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Abstract: The first hydroxamate-based and potent transition state analogue (TSA) inhibitor of 6- 
phosphate-D-glucose isomerases, 5-phosphate-D-arnbinohydroxamic acid 3, has been synthesized by 
conversion of D-arabinose to a protected derivative of 5-phosphate-D-arabinonic acid and introduction 
of the hydroxamate group by coupling with O-benzylhydroxylamine. 

Phosphoglucose isomerases (PGI's, or 6-phosphate-D-glucose isomerases, EC 5.3.1.9), which catalyze 

the first isomerization step in D-glucose fermentation pathway, are present in most organisms. 1 The enzyme 

interconverts 6-phosphate-D-glucose and 6-phosphate-D-fructose (Fig. 1). PGI isomerization mechanism, 

through a probable proton transfer, involves a cis-enediol(ate) intermediate 2, similar to that observed in the 

triosephosphate isomerase (TIM)-catalyzed isomerization of dihydroxyacetone-phosphate to D- 

glyceraldehyde-phosphate, 3 while the hydride shift mechanism has been proposed to operate with some other 

isomerases, e.g. D-xylose isomerases. 4 
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Figure 1. lsomerization reaction catalyzed by 6-phosphate-D-glucose isomerases. 

By virtue of their structural similarity to the rearrangement transition state, hydroxamate-based 

inhibitors3, 5 have been shown to exhibit exceptional inhibition properties, e.g. phosphoglycolohydroxamate 1 

and D-threonohydroxamic acid 2 (Fig. 2), which are TSA inhibitors of TIM 3 and D-xylose isomerase, 5a 
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Figure 2. Selected hydroxamate-based inhibitors. 

respectively. Numerous reports have described the use of hydroxamate-based inhibitors with various other 

enzymes and proteins due in part to their metal-complexing properties. 6 
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PGI plays a central role in the metabolism of phosphorylated sugars, since its substrates, 6-phosphate- 

D-glucose and 6-phosphate-D-fructose, are not only intermediate species in the glycolytic and gluconeogenic 

metabolic pathways, but also in the pentose phosphate pathway. 7 PGI is involved in various and important 

pathologic processes, 8 in particular in the development of parasitic diseases like malaria and sleeping 

sickness. Consequently, PGI is an attractive target for chemotherapeutic action. 

The reported enzyme structures 9 still need considerable refinement in order to identify active site 

residues involved in the isomerization mechanism, by contrast with other isomerases like TIM 10 or D-xylose 

isomerase.4C -f 

The need for a very good TSA inhibitor for PGI led us to undergo the synthesis of 5-phosphate-D- 

arabinohydroxamic acid 3 (Fig. 3) which, in addition to its structural similarity to the enediol(ate) 

intermediate, has the same stereochemistry as 6-phosphate-D-glucose (or 6-phosphate-D-fructose). To our 

knowledge, no hydroxamate-based phosphorylated sugar has ever been reported to date (except I). 
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Figure 3. Synthesis of 5-phosphate-D-arabinohydroxamic acid 3. 

The starting product for the synthesis of 3 was D-arabinose, which has the same absolute configuration 

of carbon atoms C2, C3 and C4. Our strategy involved successive introduction of the phosphate group, and 

then of the hydroxamate group. D-Arabinose was first converted into the protected derivative 4, which was 

selectively phosphorylated at C5. Deacetalation followed by oxidation led to the protected 5-phosphate-D- 

arabinonic acid derivative 7, the precursor of 5-phosphate-D-arabinohydroxamic acid 311 (5-phosphate-D- 

arabinonic acid, a known PGI inhibitor, 8e J2 might also probably be obtained from 7). 

2, 3, 4-Tri-O-benzyl-D-arabinose diethyl dithioacetal 4 was prepared from D-arabinose in four steps 

according to the reported procedure. ]3 4 was also obtained in three steps from [3-methyI-D-arabinopyranoside, 

which was first benzylated, then deacetalated and finally thioacetalated: however, the low overall yield (37%) 

and the high cost of the starting product led us to turn down this procedure. 14 Phosphorylation of 4 was 

achieved using dibenzyloxy(diisopropylamino)phosphine 15 to give 5 in 75% yield. Dethioacetalation 13 of 5 

with HgCI2 in the presence of CaCO3 gave the protected 5-phosphate-D-arabinose derivative 6, which was 

converted into the corresponding acid 7 by oxidation with pyridinium dichromate (PDC) 16 with a yield of 
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62% (two steps). 7 was then reacted with O-benzylhydroxylamine in the presence of carbonyldiimidazole 

(CDI) 17 to give the protected phosphorylated hydroxamic acid derivative 8 in 84% yield. Hydrogenolysis of 8 

using Pd/C 10 % catalyst in aqueous MeOH, followed by ion-exchange chromatography gave the disodium 

salt of 5-phosphate-D-arabinohydroxamic acid 3 in 74% yield. The spectroscopic data of 3 were in full 

agreement with the proposed structure. The presence of the hydroxamic function was further confirmed by its 

characteristic reaction with FeCI3.18 

The results of the inhibition studies using 3 and known inhibitors with 6-phosphate-D-glucose 

isomerases from Plasmodiumfalciparum and other sources will soon be reported. 3 might also be a very good 

inhibitor of other enzymes, e.g. 6-phosphate-D-mannose isomerase and 6-phosphate-D-glucosamine synthase, 

which makes 3 a very promising compound. 
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