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Abstract: A simple and mild procedure for the efficient deprotection of cyclic acetals and 
ketals, using cerium ammonium nitrate (CAN) is reported. The method tolerates a range 
of functional and protecting groups and is suitable for acid-labile substrates. 
© 1999 Published by Elsevier Science Ltd. All rights reserved. 

¥ Dedicated fondly to Dr. Victor Matassa for his continuous support 

During the course of some studies directed towards the total synthesis of natural products containing a 

medium-ring system, we had the opportunity to examine the radical-mediated fragmentation of hydroxy-ketal 1 

(Figure 1).1 Numerous reagents able to generate alkoxy radicals from hydroxyl functions have been described in 

the literature. 2 Amongst these, we selected cerium ammonium nitrate (CAN) and reacted it with substrate 1 under 

the reported conditions. 3 Upon addition of CAN to ketal 1 in wet acetonitrile, at 70°C, a deep red colour 

developed instantaneously which vanished within 2 minutes. TLC analysis revealed the complete disappearance 

of the starting material 1 and the quantitative formation of a single, new compound. Unexpectedly, this product 

proved to be the keto-alcohol 3 and not the desired 10-membered ring ketone 2 (Figure 1). 4 
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Although CAN is a well-known reagent for the oxidative removal of S,S and O,S acetals, 5 as well as for 

the deprotection of TBS ethers 6 and tBOC groups 7, to the best of our knowledge, it has never been used for the 

deprotection of acetals and ketals. 8 The surprisingly rapid and efficient transformation of ketal 1 into ketone 3 

prompted us to investigate in greater detail the scope of this novel deprotection method. 

Some pertinent results are collected in Table 1. As can be seen from the Table, a wide variety of ketals and 

acetals can be smoothly and efficiently deprotected into the corresponding aldehyde or ketone. The crude 

products, which are sufficiently pure for further use without subsequent purification, are usually obtained in 

quantitative yields. 9 Ketals derived from both cyclic and acyclic ketones or aldehydes are deprotected with equal 

facility. The reaction conditions are compatible with a wide range of functional and protecting groups. For 

example, the presence of another ketone or enone function in the same substrate is perfectly compatible with the 

deprotection of the dioxolane moiety (Table 1, Entries 2 and 7). Similarly, the removal of the ketal group can be 

smoothly effected in the presence of a benzyl or acetyl protecting group (Table 1, Entries 8 and 9). Interestingly, 

CAN-mediated deprotection of enone-derived ketals proceeds efficiently, affording in high yield the desired 
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Table 1. CAN-Mediated Deprotection of Ketals and Acetals 

R 10---~ 2.5 eq CAN R1 
\ j ~ o  . ~=o 

R CH3CN / H20 / 70°C R 
4 ( n = 0 , 1 )  5 

Entry Substrate Product Yield (a) Time 

OH OH 

1 ~ 0  H ~  0 8O% 2 min 

L_/ 

o 

o 

~ 0 0 0 I I  3 830/0 4 rain 
C9H19/~ CH 3 C9H19 1"% CH 3 

4 p p 70% 5 min (b) 

5 [ ~  ~] [ ~ 0  840/0 5min 

6 tB u - ' ~ ]  t B u - - ~ O  71% 4min 

7 0 = ~ 0 0 ~  0 = ~ = 0  71°/o 3min 

0 ~ n O ~ ~  ~nO~O ~o ~,n 

(a) All yields refer to pure, homogeneous products. In all cases, the crude 
yield of essentially pure product (:>95%) is quantitative. (b) Performed 
using a borate buffer (pH = 8) 
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enone (Table 1, Entry 5). Finally, not only a five-membered ring ketal but also a six-membered ring ketal can be 

deprotected with equal ease and efficiency (Table 1, Entry 10). It is noteworthy that dimethylketals and TBS 

protecting groups are incompatible with this protocol. 10 That the reaction conditions are particularly mild is 

further illustrated by the example shown in Figure 2. Attempted deprotection of the hydrindane derivative 6 

under a variety of acid-catalysed conditions led repeatedly to enone 8. 

In striking contrast, CAN-mediated removal of the dioxolane protecting group afforded quantitatively the 

desired hydroxyketone 7. Aldol 7 is extremely sensitive to acidic conditions and rapidly eliminates water under 

the slightest provocation, generating enone 8. For example, rapid purification of 7 by column chromatography 

on silica gel resulted in reduced yields due to dehydration of keto-alcohol 7 into 8. It is remarkable to note that 

no epimerisation of cis-7 took place under these mild conditions to afford trans-7.11 

PPTS 2.5 eq CAN 
• ll l l  

acetone CH3CN / H20 

O ( 92% ) 70°C / 3 rain O 
( 53% ) 

8 Figure 2 6 7 

Though the intimate mechanistic details of this novel deprotection reaction are not yet fully understood, a 

feasible pathway might involve the removal of an electron from the dioxolane moiety by the cerium oxidant, 

affording the radical cation 9 (Figure 3).12 Further loss of a proton and an electron then generates the oxonium 

cation 10 which is intercepted by water, producing the hemiketal 11. Subsequent collapse of 11 then liberates 

the desired carbonyl derivative 5. 

' ' +  H+ o O O :  C A N  O O • " O .  O + H 2 0  O O ],. 
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4 9 Figure 3 10 11 5 

In order to demonstrate that the deprotection reaction is not an acid-catalysed process, I1 the cleavage of 

ketal 12 was effected under basic conditions (Figure 4). In the presence of K2CO3 (10 eqs.) and CAN, smooth 

release of the ketone 13 could be accomplished in excellent yield. 

CAN / 70°C / 5 min 
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12 Figure 4 13 

In summary, we have shown that CAN is a powerful reagent for the efficient and rapid deprotection of 

cyclic ketals and acetals. In most cases, the disappearance of the initial red-colour (2-5 rain) signals the end of the 

reaction. 13 The method also tolerates a range of protecting and functional groups. Finally, we have 

demonstrated for the first time that cyclic ketals can be cleaved under  basic conditions. Further work is 

directed towards delineating the scope of this novel deprotection protocol and understanding the intimate 

mechanism of this useful reaction. 14 
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