H5)5
CA−→CaNb2O6 + NO2 ↑ +H2O ↑ +CO2 ↑

+C2H5OH ↑ (2)

Therefore, the weight loss between 110 and 610 ◦C in the TG
urve was caused by the generation of organic groups and many
inds of gas from the precursor.

The amorphous metal-organic gel was heat-treated to pyrolyze
he organic components for crystallization. XRD patterns of the
recursor powders at heat-treatment temperatures of 500–700 ◦C
or 3 h are shown in Fig. 2. Calcined temperatures at 500 ◦C had
hown almost amorphous phases. The content of CaNb2O6 phase
ad a rapid product at 600 ◦C that is due to decompose amor-
hous gel. When the precursor sintered at temperatures 700 ◦C,
he samples exhibited a single phase and all of the peaks were
dentified to be the orthorhombic CaNb2O6 phase (JCPDS file
o. 71-2406). Note that the intensity of the diffraction peaks
ecomes sharper at higher temperatures, indicating that the
rystallinity of CaNb2O6 increases with the increase of the cal-
ination temperature. The average grain sizes were determined
rom XRD powder pattern according to the Scherrer’s equation
14],
= k�

ˇ cos �
(3)

here D is the average grain size, k is a constant equal to 0.89,
is the X-ray wavelength equal to 0.1542 nm, � is the (3 1 1)
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ig. 2. X-ray diffraction patterns of CaNb2O6 precursor powders annealed at (a) 500,
b) 600 and (c) 700 ◦C for 3 h.

eak angle, and ˇ is half the peak width. The average grain sizes
f powders calcined at 600 and 700 ◦C were about 22.3 and
8.6 nm, respectively. The particle size increased as the sintering
emperature was increased. It is believed that a higher temper-
ture enhanced higher atomic mobility and caused faster grain
rowth.

TEM analysis of the crystal provided further insight into the
tructural properties of as-synthesized CaNb2O6 at 700 ◦C. Fig. 3a
howed the low-magnification TEM image, and the morphology
as clearly observed. The big particles were condensed by assem-
led nanograins. It was conjectured that the assemble effect arising
rom nanocrystals, are responsible for the decreasing of surface
nergy. There was only one orthorhombic crystalline phase exist-
ng in the ceramic matrix. The well-defined selected area electron
iffraction (SAED) pattern clearly shows the diffraction spots in
ig. 3b, that was calculated the inter-planar spacing of the diffrac-
ion spots in patterns and the experimental d values well-fitted the
CPDS card. The EDS results confirmed the composition with Ca and
b ion content and the molar ratio of Ca to Nb almost about 0.5 in
ig. 3c.

Fig. 4 presents the excitation spectra of the CaNb2O6 sam-
les at temperatures of 600 and 700 ◦C. The photoluminescence
esults reveal that the sample prepared at 700 ◦C exhibits greater
bsorption intensity at 257 nm than other samples by monitoring
uorescence at a wavelength of 457 nm. Blasse [15] indicated that
he niobate complexes had two kinds of absorbing groups [NbO6]7−

nd [NbO4]3−, respectively. Only one peak was observed at wave-
engths of 257 nm, as the calcining temperature at 600 and 700 ◦C.
herefore, the peaks of excitation, at about 257 nm, were associated
ith charge transfer bands of [NbO6]7− in the CaNb2O6 system. The

rystal structure of CaNb2O6 was described as a layer structure built

p by edge-sharing of NbO6 trigonal prisms [16].

The PL emission spectral wavelength distribution curves of
aNb2O6 phosphors under 257 nm excitation at room tempera-
ure are shown in Fig. 4. The PL spectra show a broad and strong
lue emission peaks at about 457 nm. Here, the edge-shared NbO6
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ig. 3. (a) TEM images of as-synthesized nanocrystals at 700 ◦C, (b) high-resolution TEM
aNb2O6 nanocrystal.

ig. 4. The room-temperature excitation (�em = 457 nm) spectra and emission
�ex = 257 nm) spectra of CaNb2O6 phosphors heat-treated at 600 and 700 ◦C.
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image of the nanocrystal and electron diffraction pattern and (c) EDX analysis of

roups are efficient luminescent centers for the blue emission,
hich may be ascribed to self-trapped exciton recombination [17].

his luminescence effect depends on the Nb–O–Nb bonding that
he conduction band is composed of Nb5+ 4d orbitals, and the
alence band of O2− 2p orbitals between the corner-sharing octa-
edra [18]. In other word, this luminescence was originated from
he crystals of absorbing groups of the niobate octahedra group
NbO6]7−.

We have measured the UV–vis absorption spectra of the as-
repared CaNb2O6 nanocrystals and estimated the band gap from
he absorption inset in Fig. 5. For a direct band gap semiconductor,
he absorbance in the vicinity of the onset due to the electronic
ransition is given by the following equation [19]:

= C(h� − Eg)1/2

h�
(4)

here ˛ is the absorption coefficient, C is the constant, h� is the
hoton energy and Eg is the band gap. The inset of Fig. 5 shows the
elationship of (˛h�)2 and h�. Extrapolation of the linear region
ives a band gap of 3.53 eV. In particular, the oxygen vacancies
layed an important role in the formation of these defect levels.

n our experiment, organic networks fiercely burnt out in a very

hort time, and this process consumed a great amount of oxy-
en, which induced the absence of oxygen sites and a great deal
f oxygen vacancies [20]. In this way, the small absorption peak
bout at 360 nm may be caused by the absorption of defect levels
n nanosized CaNb2O6.
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ig. 5. Absorption spectra of CaNb2O6 precursor powders annealed at 700 ◦C for 3 h
easured at room temperature.

. Conclusions

CaNb2O6 crystal was prepared by a sol–gel synthesis using

a(NO3)2 and NbCl5. The well-crystallized orthorhombic CaNb2O6
an be obtained by heat-treatment at 700 ◦C from XRD. The exci-
ation wavelengths at about 257 nm, were associated with charge
ransfer bands of [NbO6]7−. The PL spectra under 257 nm exci-
ation showed a broad and strong blue emission peaks at about

[

[

[

ompounds 475 (2009) 698–701 701

57 nm, were originated from the niobate octahedra group. The vis-
ble light absorption edge of 700 ◦C sample was at 352 nm, which
orresponded to band-gap energies of 3.53 eV.
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