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The substitution reaction of 5-substituted 2,4-bis(trimethylsilyloxy)pyrimidines with 3,5-bis(O-p-
chlorobenzoyl)-2-deoxy-a-p-ribofuranosyl chloride was investigated. In the presence of p-nitrophenol, 8 ano-
mers were formed stereoselectively, whereas the addition of organic bases brought forth stereoselective formation
of @ anomers. Stereoselectivity of the reaction depends on the substituents at 5-position of disilylpyrimidines,
additives, and the concentration of each reagent. The a and 8 anomers of 5-substituted 2’-deoxy-uridines were
synthesized through the deacylation of @ and B anomers of 5-substituted 37,5’-di-O-(p-chlorobenzoyl)-

2’-deoxyuridines.

It is well-known that 5-substituted 2’-deoxy-g-
uridines (6a—f) have useful physiological activity for
antitumor’? and anti-viral®~® drugs. Usually, only 8
anomers show the physiological activity. Many inves-
tigations have been carried out to synthesize 8 anomers
under different conditions by the Hilbert-Johnson
reaction, such as reactions of sugar halide with mer-
cury salt of uracils,5~® 2,4-dimethoxypyrimidines,®~14
silylpyrimidines by fusion,!%16 and silylpyrimidines
in the presence of SnCl,.!” But up to date, no general
and efficient methods have been reported for the
stereoselective synthesis of 2’-deoxyuridines.

We reported recently that the reaction of 5-fluoro-
2,4-bis(trimethylsilyloxy)pyrimidine (lc) with 3,5-
bis(O-p-chlorobenzoyl)-2-deoxy-a-p-ribofuranosyl
chloride (2) in the presence of Bronsted acids selec-
tively gives 3’,5’-di-O-(p-chlorobenzoyl)-5-fluoro-2’-
deoxy-B -uridine (4c).!® Further studies on stereoselec-
tivity of the reaction of 1c with 2 suggested that the
addition of a base such as pyridine changed the
stereoselectivity of the reaction from - to a-selectivity
in proportional degrees to the concentration of the base.

This paper describes the stereoselective synthetic
method of both the @ and B8 anomers of 5-substituted
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2’-deoxyuridines (5a—f and 6a—f) based on the fol-
lowing observation. 1) In the presence of p-nitro-
phenol, la—f reacts with 2 to give B anomers ste-
reoselectively in high yields. 2) Combined use of
p-nitrophenol and pyridine as catalyst changes B-
stereoselective reaction of lc with 2 to an a-
stereoselective reaction. 3) In the presence of other
organic bases or their salts, reaction of lc with 2 also
gives an o anomer (3c) stereoselectively. 4) Similarly to
the reactin of 1c, 5-substituted 2,4-bis(trimetylsilyloxy)-
pyrimidines reacts with 2 in the presence of pyridine to
give a anomers in high yields.

Results

Identification of Anomers of 2’-Deoxyuridine Deri-
vatives. Rapid identification of the anomers of 2’-
deoxyuridine derivatives in the reaction mixture was
carried out by mean of 'HNMR spectroscopy and
chromatography. The properties of 5-substituted
3’,5’-di-O-(p-chlorobenzoyl)-2’-deoxyuridines are sum-
marized in Table 1. The anomeric protons of all 8
anomers 4a—f were observed as triplet at § 6.15—6.40,
whereas those of & anomers 3a—f were multiplet.
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RO ' ———>» HO
OT/ O.
H I X HN. l X
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4a-f 6a-f

Fig. 1.
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Table 1. 5-Substituted 3’,5’-Di-O-(p-chlorobenzoyl)-2’-deoxyuridines
Compound TLC HPLC [a]® IR 1H NMR®
No Substituent Mp 6n/°C R¢ Retention  (C2, dioxane) (KBr) 8(ppm)
" and Anomer Value time/min (°) Ve=o/cm™! Anomeric H
3a H, a 190.5—191 0.29 9.25 —46.2 1720, 1690, 1670  6.17—6.37m
4a H, B 212 —213 0.25 11.47 —14.7 1718, 1685 6.25t, J=8Hz
3b CHs, o 179 —180 0.34 11.45 —23.7 1725, 1685 6.18—6.42m
4b CHs, B 197.5—198.5 0.38 14.02 —30.7 1715, 1675 6.33 t, J=8Hz
3c F, a 176 —177 0.41 11.89 —67.4 1725, 1690, 1670  6.15—6.41m
4c F, B 198 —199 0.45 14.59 — 47 1710, 1700, 1665 6.25t, J=7 Hz
3d Cl, o 184 .—185 0.48 13.65 — 1.2 1725, 1690 6.11—6.35m
4d ClL, B8 189.5—190 0.59 16.39 —28.4 1710, 1692 6.37 t, J=8Hz
3e Br, 168 —170 0.49 14.38 +22.5 1720, 1690 6.14—6.34m
4e Br, 8 188 —189 0.61 17.18 —35.4 1715, 1680 6.30 ¢, J=8Hz
3t I a 182 —183 0.50 15.43 +56.1 1715, 1665 6.24—6.36m
4f LB 187 —188 0.64 18.33 —50.3 1712, 1675, 1650  6.18 t, J=8 Hz
a) DMSO-ds.
Table 2. 5-Substituted 2’-Deoxyuridines
Compound TLG (]2 R H é\IMR”
No, Substituent Mp6n/°C R  (C2 N-NaOH) (KBr) (ppm)
and Anomer Value (°) Ve—o/cm™1 Hs Anomeric H
5a H, a oil 0.25 — 4.2 1700, 1690 7.72d, J=8Hz 6.09 dd, J=5 and 6Hz
6a H, B8 164 —165  0.27 +50.4 1690, 1660 7.60d, J=8Hz 6.24t, J=Hz
5b CHs, o 187.5—188  0.32 +19.3 1682 7.60s 6.15 dd, J=5 and 6Hz
6b CHs, B8 192 —193  0.34 +30.8 1700, 1655 7.43s 6.28 t, J=6.5Hz
5¢ F, a 177 —178  0.39 —13.7 1722, 1690 7.80d, J=7Hz 6.09m
6¢c F, B 150 —151  0.44 +55.1 1710, 1685 7.70d, J=7THz 6.18 ¢, J=7THz
5d Cl, a 194 —196 0.44 + 4.6 1695, 1680(sh) 7.93s 6.11 dd, J=3.5 and 7Hz
6d CL B 177 —178  0.50 +49.4 1730, 1672 7.86s 6.15t, J=THz
5e Br, a 197 —199  0.47 +11.2 1682 8.04s 6.05 dd, J=3.5 and 7Hz
6e Br, B 186 —187  0.52 +39.4 1710, 1685 7.99s 6.24 t, J=8Hz
5f I, a 188.5—189.5 0.51 +21.5 1685 8.09s 6.03 dd, J=4 and 7Hz
6f | ] 187 —188  0.55 +27.4 1700, 1672 8.08s 6.16 t, J=THz
a) N-NaOD.

Thin-layer chromatograph using a precoated silica-
gel plate (Art 5715, 60Fy54) and a mixted solvent of
hexane, benzene, and ethyl acetate (1:1:2) as well as
HPLC were successfully used for separating o and B
anomers (3a—f and 4a—f).

The properties of 5-substituted 2’-deoxyuridines are
shown in Table 2. 'H NMR spectra of the anomeric
protons show triplet about 8 6.03—6.28 for all 8 ano-
mers, and double doublet or multiplet for & anomers.
'H NMR spectra of Hg of pyrimidine ring show dou-
blet or singlet peaks and those of 8 anomers appear at
higher magnetic fields in comparison with those of «
anomers. The @ and 8 anomers (5a—f and 6a—f) were
identified by thin-layer chromatogrph using a preco-
ated silica-gel plate (HPTLC, Art 5628, 60F,5,4) with a
mixed solvent of ethyl acetate, formic acid, and water
(65:5:5).

Reaction of la—f with 2 in the Presence of p-
Nitrophenol. Pyrimidine derivatives la—f reacted
with 2 in the presence of p-nitrophenol to give 8 ano-
mers 4a—f in high yields. Among Brénsted acids used,
p-nitrophenol gave B anomer most efficiently in the
reaction of 1c with 2.18) The results are shown in Table
3. The B-stereoselectivity was affected by a substituent

Table 3. B-Selective Synthesis of 5-Substituted
3’,5’-Di-O-(p-chlorobenzoyl)-
2’-deoxy-B-uridines

Substituent Yield/%®
Run
group a Anomer B Anomer
! H 2.5 96.5
2 CHs trace 96
3 F 45 92
4 Cl 4.5 992
5 Br 10 85
6 I 9 87

a) Yields refer to isolated products.

in 5-position of silylpyrimidine; electron-releasing
substituents seem to give more § anomer.

Reaction of 1c with 2 in the Presence of Base and
p-Nitrophenol. During investigation of the reaction
of 1c with 2 it was happened that 8 anomer 4c is not
formed, but formed a anomer 3c when lc and/or 2
containing a trace of trietylamine hydrochloride?”
and/or pyridine were used. This result made the
author to examine the effect of base on the stereo-
selectivity.

First, the effect of concentration of pyridine on the
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stereoselectivity was investigated. The results are
shown in Fig. 2. In the presence of a trace of pyridine,
B-stereoselective reaction changed to a-stereoselective
reaction in proportion to the concentration of

pyridine.

B/(a+B)/%

Fig. 2.
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The effect of the concentration of pyridine
on the stereoselectivity of the reaction lc with 2.
Reaction conditions; 1lc: 0.197g (0.768 mmol),
2: 0.300g (0.698 mmol), p-nitrophenol: 0.034g
(0.244 mmol), chloroform: 2.1 cm3, reaction temp:
25°C, reaction time: 12 h.

Table 4. Effect of Additives on the
Formation of 3¢®
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Table 5. a-Selective Synthesis of 5-Substituted
3’,5’-Di-O-(p-chlorobenzoyl)-

2’-deoxy-a-uridines

Substituent Yield/%®
Run
group o Anomer B Anomer
1 H 74.8 21.1
2 CH3s 67.4 325
3 F 79.3 14.6
4 Cl 77.3 10.4
5 Br 77.0 21.0
6 I 81.5 15.4

a) Yields refer to isolated products.

Second, the effect of additives such as organic bases
or triethylamine hydrochloride in the reaction of lc
with 2 on the stereoselectivity was investigated. The
results are shown in Table 4. Pyridine showed higher
a-stereo-selectivity than lutidine. This seems to be due
to steric hindrance of methyl radicals of 2,6-lutidine to
sugar halide. On the other hand, triethylamine
hydrochloride showed considerable a-stereoselectivity,
but N,N-dimethylformamide and acetamide showed
no stereoselectivity.

a-Stereoselective Synthesis. The effect of substitu-
ents at 5-position of silylpyrimidine on a-stereoselective
reactions of la—f with 2 was investigated and « ano-
mers 3a—f were synthesized. In the presence of pyri-
dine, la—f reacted with 2 a-stereoselectively to give
3a—f in high yields. The results are shown in Table 5.

The a-stereoselectivity was affected by the substitu-

ents at 5-position of silylpyrimidine and halogen sub-

stituents showed higher selectivity than methyl group.
It is, therefore, considered that electron-attracting sub-
stituents cause higher a-stereoselectivity than electron-
releasing substituents.

Deprotection by the treatment of ammonia-
methanol solution to 3a—f or 4a—f smoothly gave
5a—f or 6a—f, respectively, in high yields.

Run Additive Amount”  Yield/%®
1 Pyridine 0.1 77.8
2 a-Picoline 0.1 76.5
3 B-Picoline 0.1 78.1
4 2,6-Lutidine 0.1 62.3
5 Triethylamine 0.1 73.4
6 Triethylamine 0.35 77.5

Hydrochloride
7 N,N-Dimethylformamide 0.1 39.7
8 Acetamide 0.1 50.9
a) Reaction conditions; 1c: 1.1 mmol, 2: 1.0 mmol, p-

nitrophenol: 0.35 mmol, chloroform: 3.0 cm3, reaction
temp: 25°C, reaction time: 12 h. b) Based on 2. ¢) Yield
is measured by HPLC.

Discussion

On the substitution reactions of la—f with 2, it
became apparent that the stereoselectivity varies with
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the substituent group of 5-position of silylpyrimidine,
the additives, and concentration of additives.

It is improbable that both the a and B8 nucleosides
are stereoselectively formed in the substituting re-
action, by the Hilbert-]Johnson reaction through
nucleophilic attack of a sugar cation on aromatic
pyrimidine ring.'® In the preceding work,'® it was
proposed that B-stereoselective reaction occurs between
silylpyrimidine as nucleophilic reagent and the B-face
of sugar halide which is pure @ anomer, in the pres-
ence of Brénsted acid.

On the other hand, the presence of organic base or
its salt turned B-stereoselective substitution reaction
into a-stereoselective reaction.

a-Stereoselectivity. The a-stereoselective reaction
mechanism can be depicted in Fig. 3. While nucleo-
philic reagent attacks the B-face of sugar halide, a base
attacks the nucleophilic reagent competitively. If the
base has higher active in nucleophilicity than the
nucleophilic reagent, the base coordinates with the 8-
face of sugar halide predominantly. Then the nucleo-
philic reagent cannot attack the B-face of sugar halide
but attacks the a-face to produce an a-nucleoside.
Thus, nucleophilicity of reagent seems to contribute to
the stereoselectivity in substitution reaction.

Experimental

Apparatus. All the melting points measured were not
corrected. IR spectra were recorded by a Hitachi 260—30
infrared spectrophotometer using KBr disk method. 'H
NMR spectra were obtained by a Hitachi Perkin-Elmer P-24
(60 MHz) using TMS as the internal standard. The specific
rotation was measured by a JASCO DIP-181 digital pola-
rimeter. The spectrophotometric measurement of TLC
spots was done on a Shimadzu High-Speed TLC Scanner
CS-920. High-performance liquid chromatography was
experimented by a Shimadzu LC-3A equipped with a
Shimadzu variable length spectrophotometric detector
SPD-2A and a Shimadzu Chromatopac C-RIA.

Analysis by Thin-Layer Chromatography. The ano-
meric ratio of nucleoside was monitored during the reaction
by thin-layer chromatography. Anomers were separated on
the plates precoated with silica-gel 60F,54 (Merck, Art 5715)
with a mixed solvent of hexane, benzene, and ethyl acetate
(1:1:2). R¢values of anomers 3a—f and 4a—f, are shown in
Table 1. Measurements were run according to the preceding
work!® by using of high-speed TLC scanner.

Anomers 5a—f and 6a—f, were separated the plates preco-
ated with silica-gel 60Fy5, (HPTLC, Merck, Art 5628) a
mixed solvent of ethyl acetate, formic acid, and water
(65:5:5). Ryvalues of the anomers are shown in Table 2.

Analysis by High-Performance Liquid Chromatography.
A column (25 cmX4 mm i.d.) was packed with RP-18 chemi-
cally bonded silica-gel (LiChrosorb, 10 pm, Merck). The
mobil phase was a 45:55 mixture of 0.03 moldm™ ammo-
nium dihydrogenphosphate solution and acetonitrile, which
was made to 1 cm®min~! and 25°C. The retention time
values of each compound of 3a—f and 4a—f are shown in
Table 1.

Materials. Chloroform were refluxed for 2 h over P,Os
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Table 6. Boiling Point of 5-Substituted
2,4-Bis-(trimethylsilyloxy)pyrimidines

Compound Bp/6y/°C/mmHg "

No. Substituent group

la H 113—114/16

1b CHs 124—131/16

lc F 110—111/15

1d Cl 130—131/16

le Br 138—139/16

1f I 124—132/4

and distilled. Uracil, thymine, and 5-fluorouracil purchased
were used without further purification. 5-Chlorouracil, 5-
bromouracil, and 5-iodouracil were prepared by the reaction
of uracil with the corresponding N-halosuccinimide!® in
acetic acid. 3,5-Bis(O-p-chlorobenzoyl)-2-deoxy-a-p-ribofur-
anosyl chloride (2) was prepared as described in the preced-
ing report.18

5-Substituted 2,4-Bis(trimethylsilyloxy)pyrimidines (1a—f).

These compounds were all prepared in an analogous
manner.'® A mixture of appropriate uracil (1 mol), hexame-
thyldisilazane (260 cm?3, 1.25 mol), and trimethylsilyl chlo-
ride (1 cm?, 7.8 mmol) was refluxed in dry atomosphere.
Ammonia gas vigorously evolved. The excess of hexa-
methyldisilazane was removed after 2 h of the reaction under
50 mmHg! and finally 12 mmHg at 90°C. The residue
was distilled in vacuo to give la—f. The boiling point values
are shown in Table 6.

Synthesis of 8 Anomers (4a—f). To a mixture of la—f
(17.9 mmol), p-nitrophenol (0.8 g, 5.77 mmol) in dry chloro-
form (49 cm?3), was added 2 (7 g, 16.3 mmol) and stirred for 12
h at 30 °C. The reaction mixture was then evaporated under
a reduced pressure to give crystalline residue, which was
recrystallized from acetic acid to give B anomers. From
mother liquor, anomers were isolated by fractional crystalli-
zation. Results are shown in Table 3.

Effect of Pyridine on the Reaction of 1c with 2. To a
mixture of 1c¢ (0.197 g, 0.768 mmol), p-nitrophenol (0.034 g,
0.244 mmol), and pyridine in chloroform (2.1 cm3), was
added 2 (0.300 g, 0.698 mmol) and stirred for 12 h at 25°C.
The ratio of each anomer was analyzed by TLC scanner.
The result is shown in Fig. 2.

Effect of Additives on the Formation of 3c. To a mixture
of 1c (0.302 g, 1.1 mmol), p-nitrophenol (0.049 g, 0.35
mmol), and additives in chloroform (3.0 cm?®), was added 2
(0.430 g, 1.0 mmol) and stirred for 12 h at 25 °C. The ratio of
each anomer was analyzed by HPLC. The results are shown
in Table 4.

Synthesis of @ Anomers (3a—f). To a mixture of la—f
(17.9 mmol), p-nitrophenol (0.8 g, 5.77 mmol), and pyridine
(0.4 g, 5.05 mmol) in dry chloroform (49 cm3), was added 2 (7
g, 16.3 mmol) and stirred for 12 h at 30. The reaction mix-
ture was then evaporated under a reduced pressure to give an
oily residue, which was subjected to crystallization with
ethanol to give @ anomers. The anomers were isolated from
mother solutions by fractional crystallization. The results
are shown in Table 5.

5-Substituted 2’-Deoxyuridines (5a—f, 6a—f). To a satu-
rated ammonia-methanol solution (20 cm3), was added 1 g of
each anomer 3a—f and 4a—f, and stirred for 16 h at 30°C.
The reaction mixture was then treated similarly to the

1 mmHg=133.3 Pa.
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manner as described in preceding report.'®  The 2’-
deoxyuridine derivatives were isolated in 90—99% yield, of
which physical properties are shown in Table 2.
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