
Electrosynthesis of l,ltl-Tribromodimethylsulfone (II). A current of 6 A was passed 
through the electrolyzer described above containing 600 ml of an aqueous solution containing 
120 g KBr, 70 g NaHCO 3, and 7.8 g DMSO at 20-22~ (27 A-h was introduced). The extraction 
of (II) was carried out as in the case of (I) to give 11.8 g (36% yield, 28% current yield) 
(II), mp 235-237~ (from toluene-hexane). PMR spectrum (6, ppm): 3.47 s (3H). Found, %: 
C 7.45; H 1.10; Br 71.87. CmH3Br302S. Calculated, %: C 7.26; H 0.91; Br 72.46. 

Preparation of (II) by the Oxidation of Itltl-Tribromomethyl Methyl Sulfid e. A sample 
of 61o7 g (0.21 mole) l,l,l-tribromomethyl methyl sulfide in i00 ml glacial acetic acid was 
added dropwise, with rapid stirring and cooling to 18-21~ over 5 h, to 51.8 g fine-crystalline 
CrO3 in 300 ml glacial acetic acid~ The reaction mixture was stirred at this temperature for 
an additional 1 h and then poured into 2 liters cold water and neutralized with NaHCO 3. The 
precipitate was filtered off and dried over P=O 5 to give 37.9 g (55%) (II), mp 235-236~ 
(from toluene-hexane). 

CONCLUSIONS 

The electrochemical bromination of DMSO in alkaline media leads to the formation of 
(CBr3)2SO2 (in the presence of Na2CO 3) or CBr~SO2CH 3 (in the presence of NaHC03). 
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HYPOPHOSPHOROUS ACID AS A HYDRIDE ION DONOR 

O. A. Karpeiskaya, A. A. Belyi, Z. N. Parnes, 
and M. E. Vol'pin 

UDC 542.941.7:547.632.3 

Ionic hydrogenation of hydrogenolysis requires proton and hydride ion donors. Hypophos- 
phorus acid, H3PO 2 (I), is presumably both a proton donor and hydride ion donor. In order to 
check this hypothesis, we selected the ionic hydrogenation of l-methylcyclohexene (II). This 
compound readily undergoes ionic hydrogenation to give methylcyclohexane by the action of 
hydride ion donors such as Et3SiH and strong acids such as CF3CO2H [i]. However, 1-methyl- 
cyclohexene in the presence of (I) is not converted to methylcyclohexane at 40~ over 4 h 
with a ten-fold excess of acid. The lack of a reaction between (I) and (II) may be explained 
either by assuming that H3PO 2 is a poor proton donor or a poor hydride ion donor. The reac- 
tion of (I) with (II) does not proceed in the presence Of Et3SiH which is an active hydride 
ion donor. Thus, H3P02 is a poor proton donor. However, when CF3CO2H is added to a reac- 
tion mixture of (I) and (II) in order to increase the acidity of the medium, ~5% methylcyclo- 
hexane was found in the reaction products. Hence, the P-H bond may serve as a hydride ion 
donor. 

When a carbocation such as the tropylium cation participates in the reaction, then, de- 
spite its low activity as a hydride ion acceptor, the reduction proceeds even by the action 
of 50% aqueous solution of (I) and cycloheptatriene is formed in -25% yield. In this case, 
the reaction of (I) with the tropylium ion proceeds to give the mono- and dicycloheptatrienyl 
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derivatives of (I) in addition to ionic hydrogenation. This is indicated by the 31p NQ~R 
spectra of the reaction mass: 61 27.5 ppm (doublet, JP-H = 545 Hz) and 62 52.5 ppm (singlet) 
which correspond to alkylphosphorous and dialkylphosphonic acids (81.01 MHz in CH2CI 2 with 
85% H3PO~ as the external standard [2]). 

Upon the use of diphenylchloromethane and l-chloro-l-methylcyclohexane as the carboca- 
tion source and AICI 3, the ionic hydrogenation in the presence of (I) proceeds under mild 
conditions (20~ over i h) with the formation of 22% diphenylmethane and 27% methylcyclohex- 
ane. 

Ionic hydrogenolysis proceeds upon the action of (I) on triphenyicarbinol at 40~ over 
4 h with a 93% yield of triphenylmethane. Diphenylcarbinol is converted to diphenylmethane 
under the same conditions, albeit in only 12% yield. This decrease in yield is apparently 
related to difficulty in forming the cation due to insufficient acidity of (I). We should 
note that except for the reactions with CvHTBF~, we used (I) with ~0.2% water. At high 
water contents in the acid, ionic hydrogenation and hydrogenolysis either do not occur at 
all or the product yield is low (the yield is only ~50% in the case of Ph3COH). 

EXPERIMENTAL 

The products of the ionic hydrogenation were analyzed by gas-liquid chromatography on a 
Tsvet-129 chromatograph with a flame ionizaton detector and helium gas carrier using a 1500 • 
4-mm glass column packed with Elastomer E-301 on Chromosorb W, HP 100/120 mesh (for the prod- 
ucts of the conversion of Ph3COH) and a 2500 x 4-nun glass column packed with 5% GESE-30 sili- 
cone on Chr0maton-Super 100/120 mesh (for the products of the conversion of Ph2CHOH, Ph2CHCI, 
and CTHTBF~). We also used a Chrom-5 chromatograph with a flame ionization detector and nitro- 
gen gas carrier using a 2400 x 3-mm stainless steel column packed with SE-30 silicone on 
Chromaton N-AW-HMOC (0.16-0.20 man) [for the products of the conversion of l-chloro-!-methyl- 
cyclohexane and (II)]. The products were identified relative to authentic samples and the 
internal standard method was used for quantitative analysis. 

The sample of hypophosphorous acid was dried as described by Brauer [3]. The moisture 
content was determined by potentiometric titration. 

Ionic Hydrogenation of Ph3COH by Hypophosphorous Acid. A sample of 0.260 g (0.001 
mole) Ph3COH in i ml CH2CI 2 was added to a pear-shaped flask equipped with a reflux conden- 
ser and magnetic stirrer maintained at 40~ Then, 0.66 g (0.0i mole) anhydrous hypophos- 
phorous acid was added dropwise and the mixture was stirred for 4 h. The solution was neu- 
tralized and extracted thrice with CH2Ci =. The organic layer was analyzed by gas-liquid 
chromatography. 

The ionic hydrogenation of Ph2CHOH and l-methylcyclohexene by hypophosphorous acid was 
carried out by the same procedure. 

Ionic Hydrogenation of l-Chloro-l-methylcyclohexane and PhmCHOH by Hypophosphorous Acid 
in the Presence of AICI3. A sample of 0.001 mole l-chl0ro-l-methylcyclohexane or Ph2CHCI 
was added to the reaction flask equipped with a reflux flask and a magnetic stirrer and dis- 
solved in i ml CH2CI 2. Then, 0.01 mole AICI 3 was added upon cooling to 0~ The mixture 
was stirred at ~12~ for 15 min. The solution turned orange and then brown after the drop- 
wise addition of 0.005 mole H3PO =. The temperature of the cooling bath was gradually raised 
to room temperature. After i h, the mixture was neutralized and extracted thrice with 
CH2CI =. The mixture was analyzed by gas-liquid chromatograph. The order of the addition of 
the reagents does not have a significant effect on the product yields. The best result (27% 
methylcyclohexane) was obtained upon the initial mixing of H3PO 2 with AICI 3 and the subse- 
quent addition of l-chloro-l-methylcyclohexane at 0~ 

Ionic Hydrogenation of CvHTBF~ by Hypophosphorous Acid. A sample of 0.001 mole CvHTBF4 
was introduced into a pear-shaped flask equipped with a reflux condenser and magnetic stir- 
rer. Then, i ml CH2CI = and heptane as the internal standard were added. A sample of 1.32 
ml 50% aqueous H3PO 2 was added with stirring. After 4 h, the mixture was thrice extracted 
with CH2CI 2. The organic layer was analyzed by gas-liquid chromatography. 

CONCLUSIONS 

Hypophosphorous acid is a protonating agent and relatively good hydride ion donor in 
ionic hydrogenation and hydrogenolysis. 
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SYNTHESIS AND MOLECULAR STRUCTURES OF ANTIFERROMAGNETIC (Cp2Cr=SCMe3). 

(u3-S)=RhL= CLUSTERS. FIRST OBSERVATION OF Cr-Rh BONDS 

Ao A. Pasynskii, I. L. Eremenko, V. R. Zalmanovich, 
V. V. Kaverin, B. Orazsakhatov, V. M. Novotortsev, 
A. I. Yanovskii, and Yu. T. Struchkov 

UDC 542.91:548.737:541.49: 
547.1'13:546.76:546.97 

An increase of the activity of rhodium hydroformylation catalysts has been reported 
upon the introduction of thiolate bridges [i] and upon the combination of the rhodium com- 
plexes with transition elements of the beginning of the periods [2]. In order to obtain 
catalyst models, we synthesized rhodium complexes, in which binuclear chromium sulfide frag- 
ments are used as the ligands. Cp=Cr2(~-SCMe3)(~3-S)2RhL 2 clusters [L 2 = ~-C8H12 (I) and 
(CO) 2 (II)] were formed in the reactions of (CpCrSCMe3)2S with (~-CsHI2RhCI)2 or (Acac)Rh. 
(CO) 2 in benzene at 20 and 80~ respectively. These clusters were isolated by crystalliza- 
tion from benzene-heptane or chromatography on alumina and characterized by x-ray diffraction 
structural analysis (Table I, Figs. 1 and 2). 

The unit cell parameters for (I) are as follows: a = 9.913(8), b = 13.994(ii), c = 
18.242(12) ~, e = 91.96(3), 8 = 95.91(2), y = 106.24(2) ~ , Z = 4 (two independent molecules), 
space group PY. The unit cell parameters for (II) are as follows: a =~16.966(5), b = 
13.190(5), c = 17.885(6) ~, Z = 8, space group Pbca. In both clusters, the diamagnetic rho- 
dium(I) atom is coordinated to two sulfur atoms of the antiferromagnetic Cp2Cr2(SCMe3)(S) 2 
fragment, which has short Cr-Cr bonds [2.687(1) ~ in (I) and 2.708(1) ~ in (II)]. These 
bond lengths are almost the same as in starting (CpCrSCMeS)2S (2.689 ~) [3]. We should note 
the augmentation of the ligand environment of the Rh(I) atoms to typical square planar due 
to the C--C double bonds [1.395(9) ~] of coordinated 1,5-cyclooctadiene in (I) located per- 
pendicularly to the plane of the RhS 2 group or two CO groups in cluster (II)~ In addition, 
extremely elongated Rh-Cr bonds are formed [3.018(1) and 3.010(1) ~ in (I) and 3.010(1) and 
3.134(1) ~ in (II)]. This is apparently a consequence of the electronic features of Rh(I) 
since the Co(I) atom in the Cp2Cr2(SCMes).(~3-S)Co(CO) 2 cluster (III) which is analogous 
to (II), has a tetrahedral environment and forms short Co-Cr bonds (2[579 and 2.592 ~); 
the Cr-Cr bond is also,short (2.617 ~) [3]. We should note that, despite the relative anti- 
bonding nature of the Cr-Cr and Rh-Cr bonds in (II) in comparison with (III), there is a 
marked enhancement of the antiferromagnetic exchange interactions in (II): ~ef drops from 
0.78 to 0.58 B. m. in going from 295 to 80 K, which is described in the framework of the di- 
meric Heisenberg--Dirac-Van Flack model [4] with exchange parameter -2J = 592 cm -I (2% mono- 
mer impurity, 4% mean-square error) in comparison to 530 cm -l in the case of cluster (III) 
[3]. 

EXPERIMENTAL 

All the operations in the synthesis of (I) and (II) were carried out in a pure argon 
atmosphere in absolute solvents. The starting (~-CsHI2RhCI)2 [5], AcacRh(CO) 2 [6], and 
(CpCrSCMe3)2S complexes [7] were obtained according to reported procedures. The IR spectra 
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