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Combining Surface Organometallic Chemistry with rigorous olefin purification protocol allows 

evaluating and comparing the intrinsic activities of Mo and W olefin metathesis catalysts towards 

different types of olefin substrates. While well-defined silica-supported Mo and W imido-alkylidenes 

show very similar activities in metathesis of internal olefins, Mo catalysts systematically outperform 

their W analogs in metathesis of terminal olefins, consistent with the formation of stable 

unsubstituted W metallacyclobutanes in the presence of ethylene. However, Mo catalysts are more 

prone to induce olefin isomerization, in particular when ethylene is present, probably because of 

their propensity to undergo more easily reduction processes. 
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Introduction 

Molybdenum and tungsten are the two key elements for the industrial heterogeneous olefin 

metathesis catalysts (SHOP, Phillips Triolefin Process, Lummus’ OCT, etc.).[1] Both metals also provide 

the most active homogeneous[2] and well-defined silica-supported[3-5] catalysts based on the Schrock-
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type alkylidene complexes. However, despite years of research and industrial application, it is still 

difficult to evaluate the intrinsic activity of Mo vs. W. Indeed, the marked difference in operating 

conditions for industrial heterogeneous catalysts based on supported MO3 (100–200 °C for Mo vs. 

≥400 °C for W) is likely associated with the initiation steps and the number of active sites,[6] rather 

than with the intrinsic activity of Mo and W active species. Well-defined silica-supported Mo 

alkylidenes[7-9] are more active than their W counterparts in propene metathesis,[10-12] however, 

molecular W alkylidenes are reported to outperform Mo analogs in metathesis of cis-2-pentene.[13] 

The difficulty to compare catalyst activities (rates) is however not surprising considering that these 

catalysts are both highly active and sensitive to poisons, hence requiring low catalyst loadings and 

very pure substrates to obtain reliable data (kinetic regime and no deactivation by poisoning). DFT 

calculations have shown that the main differences between isostructural Mo and W d0 metathesis 

catalysts arise from: the difference in the stability of the metallacycles and the difference in energy 

barriers for the TBP/SP interconversion. In particular, W leads to more stable TBP and SP 

metallacycles; while  the former is on the metathesis pathway, the more stable SP structure is an off-

cycle intermediate that contributes to an overall decrease of activity of the catalyst.[14-18] 

Recent investigations have shown that well-defined silica-supported alkylidenes, prepared by 

Surface Organometallic Chemistry (SOMC),[3-5] do not suffer from bimolecular decomposition 

pathways due to site isolation in contrast to their molecular analogs.[19, 20] In addition, it has been 

shown in the context of alkyne metathesis that using highly purified substrates is essential for 

reliable measurement of rates.[21] We thus reasoned that combining SOMC on a series of silica-

supported Mo and W imido-alkylidene metathesis catalysts bearing identical ligand sets (Scheme 1) 

with a standardized olefin purification protocol would warranty reproducible metathesis activity 

measurement, allowing in fine the comparison of the intrinsic activities between Mo and W. This 

benchmark measurement of activity will be carried out on two prototypical substrates: cis-4-nonene 

and 1-nonene. 

 

 

 

Scheme 1. Catalysts and substrates investigated. 
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Results and Discussion 

In order to compare Mo and W catalysts, we have prepared a series of silica-supported Mo imido-

alkylidenes (≡SiO)Mo(=NAr)(=CHCMe2Ph)(X) bearing X ligands with different σ-donating ability 

ranging from electron-donating Me2Pyr to highly electron-withdrawing OtBuF9 (Scheme 1; Ar = 2,6-

iPr2C6H3; X = Me2Pyr (MoPyr), OtBuF3 (MoF3), OtBuF6 (MoF6), and OtBuF9 (MoF9)), as well as the 

corresponding W analogs reported previously (Scheme 1; WPyr, WF3, WF6, WF9; see ESI for details).[22, 

23] We have then evaluated the performance of these supported complexes in the self-metathesis of 

cis-4-nonene and 1-nonene in batch conditions. The olefins are purified by successive distillation 

from Na, degassing, and passing through activated neutral alumina prior to a treatment with 

Selexsorb CD[24] (see ESI for details), the latter reagent being key for reaching high and reproducible 

activity at such low loadings. 

Metathesis of cis-4-nonene results in the formation of an equilibrium mixture of cis/trans 4-octenes, 

4-nonenes, and 5-decenes, corresponding to ca. 50% conversion of nonene (Scheme 1a). Since 

metathesis occurs without initiation, turnover frequency measured at time = 3 min (TOF3 min) is used 

as a descriptor of the catalyst activity, while time required to reach equilibrium (τequil) depends on 

both activity and stability. As shown in Table 1, the performance of certain W catalysts (in particular, 

the least active ones, WPyr and WF3) is significantly improved after Selexsorb pretreatment of the 

olefin as compared to the previously reported data,[22, 23] although the general trend within the 

series stays unchanged. The results summarized in Table 1 show that there is hardly any difference 

in activity between Mo and W catalysts for the same ligand set, the greatest distinction being 

observed for MoPyr and WPyr. Interestingly, the activity of Mo catalysts within the series follows the 

same trend upon changing the σ-donating ability of the X ligand as observed before for supported 

W[22, 23] and molecular Mo[13] and W[25] catalysts (Me2Pyr < OtBuF3 < OtBuF6 < OtBuF9).  

 

Table 1. Catalytic activities of silica-supported Mo and W imido-alkylidenes in metathesis of cis-4-nonene (Scheme 1a). 

 

Cat. TOF3 min,a,b 

min−1 

τequil,
a 

min 

Cat. TOF3 min,b 

min−1 

τequil,
 

min 

 

For 1-nonene, metathesis yields cis/trans 8-hexadecenes and ethylene (Scheme 1b). In this case, full 

conversion can be reached if ethylene is removed from the reaction mixture (see ESI for details). The 

results are summarized in Table 2 and Figure 1. All Mo catalysts demonstrate high activities and 
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perform very similarly with little influence of the pendant X-group. However, in contrast to what is 

found for cis-4-nonene, the initial activity of W catalysts is ca. an order of magnitude lower than that 

of Mo. The effect of the X ligand on the initial activity is also not strongly pronounced for W. 

However, it has a significant effect on the overall catalytic performance (number of turnovers) 

(Figure 1), σ-donating X ligands clearly yielding more efficient catalysts. Thus, WPyr catalyst 

containing electron-donating Me2Pyr ligand shows remarkably better performance than other W 

catalysts albeit still worse than its Mo analog MoPyr. It should be also noted that, while being more 

active, Mo catalysts display lower selectivity. While selectivity in metathesis product (C16) remains 

≥99.5% for all the W catalysts over the course of the reaction, 2–3% of isomeric products (C15, C14…) 

are formed after 8 h of the reaction for MoF3, MoF6 and MoF9, and up to 7% for MoPyr. In addition, if 

ethylene is not efficiently released from the reaction mixture (e.g. using a closed vessel), the 

selectivity can drop even further to reach values as low as 80–85% (MoPyr), probably indicating that 

ethylene is responsible (at least in part) for the lower selectivity. The reaction also appears to be 

slower in this case for both Mo and W.  

 

Table 2. Catalytic activities of silica-supported Mo and W imido-alkylidenes in metathesis of 1-nonene (Scheme 1b). 

 

Cat. TOF3 min,a min−1 (conv. after 8 h) Cat. TOF3 min,a min−1 (conv. after 8 h) 

 

 

Figure 1. Catalytic performance of silica-supported Mo and W imido-alkylidenes in metathesis of 1-nonene. 

 

The observed difference in activity towards 1-nonene metathesis between Mo and W is in line with 

the previous findings on catalytic behavior of silica-supported Mo[7-9] and W[10, 11] alkylidenes in the 

metathesis of propene under flow conditions, where W catalysts are also found to be significantly 

less efficient than their Mo analogs. We reasoned that the main difference between metathesis of 
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internal (cis-4-nonene) and terminal olefins (propene and 1-nonene) arises from the presence of 

ethylene and the formation of unsubstituted metallacyclobutanes in the latter case. For W, these 

metallacyclobutanes have been previously shown to be rather stable and reluctant to participate in 

metathesis, as evidenced by pronounced induction periods.[22] Their stability is also consistent with 

DFT calculations[17] and with the fact that most isolated and fully characterized metallacyclobutanes 

are based on W, in both molecular[26] and surface chemistry.[11, 22, 23, 27, 28] In contrast, the stability of 

Mo metallacyclobutanes is significantly lower,[13, 29, 30] and so far these species have been isolated in 

only few cases with molecular catalysts[13, 29] and not reported on surfaces. Easier decomposition of 

Mo metallacycles to form d0 hydride/alkyl or d2 species is also likely the reason of lower selectivity 

observed in this case, as these species can promote double bond migration. Earlier studies have 

shown that ethylene is particularly prone to induce deactivation of metathesis catalysts.[15, 31] In fact, 

we have so far failed to observed the formation of metallacyclobutanes in the case of supported Mo 

catalysts. 

Overall, based on the catalytic data discussed above, we conclude that there is no dramatic 

difference in intrinsic activity between Mo and W alkylidenes towards metathesis of internal olefins 

and that the lower activity of W catalysts in metathesis of terminal olefins is mainly due to the 

relatively high stability of unsubstituted metallacyclobutane intermediates that serve as a catalytic 

off-cycle resting state. Moreover, the better performance of WPyr can also be explained using the 

same rationale, as the presence of σ-donating ligands leads to destabilization of the 

metallacyclobutane intermediates.[17] This is also in line with the data on the previously reported W 

catalysts bearing strongly σ-donating ligands, e.g. thiolates[32] and N-heterocyclic carbenes,[33] that 

displayed remarkably high activities in metathesis of terminal olefins.  

Conclusions 

Using SOMC and careful olefin purification protocol has allowed us to measure the intrinsic activities 

of Mo and W olefin metathesis catalysts and to compare their relative performance. The set of data 

reported here can serve as a perfect illustration to the general principles of olefin metathesis 

catalyzed by group 6–7 d0 metal alkylidenes found in DFT studies.[14-17, 31, 34] While there is no 

essential difference in activity between Mo and W in metathesis of internal olefins (given the 

identical ligand environment and rigorous purification of the substrate), Mo catalysts systematically 

outperform their W analogs by ca. one order of magnitude in metathesis of terminal olefins, albeit at 

the expense of selectivity. This differences are rationalized by the formation of stable unsubstituted 

metallacyclobutanes in the presence of ethylene for W and presumably the easier reduction of Mo. 

The activity of both Mo and W systems towards internal olefins increases with decreasing the 

σ-donating ability of the X ligand, which favors TBP over SP. In the case of terminal olefins, 

destabilization of unsubstituted metallacyclobutane intermediates by introducing σ-donating ligands 

appears to be a more important factor for W: increasing σ-donating ability of the X ligand leads to 

the improved overall catalytic performance. The trends identified in this work provide a benchmark 

in comparing Mo and W and pave the way towards a more rational development of Mo and W-

based alkene metathesis catalysts. 
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Supplementary Material 

Supporting information for this article is available on the WWW under 

http://dx.doi.org/10.1002/MS-number.  
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