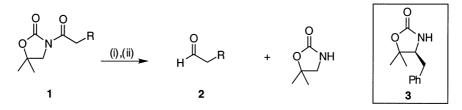


Tetrahedron: Asymmetry 11 (2000) 3475-3479

SuperQuat, (S)-4-benzyl-5,5-dimethyl-oxazolidin-2-one for the asymmetric synthesis of α -substituted aldehydes

Steven D. Bull, Stephen G. Davies,* Rebecca L. Nicholson, Hitesh J. Sanganee and Andrew D. Smith

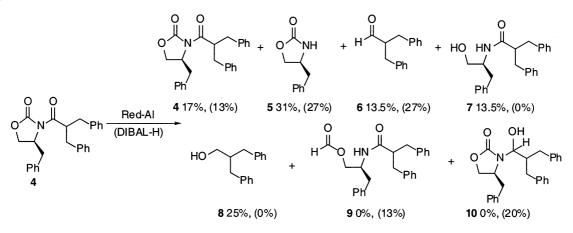

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, UK

Received 2 August 2000; accepted 16 August 2000

Abstract

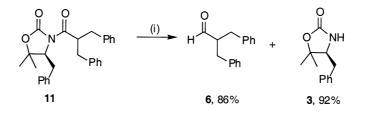
Reduction of α -substituted-(S)-N-acyl-4-benzyl-5,5-dimethyl-oxazolidin-2-ones with DIBAL-H in CH₂Cl₂ affords α -substituted aldehydes with no loss of stereochemical integrity at their α -centre. © 2000 Elsevier Science Ltd. All rights reserved.

The generation of α -substituted aldehydes from α -substituted-*N*-acyl-oxazolidin-2-ones is normally achieved via overreduction to the α -substituted alcohol followed by oxidation,¹ or conversion to either a Weinreib amide² or ester/thioester³ and reduction. We have recently reported that achiral *N*-acyl-5,5-dimethyl-oxazolidin-2-ones **1** can be reductively cleaved directly to aldehydes **2** with DIBAL-H (Scheme 1).⁴ This, combined with the ability of the SuperQuat 4-benzyl-5,5-dimethyl-oxazolidin-2-one auxiliary **3** to control alkylations of attached enolate fragments,⁵ suggested a direct stereoselective synthesis of α -substituted aldehydes which is described herein.⁶

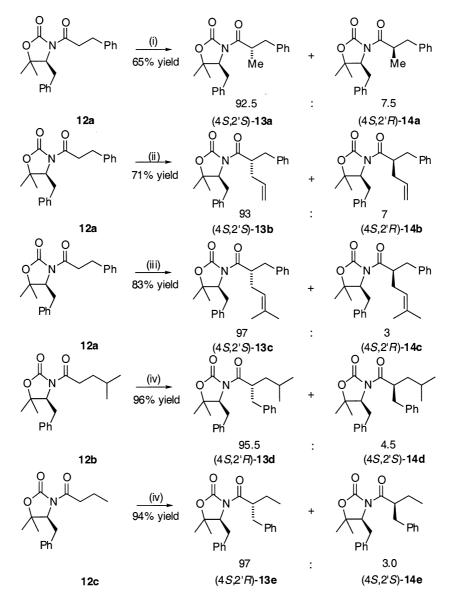

Scheme 1. Reagents and conditions: (i) DIBAL-H (2.0 equiv.), CH₂Cl₂, -78°C; (ii) NaOH, NaHSO₃

Meyers et al. have reported an isolated example of the direct reduction of an *N*-acyl-oxazolidin-2-one aldol product with Red-Al in THF at -78° C to afford the corresponding aldehyde which was trapped in situ with the anion of triethylphosphonoacetate to give an α , β -unsaturated ester in 32% yield.⁷ In order to investigate the suitability of Red-Al for the reduction of simple

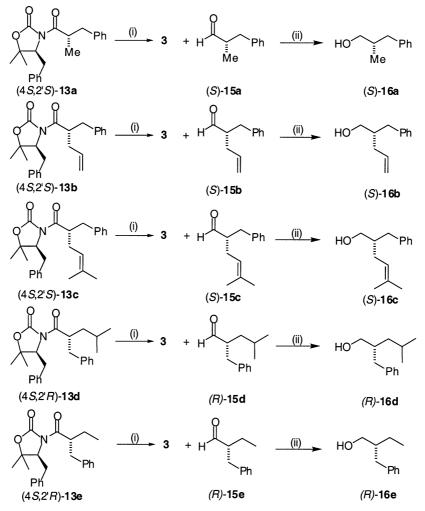
^{*} Corresponding author. E-mail: steve.davies@chemistry.ox.ac.uk


^{0957-4166/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(00)00333-5

N-acyl-oxazolidin-2-ones without a coordinating β-hydroxyl group in its *N*-acyl side-chain, the sterically demanding *N*-acyl-oxazolidin-2-one **4** was reduced with Red-Al to afford a complex mixture of products which was purified to afford starting material **4**, (*S*)-4-benzyl-oxazolidin-2-one **5**, and 2-benzyl-3-phenyl-propanal **6**, the product of endocyclic cleavage *N*-acyl-2-amino-ethanol **7**, and 2-benzyl-3-phenyl-propanol **8**. Similarly, reduction of *N*-acyl-oxazolidin-2-one **4** with DIBAL-H in CH₂Cl₂ at -78° C gave a complex reaction product which was purified to afford starting material **4**, (*S*)-4-benzyl-oxazolidin-2-one **5**, aldehyde **6**, (*S*)-*N*-acyl-*O*-formyl-2-benzyl-2-amino-1,1-dimethyl-ethanol **9** and (4*S*)-*N*-(1'-hydroxy-alkyl)-4-oxazolidin-2-one **10** as a single diastereoisomer (C-1' stereocentre of **10** undefined) (Scheme 2).


Scheme 2. Ratio of products determined by integration of resonances in the 400 MHz ¹H NMR spectra of the crude product mixtures. *Reagents and conditions:* Red-Al, THF, -78 to -50°C or DIBAL-H, CH₂Cl₂, -78°C; NH₄Cl_(aq)

In contrast, while reduction of *N*-acyl-5,5-dimethyl-oxazolidin-2-one **11** with Red-Al gave a complex mixture of products, reduction with DIBAL-H in CH_2Cl_2 at $-78^{\circ}C$ went to completion affording cleanly a mixture of the desired reaction products which were purified to afford the aldehyde **6** in 86% isolated yield and (*S*)-4-benzyl-5,5-dimethyl-oxazolidin-2-one **3** in 92% isolated yield, with no evidence of any products arising from the endocyclic cleavage pathway (Scheme 3).


Scheme 3. Reagents and conditions: (i) DIBAL-H, CH₂Cl₂, -78°C; NH₄Cl_(aq)

Attention was next directed towards investigating the reduction of α -substituted-N-acyl-4-benzyl-5,5-dimethyl-oxazolidin-2-ones **13a**-e to afford α -substituted aldehydes **15a**-e. Thus, the enolate of (S)-(N-hydrocinnamoyl)-4-benzyl-5,5-dimethyl-oxazolidin-2-one **12a** in THF was alkylated with methyl iodide, allyl bromide and 4-bromo-2-methyl-2-butene to afford (4S,2'S)-N-[(2'-methyl)-dihydrocinnamoyl]-4-benzyl-5,5-dimethyl-oxazolidin-2-one **13a** in 85% d.e., (4S,2'S)-N-[(2'-allyl)-dihydrocinnamoyl]-4-benzyl-5,5-dimethyl-oxazolidin-2-one**13b**in 86% d.e.and <math>(4S,2'S)-N-[(2'-3,3-dimethyl-2-butene)-dihydrocinnamoyl]-4-benzyl-5,5-dimethyl-oxazolidin-2-one**13c**in 94% d.e. (Scheme 4). Similarly, alkylation of the enolates of (*S*)-(*N-iso*-valeroyl)-4benzyl-5,5-dimethyl-oxazolidin-2-one**12b**or (*S*)-(*N*-butanoyl)-4-benzyl-5,5-dimethyl-oxazolidin-2-one**12c**with benzyl bromide gave <math>(4S,2'R)-N-[(2'-benzyl)-iso-valeroyl]-4-benzyl-5,5-dimethyl-oxazolidin-2-one**13d**in 91% d.e., and <math>(4S,2'R)-N-[(2'-benzyl)-butanoyl]-4-benzyl-5,5-dimethyl-oxazolidin-2-one**13e**in 94% d.e. All d.e.'s were calculated from integration of theresonances corresponding to the major**13a–e**and minor diastereoisomers**14a–e**in the 400 MHz¹H NMR spectra of the crude reaction products.

Scheme 4. *Reagents and conditions:* (i) LHMDS, THF, -78°C, MeI; (ii) LHMDS, THF, -78°C, allyl bromide; (iii) LHMDS, THF, -78°C, 4-bromo-2-methyl-2-butene; (iv) LHMDS, THF, -78°C, BnBr

The mixtures of diastereoisomers 13a-e/14a-e (85–94% d.e.) were reduced with DIBAL-H in CH₂Cl₂ at -78°C to afford a mixture of (*S*)-4-benzyl-oxazolidin-2-one **3** and the enantiomerically enriched aldehydes 15a-e which were separated via chromatography {silica, hexane:ether (12:1)} (Scheme 5, Table 1). The enantiomeric excesses of the resulting aldehydes 15a-e were determined by immediate reduction of the purified aldehydes 15a-e with LiAlH₄ to afford alcohols 16a-e, which were derivatised via treatment with (*R*)-Mosher's acid chloride to afford diastereoisomeric Mosher's esters whose ¹⁹F NMR spectra were compared with authentic racemic esters. Authentic racemic alcohols 16a-e required for determining the enantiomeric excess of the products of these reductions were prepared via repetition of the enolate alkylation protocol described in Scheme 4 using analogous substrates derived from achiral *N*-acyl-5,5-dimethyl oxazolidin-2-ones 1, followed by reduction of the parent α -substituted-*N*-acyl-5,5-dimethyl-oxazolidin-2-ones 13a-e employed for DIBAL-H reduction clearly revealed that no racemisation had occurred at the stereogenic centres of aldehydes 15a-e under these conditions.

Scheme 5. Reagents and conditions: (i) DIBAL-H, CH₂Cl₂, -78°C; NH₄Cl_(aq); (ii) LiAlH₄, THF, 0°C

<i>N</i> -acyl-SuperQuats	% Yield of	$[\alpha]_{D}^{23}$ of aldehydes 15a –e	D.e. of (R) -Mosher's ester of
13a–13e	aldehydes 15a–e	in CHCl ₃	2-alkyl alcohols 16a–e
13a (85% d.e.)	15a 87	15a −1.10 (<i>c</i> 1.0) ^a	16a 87% d.e.
13b (86% d.e.)	15b 76	15b -28.4 (<i>c</i> 1.0)	16b 87% d.e.
13c (92% d.e.)	15c 81	15c -58.4 (<i>c</i> 1.0)	16c 94% d.e.
13d (91% d.e.)	15d 95	15d + 24.9 (<i>c</i> 1.0)	16d 91% d.e
13e (94% d.e.)	15e 95	15e +2.25 (<i>c</i> 2.0)	16e 94% d.e.

Table 1 Yields and $[\alpha]_D^{23}$ for aldehydes **15a–e** from reduction of *N*-acyl-oxazolidin-2-ones **13a–e** and d.e.'s of Mosher's esters of 2-alkyl-alcohols **16a–e**

^a Literature value for $[\alpha]_{D}^{23}$ of (R)-15a (82% e.e.) = +4.0, c 1.25 in acetone.⁸

In conclusion, we have demonstrated that α -substituted-*N*-acyl-4-benzyl-5,5-dimethyl-oxazolidin-2-ones **13a**–e may be reduced with DIBAL-H in CH₂Cl₂ to afford α -substituted aldehydes **15a–e** with no loss of stereochemical integrity at their α -centre.⁹ All novel compounds were fully characterised including elemental analysis or HRMS.

Acknowledgements

We would like to thank AstraZeneca for the award of studentships (R.L.N. and H.J.S.).

References

- Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757; Baker, R.; Cummings, W. J.; Hayes, J. F.; Kumar, A. J. Chem. Soc., Chem. Commun. 1986, 1237; Auer, E.; Gossinger, E.; Graupe, M. Tetrahedron Lett. 1997, 38, 6577; Schinzer, D.; Bauer, A.; Schieber, J. Chem. Eur. J. 1999, 5, 2492.
- Block, M. H.; Cane, D. E. J. Org. Chem. 1988, 53, 4923; Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante, R. P.; Shinkai, I. J. Am. Chem. Soc. 1989, 111, 1157; Ishiwata, H.; Sone, H.; Kigoshi, H.; Yamada, K.; J. Org. Chem. 1994, 59, 4712; Keenan, R. M.; Eppley, D. F.; Tomaszek Jr., T. A. Tetrahedron Lett. 1995, 36, 819; Baker, R. K.; Rupprecht, K. M.; Armistead, D. M.; Boger, J.; Frankshun, R. A.; Hodges, P. J.; Hoogsten, K.; Pisano, J. M.; Witzel, B. E. Tetrahedron Lett. 1998, 39, 229.
- Martin, S. F.; Gluchowski, C.; Campbell, C. L.; Chapman, R. C. Tetrahedron 1988, 44, 3171; Golec, J. M. C.; Gillespie, R. J. Tetrahedron Lett. 1993, 34, 8167; Morimoto, Y.; Iwahashi, M.; Nishida, K.; Hayashi, Y.; Shirahama, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 904; Smith III, A. B.; Lodise, S. A. Org. Lett. 1999, 1, 1249.
- 4. Bull, S. D.; Bach, J.; Davies, S. G.; Nicholson, R. L.; Sanganee, H. J.; Smith, A. D. Tetrahedron Lett. 2000, 41, 6677.
- Davies, S. G.; Sanganee, H. J. Tetrahedron: Asymmetry 1995, 6, 671; Bull, S. D.; Davies, S. G.; Jones, S.; Polywka, M. E. C.; Prasad, R. S.; Sanganee, H. J. Synlett 1998, 519; Bull, S. D.; Davies, S. G.; Jones, S.; Sanganee, H. J. J. Chem. Soc., Perkin Trans. 1 1999, 387; Davies, S. G.; Sanganee, H. J.; Szolcsanyi, P. Tetrahedron 1999, 55, 3337; Bull, S. D.; Davies, S. G.; Key, M.-S.; Nicholson, R. L.; Savory, E. D. J. Chem. Soc., Chem. Commun. 2000, in press.
- Myers, A. G.; Bryant, B. H.; Chou, H.; Gleason, J. L. J. Am. Chem. Soc. 1994, 116, 9361; Oppolzer, W.; Darcel, C.; Rochet, P.; Rosset, S.; De Brebander, J. Helv. Chim. Acta 1997, 80, 1319.
- Meyers, A. I.; Spohn, R. F.; Linderman, R. J. J. Org. Chem. 1985, 50, 3633; Cane, D. E.; Lambalot, R. H.; Prabhakaran, P. C.; Ott, W. R. J. Am. Chem. Soc. 1993, 115, 522.
- 8. Enders, D.; Eichenauer, H. Tetrahedron Lett. 1977, 18, 191.
- 9. For an example where homochiral *N*-(1',2'-dihydroxyalkyl)-oxazolidin-2-ones have been reduced with NaBH₄ to afford 1,2-diols with no racemisation, see: Gaul, C.; Seebach, D. *Org. Lett.* **2000**, *2*, 1501.