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Abstract

We identified a new series of quinoxaline-2-cardmxsgicid derivatives, targeting the
human proviral integration site for Moloney muriteukemia virus-1 KisPim-1)
kinase. Seventeen analogues were synthesized prgwideful insight into structure-
activity relationships studied. Docking studieslizel in the ATP pocket dfisPim-1

are consistent with an unclassical binding modeth@se inhibitors. The lead
compound 1 was able to blockHsPim-1 enzymatic activity at nanomolar
concentrations (165 of 74 nM), with a good selectivity profile againstpanel of
mammalian protein kinaseln vitro studies on the human chronic myeloid leukemia
cell line KU812 showed an antitumor activity at noimolar concentrations. As a
result, compound. represents a promising lead for the design of hamécancer

targeted therapies.

Keywords
quinoxaline; Pim-1; kinase inhibitor; anticancegeted therapy.

Abbreviations

! ICs0, 50% inhibitory concentration; SAR, structure-eityi relationships; Pim, proviral integration
site of Moloney murine leukemia virus; CML, chromityeloid leukemia; DYRK1A, dual specificity
tyrosine phosphorylation regulated kinase 1A; C2kclin-dependent kinase; Haspin, haploid germ
cell-specific nuclear protein kinase; CLK1, CDCkRelikinase 1; CK1, casein kinase 1; GSKS,

glycogen synthase kinase 3.
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1. Introduction

Proviral integration site for Moloney murine leukienvirus (Pim) kinases belong to a
small family of constitutively activated proto-omgEmic serine/threonine protein
kinases, constituted of three isoforms: Pim-1, Rinand Pim-3 [1]. These
oncoproteins control many cellular functions lilel cycle regulation, apoptosis, cell
survival, proliferation and differentiation [2,38nd are overexpressed in a large
number of human cancer types, such as hematopaongtignancies [4,5] and solid
cancers €. g bladder [6], prostate [7], breast [8] or oral cars [9]). These kinases
are positive regulators of cell cycle progressioisa/S and G2/M checkpoints, and
inhibit apoptosis, acting as oncogenic survivatdeg [10]. Interestingly, it has been
demonstrated th&®im1’27"3"" triple knockoutmice were viable and fertile, which
make these kinases very interesting for targetaderaherapies [11].

Recently, Pim-1 has been shown to play a signifioale in cancer stem cells growth,
and in resistance to chemotherapy drugs, promatiaigiple drug resistance [12,13].
This kinase is thus considered as a relevant tdogetancer therapy and a large
variety of small molecule inhibitors have been deped [14-18]. Many of these Pim-
1 kinase inhibitors demonstrated significanvitro activity in cancer cell lineand in
differentin vivo tumor xenograft models, and clinical trials arerently ongoing for
the most promising candidates [14,18].

A remarkable characteristic of Pim-1 active site comparison to other protein
kinases is the presence of an original hinge redregion containing backbone
peptide atoms that forms hydrogen bond interactigdonds) with the adenine
moiety of ATP). Indeed, this region contains a p®lresidue (Pro123), which has no
H-bond donor property and precludes the formatibone of the conserved H-bond
involving the hinge backbone and the ATP adening,ras it can be observed in other
kinases. Thus, Pim-1 bounds AMa only one hinge H-bond between the ATP
adenine amino moiety and the backbone carbonyl lofagate 121 (Glul2l).
Moreover, the insertion in the hinge of a valinealp26), absent in other kinases,
changes the hinge conformation, enlarging the yiatabocket. This unique feature
can be exploited for the design of selective irtbiisi[19].

The vast majority of Pim-1 inhibitors mainly act AP competitive inhibitors,
targeting the ATP-binding pocket. They can be d&skinto two categories: ATP-
mimetics, which bind to the Glul2l residue of thegke region, and non-ATP
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mimetics, which interact with the ATP binding clé&fta different manner from ATP
[20].

In a continuing effort to develop new small molecuhhibitors with anticancer
properties, our laboratory has been recently faguen the study of new inhibitors of
the signal transducer and activator of transcnipti® (STATS) activation and
expression and their interest in chronic myeloidkmia (CML) [21]. Indeed, the
STAT family transcription factors are commonly aated in cancer by upstream
mutations or cell surface signaling molecules.ds$ lheen demonstrated that the Pim
kinases are induced by the STAT family transcripfiactors (particularly STAT 3/5)
[14]. Regarding the potential of Pim-1 as targetamcer therapy and particularly in
leukemia [22,23], we decided to further explore SiEAT signaling pathway, by
developing new Pim-1 kinase specific inhibitorsthis purpose, we first performed a
target-based approach, by realizing a focuseditro screening of our chemical
library on a limited panel of kinases, comprisiHgmo sapiend?im-1 HsPim-1),
allowing the identification of the quinoxaline-2rbaxylic acid 1 as a new lead
compound (Fig. 1). This molecule was able to irthitein vitro enzymatic activity of
HsPim-1 with an 1Gp of 74 nM.

Docking studies, using program GOLD (GOLD versiod; £CDC, Cambridge, UK),
were performed to understand the binding interastioetween the lead compouhd
and the ATP pocket dfisPim-1 (PDB ID 3A99) (Fig. 2). Data analysis suggdsiat
the carboxylate group of this molecule can formeg &alt bridge with the protonated
amino group side chain of catalytic Lys67, as & hiready been described in other
Pim-1 inhibitors [24, 25], and shares also a H-bimteraction with the backbone NH
of Asp186 belonging to the DFG motif. Additionallgn H-bond interaction between
the 3-hydroxyphenyl moiety and the carboxylate grad residue Aspl86 can be
observed. These studies suggested that compbuoodld act as an ATP competitive
inhibitor, with a non-ATP mimetic binding mode.

Sixteen new analogues were then synthesized, déxglathe unique sequence of
HsPim-1 ATP-binding cleft.

We report herein the design, synthesis, structatigigy relationships (SAR) anth

vitro evaluations of this new class of Pim-1 inhibitors.

2. Chemistry
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The preparation of quinoxaline-2-carboxylic acidsbc-e, and 5h-i and potassium
carboxylate saltSb, and5g was performed as shown in Scheme 1 by aminatidmeof
intermediate ethyl 3-chloroquinoxaline-2-carboxgl&t with the appropriate amine
derivatives.

The synthesis of ethyl 3-chloroquinoxaline-2-candate 3 was achieved in two steps
from commercial o-phenylenediamine according to literature procesiuj26,27]
(Scheme 1). First, theo-phenylenediamine was condensed with diethyl 2-
oxomalonate in the presence of citric acid (3 madmoom temperature in ethanol to
give ester2, which was then chlorinated usitgN-dimethylformamide (DMF) as a
catalyst in refluxing phosphorous oxychloride, &ffiog the intermediate3 in
guantitative yield.

Access to quinoxaline-2-carboxylic acids, and psitas carboxylate salts was then
performed using a two-step synthetic pathway. Tmisrmediate3 undergoes initial
nucleophilic aromatic substitution with the appiap amine in presence pfTSA as

a catalyst in refluxing absolute ethanol to giveeesd4a-f and 4h-i [28]. For
compound 4f, a supplementary step ofert-butyloxycarbonyl (Boc) group
deprotection, using trifluoroacetic acid in dicldorethane (DCM), was necessary to
obtain the derivativelg. Then, hydrolysis of the intermediate ethyl estas:, 4e,
and 4g-i with potassium carbonate in refluxing 80% aqueansthanol was
performed. The potassium sabis and5g were thus obtained without any treatment.
A subsequent acidification with a citric acid ague®olution was realized to afford
acidsl, 5c-e, andsh-i.

Ester4d was saponified using a 10% aqueous sodium hydeasatution in refluxing
ethanol, leading, after acidification with a citrecid aqueous solution, to the
corresponding carboxylic actl.

Finally, synthesis of the carboxamide was achieved from aciéc, using N-
methylmorpholine and ethyl chloroformate in diclolmethane at 0 °C, followed by
the addition of a 28% ammonium hydroxide solution.

3. Results and discussion

3.1. Enzymatic Assays

3.1.1. Pim-1 enzymatic activity inhibition
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Compounds were first evaluated for their efficaoyirthibit thein vitro enzymatic
activity of HsPim-1, using a luminescence-based kinase assay2®hpounds that
displayedHsPim-1 1G5 > 10 uM were considered inactive.

To get closer insight into the potential binding dacof our compounds within the
ATP binding pocket oHsPim-1, we first decided to structurally vary théostitution
patterns of the quinoxaline scaffold dfin position 3 (Table 1). Docking analysis
revealed that the hydroxyl moiety of the phenygrin this position could be able to
form an H-bond interaction with the carboxylateesahain of residue Asp186 of the
HsPim-1 ATP binding pocket. Interestingly, it appetirat position of the hydroxyl
group on the phenyl ring strongly modulates comploaativity, since modification
from meta {) to para %e) or ortho bi) position reduced significantly the inhibitory
potency (Table 1, entries 2, 11, and 17). Thus,pmmds5e and5i maintained a
submicromolar activity otdsPim-1 (IGo of 0.29 uM and 0.76 uM, respectively) but
were less potent (4-fold, 10-fold, respectivel\gritead compound (ICso of 74 nM).
Surprisingly, the replacement of the hydroxyl mpief compoundl by an amino
group, able to form an H-bond with Asp186, led tsignificant loss of potencyblp,
ICso Oof 2.80 uM, 38-fold lower). However, as expectéde substitution by a
morpholino group, suppressing the formation of abhddd, was not favorable for the
activity, as shown by derivativee (ICso of 1.01 pM). Again, the para substitution on
the phenyl ring was deleterious for the activity,shown by derivativég which was

> 3.5-fold less active than its “meta” analodie and by the inactive compourati
(Table 1, entries 4, 13 and 15).

Finally, replacement of the 3-hydroxyphenyl moiefycompoundl by an H-indol-
5-yl group &d) led to a drastic loss of potency (Table 1, ety

Docking analysis also suggested that the carbaxiaction in position 2 of the
guinoxaline scaffold of compouridwas crucial for the activity, establishing, noiabl
a key salt bridge with the catalytic Lys67. Howewearboxylic acids are known to be
responsible for limited permeability across biot@li membranes, metabolic
instability, and potential adverse effects [30]. @iocumvent these issues, and to
confirm the results of the modeling studies, weleaiad ethyl ester derivativedate
and 4g-i) of all synthesized acids and carboxylate salts| we replaced the acid
group of compoundsc by a carboxamide isosteric moietg).( Both ester and
carboxamide functions are not able to form a satige like the carboxylic acid

group, resulting in a complete losskd$Pim-1 enzymatic activity inhibition (Table 1,
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entries 1, 3, 5, 7, 8, 10, 12, 14 and 16), highiighthe highly critical role of this type

of interaction in position 2 of the quinoxalinegin

3.1.2. Selectivity over a panel of mammalian prol@nases

A selectivity profile of the most activelsPim-1 inhibitors was performed. In that
purpose, most promising candidates were furtheluated in an expanded panel of
mammalian  protein  kinases such afkRmMDYRK1A, HsCDK2/CyclinA,
HsCDK9/CyclinT, HsHaspin, MmCLK1, Ss€K1d/e and Ss&GSK3/B. Inhibition
values were determined using a luminescence-basadgekassay [29].

Similar inhibition trends were observed with 6 detmammalian kinases tested
(HSCDK2/CyclinA, HsCDK9/CyclinT, HsHaspin, MMCLK1, Ss€K1d/c and
Ss&GSKA/B), with 1G5 > 10 uM in every case, for each compound evalyated
suggesting an interesting selectivity profile aghithese potential off-target kinases
(Table 2). Notably, we observed > 130-fold diffezes between 1§ values for
HsPim-1 over these mammalian kinases for our leaitbitain 1.

In contrast, quinoxaline%, 5b, 5e and5i displayed a micromolar to submicromolar
inhibition of RMDYRK1A (table 2, entries 1, 2, 4 and 5). Ledd exhibited
nevertheless an lgvalue at least 3.5-fold higher fRrDYRK1A than forHsPim-1.
Interestingly, compoun8c, despite a less potent activity profile agaiHsPim-1, was
more than 10-fold selective with respect to thisake (Table 2, entry 3).

3.2. In vitro cell-based assays

Most activeHsPim-1 inhibitors were then testéd vitro on the human CML cell line
KU812, overexpressing Pim-1. Cytotoxic effects wevaluated using a MTT assay,
and living cells were also counted with the try/sdure dye exclusion method.

As expected, a same trend was observed betwtsEim-1 enzymatic activity
inhibition andin vitro cytotoxic potency. Indeed, quinoxalines with a gdevel of
activity onHsPim1 (1G5, of 0.074 to 2.80 uM) also exhibitéa vitro cytotoxic effects
on KU812 cell line with EG values ranging from 38.9 £ 3.4 uM to 177.5 = 113M
(Table 2). Moreover, the belisPim-1 inhibitorl (ICso of 74 nM), was also the most
cytotoxic compound (E£g of 38.9 + 3.4 uM).
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4. Conclusion

In this study, we identified a new series of quialaxe-2-carboxylic acids and
analogues, exhibiting a potent activity againstisfim-1 oncoprotein. Among the 17
compounds synthesized, 5 significantly blockddPim-1 with 1G, values in the
submicromolar to low micromolar range. In particulead compound showed the
best inhibitory effect againstsPim-1, with an 1Gy value of 74 nM. SAR in positions 2
and 3 of the quinoxaline scaffold confirmed the @colar modeling studies,
highlighting the crucial role of the carboxylic ddunction in position 2 for thelsPim-

1 inhibitory activity of these compounds. vitro studies of the 5 most potent inhibitors
on the human CML cell line KU812, confirmed theitarest, with antitumor activities
at micromolar concentrations.

This series of compounds, and particularly leladcould therefore represent new
attractive drug candidates for extending furthearpfacomodulation studies in a way to

improve their potency and selectivity profile.

5. Experimental section
5.1. General remarks

All solvents were anhydrous reagents from commerstrces. Unless otherwise
noted, all chemicals and reagents were obtainednmoially and used without
purification. Microwave heating was carried out lwi single-mode Initiator Alstra
(Biotage) unit. Melting points (Mp) were determinawl a Stuart capillary apparatus and
are uncorrected. High-resolution mass spectra (HRM&e performed in positive
mode with an ESI source on a Q-TOF mass spectroniBteker maXis) with an
accuracy tolerance of 2 ppm. NMR spectra were dezbat 300 MHz'H) or 75 MHz
(**C) on a Bruker Avance (300 MHz) spectrometer. Thentical shifts are reported in
parts per million (ppm,d) relative to residual deuterated solvent peakse Th
abbreviations s = singlet, d = doublet, t = tripbpt= quadruplet, m = multiplet and bs =

broad signal were used throughout. Known compoumelse prepared according to



252 literature procedures:tert-butyl (3-aminophenyl)carbamate, antert-butyl (4-
253 aminophenyl)carbamate [31], 4-(1-methylpiperidighkniline [32].

254

255 5.2. Chemistry

256

257 5.2.1. Ethyl 3-0x0-3,4-dihydroquinoxaline-2-carblatg (2)

258 A mixture ofo-phenylenediamine (708 mg, 6.55 mmol), diethyl Zmoalonate (1.14 g,
259 6.55 mmol) and citric acid (41 mg, 0.20 mmol) irhatol (13 mL) was stirred
260 magnetically at room temperature for 10 min. Ethhawes then evaporated under
261 reduced pressure, and the residue was stirred amiished ice for 5 min, filtered and
262 dried under vacuum to give compoud(l.13 g, 79%) as a beige solid.

263 Mp 168.8 °CH NMR (300 MHz, CDCJ) & 12.85 (bs, 1H, NH), 7.97 (dd, 18= 8.1,
264 1.2 Hz), 7.64 (ddd, 1Hl = 8.1, 7.2, 1.2 Hz), 7.48 (dd, 14,= 8.1, 1.2 Hz), 7.42 (ddd,
265 1H,J=8.1,7.2,1.2 Hz), 4.56 (q, 2Hd,= 7.2 Hz, CH), 1.49 (t, 3HJ = 7.2 Hz, CH).
266 °C NMR (75 MHz, CDCJ) 5 163.4, 154.6, 148.4, 132.8, 132.2, 132.1, 13®8,0,
267 116.5, 62.6, 14.2.

268

269 5.2.2. Ethyl 3-chloroquinoxaline-2-carboxyla® (

270 Into a dry three-neck round bottom flask was intimed compoun@ (218 mg, 1.00
271 mmol) in phosphorous oxychloride (2 mL) at ice bmperature. Dimethylformamide
272 (0.1 mL) was then added at 0 °C and the reactiottura was refluxed for 30 min.
273  After cooling, the resulting mixture was dilutedtiiethyl acetate and washed with a
274 10% sodium hydroxide solution (2 x 5 mL), and bri{@ex 10 mL). The combined
275 organic layers were dried over Mgg@ltered, and evaporated under reduced pressure
276 to obtain derivatived (237 mg, 100%) as a beige solid.

277 Mp 46.4 °C."H NMR (300 MHz, CDC}J) 5 8.18 (m, 1H), 8.07 (m, 1H), 7.92-7.81 (m,
278 2H), 4.58 (q, 2H,) = 7.2 Hz, CH), 1.49 (t, 3HJ = 7.2 Hz, CH). **C NMR (75 MHz,
279 CDCl3)0163.9, 144.7,143.9, 142.2, 139.7, 132.6, 13120,6, 128.3, 63.0, 14.1.

280

281 5.2.3. Ethyl 3-((3-hydroxyphenyl)amino)quinoxalyearboxylate 4a)

282 Method A:a solution of compoun@ (1.11 g, 4.70 mmol), 3-aminophenol (622 mg,
283 5.70 mmol) an@-TSA, as a catalyst, in absolute ethanol (40 mL$ vedluxed for 110
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h. Ethanol was then evaporated under reduced pegsmod the resulting residue was
purified by silica column chromatography using oyaxane with ethyl acetate gradient
(0-50%) as eluent to give the desired compotm(lL.0 g, 69%) as a red powder.

Mp 233.3 °CH NMR (300 MHz, DMSO-d6p 10.08 (bs, 1H, NH), 9.52 (bs, 1H, OH),
7.99 (dd, 1H, = 8.4, 0.6 Hz), 7.85-7.75 (m, 2H), 7.61-7.54 (m, 2H24-7.14 (m, 2H),
6.51 (ddd, 1HJ) =7.4, 2.4, 1.5 Hz), 4.48 (q, 2d,= 7.2 Hz, CH), 1.41 (t, 3HJ = 7.2
Hz, CHs). *C NMR (75 MHz, DMSO-d6p 166.1, 158.3, 148.8, 142.4, 140.7, 136.0,
133.4,132.7,130.0 (2 x C), 126.7, 126.6, 11110,64, 107.3, 62.8, 14.5.

5.2.4. Ethyl 3-((3-aminophenyl)amino)quinoxalinegtboxylate 4b)

The title compound was synthesized according tay#meral method A from compound
3 (330 mg, 1.40 mmol) anrt-butyl (3-aminophenyl)carbamate (312 mg, 1.50 mmol)
in absolute ethanol (10 mL). The reaction mixtut@swefluxed for 110 h. Compound
4b was obtained (139 mg, 32%) as a red powder.

Mp 207.7 °C.*H NMR (300 MHz, DMSO-d6) 10.00 (bs, 1H, NH), 7.97 (d, 1H,=

8.1 Hz), 7.81-7.77 (m, 2H), 7.58-7.51 (m, 1H), 7(B6, 1H), 7.09-6.97 (m, 2H), 6.32
(m, 1H), 5.17 (bs, 2H, N§), 4.48 (q, 2HJ = 7.2 Hz, CH), 1.41 (t, 3H,J = 7.2 Hz,
CHs). *C NMR (75 MHz, DMSO-d6p 166.1, 149.7, 149.0, 142.6, 140.3, 135.9, 133.3,
132.5,130.0, 129.7, 126.7, 126.4, 109.7, 108.3,8.®2.8, 14.5.

5.2.5. Ethyl 3-((3-morpholinophenyl)amino)quinorali2-carboxylate4c)

The title compound was synthesized according tag#meral method A from compound
3 (8361 mg, 1.53 mmol) and 3-morpholinoaniline (299, .68 mmol) in absolute
ethanol (10 mL). The reaction mixture was refluxed 110 h. Compoundic was
obtained (439 mg, 76%) as an orange powder.

Mp 170.6 °C.*H NMR (300 MHz, DMSO-d6) 10.09 (bs, 1H, NH), 7.98 (d, 1H,=
8.1 Hz), 7.87-7.70 (m, 2H), 7.67-7.47 (m, 2H), 7(841H,J = 7.8 Hz), 7.24 (t, 1H) =
8.1 Hz), 6.71 (d, 1H] = 7.8 Hz), 4.48 (q, 2H] = 6.9 Hz, CH), 3.77 (m, 4H, 2 x CkOD
morpholine), 3.16 (m, 4H, 2 x GN, morpholine), 1.41 (t, 3H] = 6.9 Hz, CH). °C
NMR (75 MHz, DMSO-d6) 166.0, 152.2, 148.9, 142.4, 140.4, 136.0, 13332,6]
130.0, 129.8, 126.7 (2 x C), 111.5, 110.7, 107616 §2 x C), 62.8, 48.9 (2 x C), 14.5.
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5.2.6. Ethyl 3-((1H-indol-5-yl)amino)quinoxalinee2rboxylate 4d)

The title compound was synthesized according tagémeral method A from compound
3 (237 mg, 1.00 mmol) and 5-aminoindole (397 mgP3rinol) in absolute ethanol (10
mL). The reaction mixture was refluxed for 36 h.n@mund4d was obtained (245 mg,
73%) as a red powder.

Mp 204.7 °C.*H NMR (300 MHz, CDCJ) & 10.24 (bs, 1H, NH), 8.80 (bs, 1H, NH),
8.26 (s, 1H, indolyl), 8.00 (dd, 1H,=8.4, 0.9 Hz), 7.77 (dd, 1H,= 8.4, 0.9 Hz), 7.66
(ddd, 1H,J = 8.4, 6.9, 0.9 Hz), 7.50-7.38 (m, 3H), 7.23 (t, IHs 2.4 Hz, indolyl),
6.56 (bs, 1H, indolyl), 4.60 (g, 2H,= 7.2 Hz, CH), 1.53 (t, 3H,J = 7.2 Hz, CH). **C
NMR (75 MHz, CDC}) & 166.4, 150.0, 143.6, 136.2, 133.0, 132.8, 13136,6], 130.1,
128.1, 126.6, 125.4, 125.1, 117.2, 112.8, 111.2,61%2.9, 14.3.

5.2.7. Ethyl 3-((4-hydroxyphenyl)amino)quinoxalxearboxylate 4€)

The title compound was synthesized according tagémeral method A from compound
3 (302 mg, 1.28 mmol) and 4-aminophenol (418 mg3 3rBnol) in absolute ethanol
(16 mL). The reaction mixture was refluxed for 200ompoundie was obtained (155
mg, 39%) as a red powder.

Mp 231.8 °CH NMR (300 MHz, DMSO-d6) 9.84 (bs, 1H, NH), 9.30 (bs, 1H, OH),
7.94 (d, 1H,J = 8.1 Hz), 7.80-7.60 (m, 4H), 7.51 (m, 1H), 6.80 28, J = 8.7 Hz),
4.47 (g, 2H,J = 7.2 Hz, CH), 1.41 (t, 3H,J = 7.2 Hz, CH). *C NMR (75 MHz,
DMSO-d6)d 166.0, 154.0, 149.2, 142.8, 135.9, 133.3, 1323#,.Q, 130.0, 126.5,
126.1, 122.7 (2 x C), 115.8 (2 x C), 62.7, 14.5.

5.2.8. Ethyl 3-((4-((tert-butoxycarbonyl)amino)plggamino)quinoxaline-2-carboxylate
(4f)

The title compound was synthesized according ta#meral method A from compound
3 (95 mg, 0.40 mmol)tert-butyl (4-aminophenyl)carbamate (250 mg, 1.20 mniol)

absolute ethanol (6.5 mL). The reaction mixture vedlixed for 64 h in a sealed tube.
After purification by silica column chromatograpbhging CHCl, with MeOH gradient

(0-2%) as eluent, compoudél was obtained (152 mg, 93%) as an orange powder.
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Mp 198.1 °C*H NMR (300 MHz, DMSO-d6p 10.00 (bs, 1H, NH), 9.35 (bs, 1H, NH),
8.00-7.40 (m, 8H), 4.48 (q, 2H,= 7.2 Hz, CH), 1.49 (s, 9H, 3 x C§), 1.41 (t, 3H,] =
7.2 Hz, G43CH,0).

5.2.9. Ethyl 3-((4-aminophenyl)amino)quinoxalinegtboxylate 49)

To a solution of compoundf (37 mg, 0.09 mmol) in C}l, (5 mL) was added
dropwise trifluoroacetic acid (1 ml, 13.06 mmolher mixture was stirred at room
temperature for 6 h. The resulting mixture was maltaline with a saturated sodium
carbonate solution and extracted with CH. The combined organic layers were dried
over MgSQ, filtered, and evaporated under reduced pressurgivte the desired
derivative4dg (27 mg, 96%) as a red powder.

Mp 203.3 °C*H NMR (300 MHz, CDCJ) 5 10.06 (bs, 1H, NH), 8.01 (dd, 18i= 8.4,
1.2 Hz), 7.80-7.64 (m, 4H), 7.44 (ddd, 1H= 8.1, 6.6, 1.2 Hz), 6.77 (d, 2H,= 8.7
Hz), 4.61 (q, 2HJ = 7.2 Hz, CH), 3.70 (bs, 2H, Nb), 1.55 (t, 3HJ = 7.2 Hz, CH).
3C NMR (75 MHz, CDCJ) 5166.4, 149.7, 143.6, 142.6, 136.2, 132.8, 130.6,513
130.2, 126.6, 125.4, 122.4 (2 x C), 115.5 (2 x62)9, 14.3.

5.2.10. Ethyl 3-((4-(1-methylpiperidin-4-yl)pherayf)ino)quinoxaline-2-carboxylate
(4h)

The title compound was synthesized according tag#meral method A from compound
3 (45 mg, 0.19 mmol) and 4-(1-methylpiperidin-4-yijane (40 mg, 0.21 mmol) in
absolute ethanol (1.5 mL). The reaction mixture walluxed for 112 h. After
purification by silica column chromatography usi@,Cl, with MeOH gradient (O-
10%) as eluent, compoudt was obtained (47 mg, 63%) as an orange powder.

Mp 127 °C.*H NMR (300 MHz, CDC}) & 10.28 (bs, 1H, NH), 8.02 (dd, 1H,= 8.1,
1.2 Hz), 7.84 (d, 2H) = 8.4 Hz), 7.77 (dd, 1H] = 8.1, 1.2 Hz), 7.69 (ddd, 1H,=8.1,
6.6, 1.2 Hz), 7.47 (ddd, 1H,=8.1, 6.6, 1.2 Hz), 7.26 (d, 2H,= 8.4 Hz), 4.59 (q, 2H,
J=7.2 Hz, CH), 3.30 (d, 2HJ = 11.7 Hz), 2.70-2.45 (m, 6H), 2.24-2.09 (m, 2HY6EL.
(d, 2H,J = 11.7 Hz), 1.53 (t, 3H) = 7.2 Hz, CH). *C NMR (75 MHz, CDC}) &
166.4, 149.3, 143.2, 139.4, 137.7, 136.4, 132.9.53130.2, 127.32(x C), 126.7,
125.9, 120.52 x C), 63.0, 55.74 x C), 45.1, 40.4, 31.2(x C), 14.3.
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5.2.11 Ethyl 3-((2-hydroxyphenyl)amino)quinoxalixearboxylate 4i)

The title compound was synthesized according tagémeral method A from compound
3 (239 mg, 1.01 mmol) and 2-aminophenol (121 mg}l Irimol) in absolute ethanol
(10 mL). The reaction mixture was refluxed for 11.0Compoundli was obtained (156
mg, 50%) as an orange powder.

Mp 166.6 °C.*H NMR (300 MHz, DMSO-d6) 10.66 (bs, 1H, NH), 10.16 (bs, 1H,
OH), 8.89 (m, 1H), 7.99 (d, 1H,= 8.1 Hz), 7.80 (m, 2H), 7.56 (m, 1H), 7.00-6.82 (m,
3H), 4.49 (q, 2H,) = 7.2 Hz, CH), 1.43 (t, 3HJ = 7.2 Hz, CH). *C NMR (75 MHz,
DMSO-d6)d 165.8, 149.0, 147.0, 142.6, 135.9, 133.5, 132R).11 128.4, 126.6,
126.5, 123.1, 119.7, 119.6, 114.7, 62.7, 14.6.

5.2.12. 3-((3-Hydroxyphenyl)amino)quinoxaline-2fmaxylic acid ()

Method B: to esteda (72 mg, 0.23 mmol) in aqueous methanol (80%, 10, mlas
added potassium carbonate (97 mg, 0.70 mmol) amdetiction mixture was refluxed
for 4 h. After cooling, the solvent was removed emdeduced pressure. Then, the
residue was acidified with a saturated citric amgpieous solution, and extracted with
ethyl acetate. The combined organic layers wereddover MgSQ@ filtered, and
evaporated under reduced pressure to yield thelg@8 mg, 50%) as a red powder.

Mp 199.6 °CH NMR (300 MHz, DMSO-d6p 10.52 (bs, 1H, NH), 9.51 (bs, 1H, OH),
7.98 (d, 1HJ = 8.4 Hz), 7.84-7.76 (m, 2H), 7.60-7.54 (m, 2H), 72254 (m, 2H), 6.50
(d, 1H,J = 7.8 Hz)."*C NMR (75 MHz, DMSO-d6} 168.1, 158.3, 149.3, 142.5, 140.7,
136.0, 133.2, 132.9, 130.1, 130.0, 126.6, 126.%,0.1110.5, 107.2. HRMS (ESI) m/z:
[M+H] " calcd for GsH1,N3O3, 282.2742; found, 282.0873.

5.2.13. Potassium 3-((3-aminophenyl)amino)quinmeaR-carboxylate5b)

Method C: to estedb (82 mg, 0.26 mmol) in aqueous methanol (80%, 10 mas
added potassium carbonate (37 mg, 0.26 mmol), lendetaction mixture was refluxed
for 4 h. After cooling, the solvent was removed emdeduced pressure, and freeze-
dried to obtain compourngb (84 mg, 100%) as an orange powder.

Mp > 375 °C.*H NMR (300 MHz, DMSO-d6p 13.15 (bs, 1H, NH), 7.82 (dd, 18 =
8.4, 1.5 Hz), 7.65 (dd, 1H,=7.2, 1.8 Hz), 7.58 (td, 1H] = 7.2, 1.5 Hz), 7.38 (ddd,
1H,J=8.4, 7.2, 1.8 Hz), 7.21 (t, 1Q,= 1.8 Hz), 7.14 (dd, 1H] = 7.8, 1.8 Hz), 6.97
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(t, 1H,J = 7.8 Hz), 6.22 (dd, 1H) = 7.8, 1.8 Hz), 5.04 (bs, 2H, NH **C NMR (75
MHz, DMSO-d6)d 166.7, 150.4, 149.6, 143.2, 141.6, 141.5, 13636,2, 129.5 Z x
C), 125.9, 124.4, 108.5, 107.5, 104.9. HRMS (ESB:iM+H]" calcd for GsH13N4O»,
281.2895; found, 281.1032.

5.2.14. 3-((3-Morpholinophenyl)amino)quinoxaline&rboxylic acid $c)

The title compound was synthesized according ta@#reral method B from compound
4c (150 mg, 0.40 mmol) and potassium carbonate (248 68 mmol) in agueous
methanol (80%, 5 mL). The reaction mixture waswetd for 4 h. CompounBic was
obtained (139 mg, 100%) as an orange powder.

Mp 186.6 °C.*H NMR (300 MHz, DMSO-d6) 10.49 (bs, 1H, NH), 7.97 (m, 1H),
7.82-7.74 (m, 2H), 7.67 (s, 1H), 7.56 (ddd, TH; 8.4, 6.3, 2.1 Hz) 7.32 (d, 1H,= 8.7
Hz), 7.23 (t, 1HJ = 8.1 Hz), 6.69 (dd, 1H) = 8.1, 1.5 Hz), 3.77 (m, 4H, 2 x GA&
morpholine), 3.16 (m, 4H, 2 x GN, morpholine).**C NMR (75 MHz, DMSO-d6p
168.0, 152.2, 149.4, 142.5, 140.5, 135.9, 133.2.93129.9, 129.7, 126.7, 126.4,
111.4, 110.5, 106.9, 66.6 (2 x C), 49.0 (2 x C).MHR(ESI) m/z: [M+H] calcd for
Ci19H10N4O3, 351.3793; found, 351.1453.

5.2.15. 3-((1H-Indol-5-yl)amino)quinoxaline-2-castydic acid &d)

To esterdd (81 mg, 0.24 mmol) in ethanol (5 mL), was addéd% sodium hydroxide
solution (2 mL) and the reaction mixture was refldxfor 18 h. Ethanol was then
evaporated under reduced pressure, and the restdsidue was acidified to pH 2 with
a 15% citric acid solution and extracted with ethgttate. The organic layers were then
washed with water and brine, dried over MgSiitered, and evaporated under reduced
pressure. The residue was finally purified by ailicolumn chromatography using
CH,CI, with MeOH gradient (0-20%) as eluent to give tioeddd (30 mg, 41%) as a
red powder.

Mp 244.4 °C.*H NMR (300 MHz, DMSO-d6) 12.45 (bs, 1H, NH), 11.07 (bs, 1H,
NH), 8.70-6.80 (m, 8H), 6.44 (bs, 1H, indolyffC NMR (75 MHz, DMSO-d6)d
168.6, 151.4, 133.6, 133.1, 132.5, 129.9, 129.9. 1123 x C), 127.1, 126.9, 125.7,
116.6, 112.9, 111.6, 102.5. HRMS (ESI) m/z: [M+Idalcd for G7H13N4O», 305.31009;
found, 305.1034.
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5.2.16. 3-((4-Hydroxyphenyl)amino)quinoxaline-24maxylic acid be)

The title compound was synthesized according tayéresral method B from compound
4e (90 mg, 0.29 mmol) and potassium carbonate (80 @8 mmol) in aqueous
methanol (80%, 10 mL). The reaction mixture wasusefd for 4 h. Compoun8e was
obtained (79 mg, 97%) as an orange powder.

Mp 197.4 °CH NMR (300 MHz, DMSO-d6p 10.22 (bs, 1H, NH), 9.31 (bs, 1H, OH),
7.93 (dd, 1H, = 8.1, 0.9 Hz), 7.78-7.63 (m, 4H), 7.51 (ddd, IH; 8.1, 6.6, 1.5 Hz),
6.80 (d, 2H,J = 8.7 Hz).*C NMR (75 MHz, DMSO-d6p 168.1, 153.9, 149.6, 142.9,
135.8, 133.2, 132.7, 131.1, 129.9, 126.4, 125.2,5.® x C), 115.8 (2 x C). HRMS
(ESI) m/z: [M+HT calcd for GsH1oN3Os, 282.2742; found, 282.0873.

5.2.17. Potassium 3-((4-aminophenyl)amino)quinmeaR-carboxylate5g)

The title compound was synthesized according tayéreeral method C from compound
4g (16 mg, 0.05 mmol) and potassium carbonate (7 @@ mmol) in aqueous
methanol (80%, 5 mL). The reaction mixture waswefd for 4 h. Compounfig was
obtained (14 mg, 87%) as a red powder.

Mp > 375 °C.*H NMR (300 MHz, DMSO-d6) 12.80 (bs, 1H, NH), 7.84 (d, 1H,=
7.8Hz), 7.60-7.50 (m, 4H), 7.32 (m, 1H), 6.60 (d, 2+ 8.4 Hz), 4.84 (bs, 2H N

3%C NMR (75 MHz, DMSO0-d6)5 167.0, 150.4, 144.2, 143.0, 142.0, 136.4, 130.4,
130.2, 129.5, 125.6, 123.8, 120®x C), 114.7 2x C). HRMS (ESI) m/z: [M+H]
calcd for GsH13N4O,, 281.2895; found, 281.1032.

5.2.18. 3-((4-(1-Methylpiperidin-4-yl)phenyl)amiga)noxaline-2-carboxylic acidbb)
The title compound was synthesized according ta@#reeral method B from compound
4h (42 mg, 0.11 mmol) and potassium carbonate (45 @82 mmol) in aqueous
methanol (80%, 5 mL). The reaction mixture waswedd for 4 h. Compoungh was
obtained (19 mg, 49%) as a yellow powder.

Mp 321 °C.*"H NMR (300 MHz, DMSO-d6)p 13.33 (bs, 1H, NH), 8.00 (d, 14,= 7.8
Hz), 7.85 (d, 2H, = 8.4 Hz), 7.68-7.58 (m, 2H), 7.54-7.31 (m, 1H), 7(832H,J =
8.4 Hz), 2.86 (d, 2H] = 11.4 Hz), 2.46-2.36 (m, 1H), 2.19 (s, 3H, £H..95 (td, 2H,)

= 11.4, 1.8 Hz), 1.77-1.62 (m, 4HYC NMR (75 MHz, DMSO-d6) 166.9, 150.4,
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142.1, 141.7, 140.1, 138.8, 136.4, 130.7, 129.8,5.2 x C), 125.9, 124.7, 119.2 &
C), 56.4¢2x C), 46.7, 41.2, 33.72(x C). HRMS (ESI) m/z: an abundant fragment ion
has been observed at m/z 213.1022 that have bé#utsd to the loss of the 1-
methylpiperidin-4-yl)phenyl)amino moiety from theaiigoxaline ring to form the ion
[CoHeN0O, +K]™ (m/z caled for GHgKN,O,, 213.2545; found, 213.1022).

5.2.19. 3-((2-Hydroxyphenyl)amino)quinoxaline-2maxylic acid bi)

The title compound was synthesized according ta@#reeral method B from compound
4i (101 mg, 0.33 mmol) and potassium carbonate (185 08 mmol) in aqueous
methanol (80%, 10 mL). The reaction mixture wasusefd for 4 h. Compoun8i was
obtained (60 mg, 65%) as a red powder.

Mp 191.1 °CH NMR (300 MHz, DMSO-d6) 14.00 (bs, 1H, COOH), 10.84 (bs, 1H,
NH), 10.11 (bs, 1H, OH), 8.88 (m, 1H), 7.97 (d, I 8.1 Hz), 7.80 (m, 2H), 7.56 (M,
1H), 7.00-6.68 (m, 3H)**C NMR (75 MHz, DMSO-d6p 167.1, 148.7, 146.5, 142.2,
135.3, 132.7, 132.4, 129.4, 127.9, 126.1, 125.2.592119.2, 119.0, 114.2. HRMS
(ESI) m/z: [M+HT calcd for GsH12N3Os, 282.2742; found, 282.0871.

5.2.20. 3-((3-Morpholinophenyl)amino)quinoxaline@-oxamide §)

To a solution of compounBic (50 mg, 0.14 mmol) antl-methylmorpholine (31 pL,
0.29 mmol) in dichloromethane (5 mL) at 0 °C, wdded ethyl chloroformate (21 pL,
0.21 mmol). The reaction mixture was stirred maiga#y at 0 °C for 1 h, and a 28%
solution of ammonium hydroxide (5 mL) was addede Téaction was stirred overnight
at room temperature and extracted with dichloroar@h The organic layer was then
washed with water and brine, dried over MgSfitered, and evaporated under reduced
pressure to give the carboxami@lés0 mg, 100%) as a red powder.

Mp 203.9 °C.*H NMR (300 MHz, DMSO-d6)> 11.52 (bs, 1H, NH), 8.75 (bs, 1H,
NH,), 8.26 (bs, 1H, Nb), 7.93 (d, 1HJ = 8.1 Hz), 7.82-7.50 (m, 2H), 7.69 (bs, 1H),
7.56 (m, 1H), 7.32-7.20 (m, 2H), 6.69 (d, 1H= 8.1 Hz), 3.78 (m, 4H, 2 x Gi®
morpholine), 3.17 (m, 4H, 2 x GN, morpholine).**C NMR (75 MHz, DMSO-d6p
168.5, 152.2, 149.4, 142.7, 140.6, 135.3, 133.2.813129.8, 129.6, 126.7, 126.3,
111.1, 110.3, 106.6, 66.6 (2 x C), 49.0 (2 x C).MER(ESI) m/z: [M+H] calcd for
C19H20N50,, 350.3946; found, 350.1613.
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5.3. Molecular Modeling

Molecular modeling studies were performed using S¥& 1.3 software [33] running
on a Dell precision T3400 workstation. The threseisional structure of compoutd
(under its carboxylate form to imitate physiolodiconditions) was built from a
standard fragments library and optimized usingTthpos force field [34] including the
electrostatic term calculated from Gasteiger andkidli atomic charges. Powell's
method available in Maximin2 procedure was usedefogrgy minimization until the
gradient value was smaller than 0.001 kcal/(mol*fhe crystal structure of Pim-1 in
complex with AMP-PNP at 1.6 A resolution (PDB 1D 8®) [35] was used as template
for docking. Water molecules were removed from twordinates set since no
information about conserved water molecules is kméov this chemical series in Pim-
1. Flexible docking of compountiinto ATP-binding site was performed using GOLD
software [36]. The most stable docking model wascsed according to the best scored
conformation predicted by the GoldScore scoringciom. Finally, the complexe was
energy-minimized using Powell’'s method availableMaximin2 procedure with the
Tripos force field and a dielectric constant of,4.@til the gradient value reached 0.1
kcal/mol.A.

5.4. Biology

5.4.1. Mammalian protein kinase assays

Kinase enzymatic activities were assayed in 384-lates using the ADP-GIY assay
kit (Promega, Madison, WI) according to the recomdaions of the manufacturer.
This assay is a luminescent ADP detection assaypitevides a homogeneous and
high-throughput screening method to measure kiaaseity by quantifying the amount
of ADP produced during a kinase reaction. Briethg reactions were carried out in a
final volume of 5 pL for 30 min at 30 °C in ADP-Ghuffer and 10 uM ATP (40 mM
Tris pH 7.5, 20 mM MgGland 0.1 mg/mL of BSA). After that, 5 pL of ADP-Glb
Kinase Reagent was added to stop the kinase reaétiter an incubation time of 50

min at room temperature (rt), 10 uL of Kinase Detec Reagent was added for one
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hour at rt. The transmitted signal was measuredguiie Envision (PerkinElmer,
Waltham, MA) microplate luminometer and expresse&elative Light Unit (RLU). In
order to determine the half maximal inhibitory centration (IGo), the assays were
performed in triplicate in the absence or preseofcéncreasing doses of the tested
compounds. Kinase activities are expressed in ¥hafimal activity,i.e. measured in
the absence of inhibitor. Peptide substrates webgaireed from Proteogenix
(Schiltigheim, France).

The following kinases were analyzed during thisdgtuHsPim-1 (human proto-
oncogene, recombinant, expressed in bacteria) sseyad with 0.8 pg/uL of histone
H1 (Sigma #H5505) as substraRDYRK1A-kd (Rattus norvegicysamino acids 1 to
499 including the kinase domain, recombinant, esg@d in bacteria, DNA vector
kindly provided by Dr. W. Becker, Aachen, Germangs assayed with 0.03®)/uL of
the following peptide: KKISGRLSPIMTEQ as substral#sCDK2/CyclinA (cyclin-
dependent kinase-2, human, kindly provided by DrE&halier-Glazer, Leicester, UK)
was assayed with 0.8 pg/uL of histone H1 as substsCDKO/CyclinT (human,
recombinant, expressed by baculovirus in Sf9 inselts) was assayed with 0.27 pg/pL
of the following peptide: YSPTSPSYSPTSPSYSPTSPSKKHE&substratdisHaspin-
kd (human, kinase domain, amino acids 470 to /@&mbinant, expressed in bacteria)
was assayed with 0.007 pg/pL  of Histone H3 (1-21)eptide
(ARTKQTARKSTGGKAPRKQLA) as substrateMmCLK1 (from Mus musculus
recombinant, expressed in bacteria) was assaydd QW27 ug/pL of the following
peptide: GRSRSRSRSRSR as substr@asgZK16/e (casein kinasedle, porcine brain,
native, affinity purified) was assayed with 0.028/juL of the following peptide:
RRKHAAIGSpAYSITA (“Sp” stands for phosphorylated rs®) as CK1-specific
substrate;Ss&SK-3u/B (glycogen synthase kinase-3, porcine brain, natafénity
purified) isoforms were assayed with 0.010 pg/plG&-1 peptide, a GSK-3-selective
substrate (YRRAAVPPSPSLSRHSSPHQSpPEDEEE). To vaidhde kinase assay,
model inhibitors were used for each tested enzy@&ta@urosporine fronStreptomyces
sp. (#S5921, purity>95%, Sigma-Aldrich) foiSs€K1d/e; Indirubin-3’-oxime (#10404,
purity >98%, Sigma-Aldrich) forSs&SK-3u/f, HsPim-1, human Cyclin-dependent
kinases,RIDYRK1A and MMCLK1; CHR-6494 (#SML0648, purityy98%, Sigma-
Aldrich) for Haspin.
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571 5.4.2. Cell Cultures and Reagents

572 KUB812 cell lines were obtained from the Americarp&yCulture Collection (ATCC)
573 and maintained according to the supplier's recontdagons. Cell lines were cultured
574 in RPMI, with 10% fetal bovine serum, 1% glutamiaad 1% penicillin/streptomycin
575 at37 °C and 5% CO

576

577 5.4.3. Cell Proliferation Assays

578 Cell viability and proliferation were studied usirg MTT cell proliferation assay.
579 Briefly, 0.2 x 18 cells were incubated in 1Q@L of X-Vivo red phenol free medium
580 (Lonza, Basel, Switzerland) in 96 well plates. hitial screening assays, cells were
581 incubated with 1QuM of each compound (quinoxalines stock solutiorb@tmM in
582 DMSO) for 24, 48, and 72 h. Imatinib mesylate (&skchem, stock solution at 10 mM
583 in DMSO) was used as reference. To determine thecesdration-effect of the
584 molecules, cells were treated with concentrati@mging from 100 nM to 5(M for 24
585 or 48 h. Cells were incubated with 30 of MTT working solution (5 g/L of
586 methylthiazolyldiphenyl-tetrazolium bromide) during h. Cells were then lysed
587 overnight at 37 °C with 100L of 10% SDS and 0.003% HCI. Optical density (OD) a
588 570 nm was measured using a spectrophotometer Dyieantilly, United States).
589 Living cells were also counted with the trypan bliye exclusion method. When a
590 dose-dependent activity was observedsfE@lues were calculatedsing Graphpad
591 PRISM 7 software (n = 3 in triplicate). Data werellected from at least three

592 independent experiments and the values reportednasnst standard errors of the

593 mean.

594
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791 Scheme 1. Reagents and conditiong) @diethyl 2-oxomalonate (1 eq), citric acid (3
792  mol%), EtOH, rt, 10 min, 79%;jij DMF (cat.), POG, 0°C, and then reflux, 30 min,
793 100%; (ii) amine (1.1-3 eq)p-toluenesulfonic acid (cat.|5tOH, reflux, 20-112 h, 32-
794  93%; (v) TFA (20%), DCM, rt, 6 h, 96%yV} K.COs; (1-4 eq), MeOH/HO (4/1), reflux,
795 4 h, 49-100%; \(i) NaOH (10%), EtOH, reflux, 18 h, 41%yii) CICOOEt (1.5 eq),
796 NMM (2 eq), DCM, 0°C, 1 h, and Ni@H, rt, overnight, 100%.



797 Tablel
798 Enzymatic assays dfsPim-1.

/
N™ "NH

799 R

Entry Compd R R HsPim-1 1G, (UM)?

1 da ‘Q OEt > 10
OH

2 1 @ OH 0.074
OH

3 4b @ OEt > 10

4 5b @ OK 2.80
NH,

5 4c EN OEt >10
g

6 5¢ EN OH 1.01
g

7 6 EN NH, > 10
-

X
8 4d @H OFEt > 10
X

9 5d @H OH > 10

10 de _QOH OEt > 10

11 5e _QOH OH 0.29

12 49 —QNHz OEt > 10

13 5g — Nwwy OK > 10

14 4h @—CN— OEt > 10

15 5h @—CN— OH > 10

16 4 @ OEt >10

HO
17 5i @ OH 0.76
HO
18 Staur osporine 0.031

800 #Values are a mean of> 3 independent experimentss: Homo sapiens



801 Table2
802 Kinase selectivity profile and cell-based assaysio$t active quinoxalines.

803
<j[N\:ECOORZ
N”NH
804 iy
805
Kinase enzymatic I (UM)? EGs (LM)?
. HsCDK2 HsCDK9 Hs Mm Ssc Ssc
Entry Cpd Ry R HPm-1 RDYRKIA cotinA  /CyclinT  Haspin  CLK1  CK1d/e GSK3w/p KU 812
1 1 @ H 0.074 0.27 > 10 > 10 > 10 > 10 > 10 >10 389+34
OH
2 5b @ K 2.80 1.67 > 10 > 10 > 10 > 10 > 10 >10 63.8+1.9
NHa
3 5c :N‘> H 1.01 >10 >10 > 10 > 10 >10 >10 >10 57.3+6.1
Lo
4 se —( Yon H 0.29 0.098 > 10 > 10 >10 >10 >10 >10 41.7£37
5 5i ‘Q H 0.76 0.74 >10 >10 >10 >10 >10 >10 177.5+13.1
HO
6 Imatinib mesylate ND ND ND ND ND ND ND ND 0.6 £0.02
806 ®Values are a mean of> 3 independent experiments.
807 ® Cells were treated with concentrations ranging frod® nM to 50uM for 48 h. Cell viability was then determined byTW assays, and Egvalues were

808 calculated using Graphpad PRISM 7 software (n = tBiplicate; data are the mean = SEM).

809 Rn Rattus norvegicysds: Homo sapiendvim: Mus musculusSsc Sus scrofaDYRK1A: dual specificity tyrosine phosphorylatioegulated kinase 1A, CDK:
810 cyclin-dependent kinase, Haspin: haploid germ sgdeific nuclear protein kinase, CLK1: CDC2-liken&se 1, CK1: casein kinase 1, GSK3: glycogen
811 synthase kinase 3, ND: not determined.
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17 new quinoxaline-2-carboxylic acid derivatives targeting Pim-1 were synthesized.
A nanomolar inhibitor of HsPim-1 (1) was identified.
Molecular modeling suggested a non-ATP mimetic binding mode.

Best candidates exhibited in vitro antitumor activity at micromolar concentrations.



