

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Efficient Desilylation of some Nucleoside Derivatives with Potassium tert-Butoxide in Dimethylformamide

G. Negrón , F. Vásquezy , G. Calderón , R. Cruz , R. Gaviño & G. Islas

To cite this article: G. Negrón , F. Vásquezy , G. Calderón , R. Cruz , R. Gaviño & G. Islas (1998) Efficient Desilylation of some Nucleoside Derivatives with Potassium tert-Butoxide in Dimethylformamide, Synthetic Communications, 28:16, 3021-3027, DOI: 10.1080/00397919808004881

To link to this article: http://dx.doi.org/10.1080/00397919808004881

Published online: 23 Aug 2006.

67.	
گ	

Submit your article to this journal 🖸

Article views: 73

View related articles

Citing articles: 3 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

EFFICIENT DESILYLATION OF SOME NUCLEOSIDE DERIVATIVES WITH POTASSIUM *tert*-BUTOXIDE IN DIMETHYLFORMAMIDE

G. Negrón*, F. Vásquez y G. Calderón

Area de Química Aplicada, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180, C. P. 02200, México, D.F., México.

R. Cruz*, R. Gaviño and G. Islas

Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, México D.F., México.

Abstract

A new method for deprotecting silvl ethers of nucleosides has been established by using potassium *tert*-butoxide in dimethylformamide at room temperature.

Protection and deprotection of hydroxyl groups as silyl ethers have become one the most popular procedures used in carbohydrate and nucleoside chemistry.¹ The *tert*-butyldimethylsilyl(TBDMS) and the *tert*butyldiphenylsilyl (TBDPS) ethers are among the most useful protective groups.²

The lability of silvl groups towards acids, bases, and fluorine ions can be specifically tuned by varying the substituents on silicon atom tert-Butyldimethylsilyl ethers can be cleaved with. for example. tetrabutylammonium fluoride (TBAF), while the cleavage of the more stable tert-Butyldiphenylsilyl requires solutions of HF in pyridine. acetonitrile, or even water. However, strong acids and/or TBAF often cause difficulties in the work up and purification of products.³ Recently combination of water and DMSO,⁴ K₂CO₃ in ethanol-water⁵ a complex

Scheme 1

generated from TBAF and $BF_{3}Et_{2}O$,⁶ clay in aqueous methanol⁷ and sodium sulphide in ethanol⁸ have also been used for desilylation.

We herein report, a new method for deprotecting of a variety of nucleoside silyl ethers, it is performed in a mild basic medium, and does not require an aqueous work up.

Removal of the TBDMS and TBDPS groups of **1a-g**, **2a-b**, **3a-b** was accomplished by treatment with potassium *tert*-butoxide in DMF at room temperature to give the thymidine **1**, 2',3'-O-isopropylideneuridine **2** and 2',3'-O-isopropylideneadenosine **3** respectively, scheme **1**.

Silyl groups can be removed from the 5' and 3'-position (1a-g, 2a-b, 3a-b) with base. However the *t*BuMe₂Si are more sensitive to base hydrolysis than the *t*BuPh₂Si. For example with 3 equiv. of *tert*-BuOK in DMF at room temperature 1a is 92% converted to 1 while under the same conditions 1b was 79% converted to 1. Compound 2a was 98% converted to 2 and compound 2b was only 62% converted to 2 after 0.75 h under the same conditions, indicating that the *t*BuPh₂Si is more stable than the *t*BuMe₂Si. Experiments with 3',5'-O-silylthymidine (1e-g) gave 1 without clear preference for the 5' deprotection, table 1.

Substrate	<i>t</i> BuOK	Time Prod	uct Yiel	ld
	(equiv)	(h)		(%) ^a
1a	3	24.0	1	92
1b	3	2.00	1	79
1c	2	1.00	1	93
1d	3	1.50	1	71
1e	4	1.00	1	98
1f	4	1.00	1	89
1g	4	1.50	1	93
2a	2	0.50	2	98
2b	3	0.50	2	74
3a	3	0.75	3	83
3b	3	0.50	3	71

Table 1. Cleavage of Silyl Ethers to Alcohols

aYield of isolated product

In summary, the mild reaction conditions, non aqueous wok-up required and the goal yields obtained made the present procedure an attractive alternative to cleave silyl ethers.

Experimental

The ¹H spectra were recorded in CDCl₃ and CD₃OD at 300 MHz on a Varian UNITY-300 S spectrometer and the chemical shift data are reported in parts per million (δ) with tetramethylsilane as internal standard, coupling constants in hertz. Infrared (IR) spectra were recorded on a Nicolet 5-SX FT IR spectrophotometer. Low-resolution mass spectra were determinated with Hewlet-Packard 5985B GC/MS. High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX102A mass spectrometer. Thin layer chromatography (TLC) was performed using Merck 60 F254 plates and the spots were detected under UV light (254 nm). Column chromatography was performed using Kieselgel 60, 230-400 mesh ASTM type 9385.

General procedure for desilylating *tert*-butyldimethylsilyl-ether and *tert*-butyldiphenylsilylether. Mixtures of 100 mg of the appropriate substrate, *t*BuOK, and DMF (20 ml) was stirred for indicated periods at room temperature (Table 1). Mixtures were filtered and washed with a 10% MeOH/CH₂Cl₂. Combined filtrates were concentrated under reduced

pressure, and the product was purified by flash-chromatography on silica gel (MeOH/CH₂Cl₂). By products were not isolated or characterized. ¹H NMR, IR spectra and physical on these know compounds were identical with those measured with commercial samples. Protected starting materials have been classically prepared by stirring the nucleoside and the appropriate silyl chloride in DMF and in presence of an excess of imidazole.⁹ and were fully characterized by IR, ¹H NMR and mass spectral analysis.

DATA FOR:

1a

Colorless solid,¹⁰ mp 198-199 °C. IR (CHCl₃) 3559, 1716, 1677, 1473, 1262, 1124, 841, 782 cm⁻¹. ¹H NMR (CDCl₃) δ 0.091 (s, 3H, CH₃SiO),0.096 (s, 3H, CH₃SiO), 0.90 (s, 9H, (CH₃)₃CSi), 1.89 (d, 3H, J=0.60, 5-CH₃), 2.08 (ddd, 1H, J=5.7, 8.1, 13.5, H-2'), 2.35 (ddd, 1H, 2.7, 5.7, 13.5, H-2''), 3.83 (dd, 1H, J=2.7, 11.4, 5'-H), 3.89 (dd, 1H, J=2.7, 11.4, 5''-H), 4.03 (dt, 1H, J=2.7, 5.7, 4'-H), 4.43 (dt, 1H, J=2.7, 2.7, 3'-H), 6.34 (dd, 1H, J=5.7, 8.1, 1'-H), 7.47 (q, 1H, J=0.60, 6-H), 8.70 (m, 1H, NH). MS: (EI) m/z 357 (M⁺+1), 281, 145, 81 (100%), 73.

1b

Colorless solid,¹¹ mp 164-165 °C. IR (CHCl₃) 3454, 1703, 1479, 1433, 1281, 1117, 1065, 762, 709 cm⁻¹. ¹H NMR (CDCl₃) & 1.07 (s, 9H, (CH₃)₃CSi), 1.60 (d, 3H, J=0.65, 5-CH₃), 2.16 (ddd, 1H, J=2.4, 8.2, 13.8, H-2'), 2.43 (ddd, 1H, 2.4, 5.7, 13.8, H-2''), 3.84 (dd, 1H, J=2.8, 11.7, 5'-H), 3.95 (dd, 1H, J=2.8, 11.7, 5''-H), 4.03 (dt, 1H, J=2.4, 2.8, 4'-H), 4.55 (dt, 1H, J=2.4, 2.4, 3'-H), 6.41 (dd, 1H, J=5.7, 8.2, 1'-H), 7.38 (m, 6H, (Ph)₂SiO), 7.42 (q, 1H, J=0.65, 6-H), 7.65 (dd, 4H, 4.6, 8.0, (Ph)₂SiO), 9.67 (m, NH). MS: (EI) m/z 481 (M⁺+1), 405 (100%), 199, 81.

1c

Colorless solid, mp 65-66 °C. IR (CHCl₃) 3190, 1703, 1479, 1111, 841, 788, 703 cm⁻¹. ¹H NMR (CDCl₃) δ 0.054 (s, 6H, (CH₃)₂SiO), 0.90 (s, 9H, (CH₃)₃CSi), 1.52 (d, 3H, J=0.60, 5-CH₃), 2.30 (ddd, 1H, J=2.7, 6.6, 12.6, H-2'), 3.33 (ddd, 1H, 2.7, 6.6, 12.6, H-2''), 3.41 (dd, 1H, J=3.6, 10.8, 5'-H), 3.49 (dd, 1H, J=3.6, 10.8, 5''-H), 3.95 (dt, 1H, J=2.4, 3.6, 4'-H), 4.60 (dt, 1H, J=2.4, 2.7, 3'-H), 6.29 (dd, 1H, J=6.6, 6.6, 1'-H), 7.30 (m, 9H, (Ph)₃C), 7.45 (m, 7H, (Ph)₃C, 6-H), 7.73 (m, 1H, NH). MS: (CI) m/z 599 (M⁺+1), 243, 231, 167 (100%), 127. HRMS (FAB) m/z calcd for C₃₅H₄₂O₅ N₂Si (M⁺+1) 599.2941, found 599.2947.

1d

Colorless solid, mp 62-63 °C. IR (CHCl₃) 3408, 1690, 1466, 1281, 1177, 749, 709 cm⁻¹. ¹H NMR (CDCl₃) δ 1.016(s, 9H, (CH₃)₃CSi), 1.56 (d, 3H, J=0.60, 5-

CH₃), 2.03 (ddd, 1H, J=2.7, 5.7, 10.1, H-2'), 2.38 (ddd, 1H, 2.7, 8.1, 10.1, H-2"), 2.89 (dd, 6.0, 10.5, 5'-H), 3.19 (dd, 1H, J=6.0, 10.5, 5"-H), 4.03 (dt, 1H, J=2.4, 2.7, 4'-H), 4.52 (dt, 1H, J=2.4, 6.0, 3'-H), 6.44 (dd, 1H, J=5.7, 8.1, 1'-H), 7.1-7.7 (m, 26H, (Ph)₃C, (Ph)₂SiO, 6-H), 7.99 (m, 1H, NH). MS: (CI) m/z 723 (M⁺1), 243 (100%), 199, 165, 135. HRMS (FAB) m/z calcd for $C_{45}H_{46}O_5N_2Si$ (M⁺+1) 723.3554, found 723.3239.

1e

Colorless solid,¹⁰ mp 140-141 °C. IR (CHCl₃) 3730, 1697, 1479, 1262, 1111, 841, 775 cm⁻¹. ¹H NMR (CDCl₃) δ 0.058 (s, 3H, CH₃SiO),0.065 (s, 3H, CH₃SiO), 0.095 (s, 6H, (CH₃)₂SiO), 0.87 (s, 9H, (CH₃)₃CSi), 0.91 (s, 9H, (CH₃)₃CSi), 1.89 (d, 3H, J=0.60, 5-CH₃), 1.98 (ddd, 1H, J=2.7, 7.8, 12.9, H-2'), 2.21 (ddd, 1H, 2.7, 5.7, 12.9, H-2''), 3.73 (dd, 1H, J=6.0, 11.7, 5'-H), 3.84 (dd, 1H, J=6.0, 11.7, 5''-H), 3.90 (dt, 1H, J=2.4, 2.7, 4'-H), 4.39 (dt, 1H, J=2.4, 6.0, 3'-H), 6.30 (dd, 1H, J=5.7, 7.8, 1'-H), 7.43 (q, 1H, J=0.60, 6-H), 8.07 (m, 1H, NH). MS: (CI) m/z 471 (M⁺+1) (100%), 155, 145, 127, 81.

lf

Colorless solid,¹² mp 65-66 °C. IR (CHCl₃) 3192, 1703, 1466, 1433, 1281, 1117, 748, 709 cm⁻¹. ¹H NMR (CDCl₃) δ 0.927 (s, 9H, (CH₃)₃CSi), 1.073 (s, 9H, (CH₃)₃CSi) 1.49 (d, 3H, J=0.60, 5-CH₃), 1.94 (ddd, 1H, J=2.7, 9.0, 13.2, H-2'), 2.32 (ddd, 1H, 2.7, 5.7, 13.2, H-2"), 3.31 (dd, 1H, J=5.7, 11.4, 5'-H), 3.73 (dd, 1H, J=5.7, 11.4, 5"-H), 3.98 (dt, 1H, J=2.4, 2.7, 4'-H), 4.54 (dt, 1H, J=2.4, 5.7, 3'-H), 6.49 (dd, 1H, J=5.7, 9.0, 1'-H), 7.4 (m, 21H, (Ph)₂SiO, (Ph)₂SiO, 6-H), 8.57 (m, NH). MS: (FAB) m/z 719 (M⁺+1), 269, 197, 135 (100%).

1g

Colorless solid, mp 50-51 °C. IR (CHCl₃) 3191, 1703, 1473, 1433, 1268, 1104, 834, 709 cm⁻¹.¹H NMR (CDCl₃) δ -0.13 (s, 3H, CH₃SiO), -0.09 (s, 3H, CH₃SiO), 0.76 (s, 9H, (CH₃)₃CSi), 1.06 (s, 9H, (CH₃)₃CSi) 1.84 (d, 3H, J=1.0, 5-CH₃), 1.80 (ddd, 1H, J=6.3, 9.0, 12.9, H-2'), 2.29 (ddd, 1H, 5.4, 6.3, 12.9, H-2''), 3.13 (dd, 1H, J=2.4, 11.4, 5'-H), 3.61 (dd, 1H, J=2.4, 11.4, 5''-H), 3.97 (dt, 1H, J=5.4, 6.3, 4'-H), 4.32 (dt, 1H, J=2.4, 5.4, 3'-H), 6.45 (dd, 1H, J=5.4, 9.0, 1'-H), 7.38 (m, 7H, (Ph)₂SiO, 6-H), 7.61 (m, 4H, (Ph)₂SiO) 8.44 (m, NH). MS: (EI) m/z 595 (M+1)⁺, 537, 281 (100%), 197, 135, 89, 73. HRMS (FAB) m/z calcd for C₃₂H₄₆O₅N₂Si₂ (M⁺+1) 595.3024, found 595.3024.

2a

Colorless solid,¹³ mp 136-137 °C. IR (CHCl₃) 3427, 1703, 1459, 1387, 1117, 1091, 709 cm⁻¹. ¹H NMR (CDCl₃) δ 0.111 (s, 3H, CH₃SiO), 0.115 (s, 3H,

NEGRÓN ET AL.

CH₃SiO), 0.925 (s, 9H, (CH₃)₃CSi), 1.36 (s, 3H, CH₃C), 1.53 (s, 3H, CH₃C) 3.81 (dd, 1H, J=2.4, 11.4, 5'-H), 3.92 (dd, 1H, J=2.4, 11.4, 5"-H), 4.31 (dt, 1H, J=2.4, 2.7, 4'-H), 4.69 (dd, 1H, J=2.7, 6.0, 3'-H), 4.78 (dd, 1H, J=2.7, 6.0, H-2'), 5.66 (d, 1H, J=8.1, H-5), 6.95 (d, 1H, J=2.7, H-1'), 7.78 (d, 1H, J=8.1, 6-H), 9.1 (m, 1H, NH). MS: (EI) m/z 399 (M+1)⁺, 341 (100%), 171, 137 (100%), 75, 73. HRMS (FAB) m/z calcd for $C_{28}H_{34}O_6N_2$ Si (M⁺+1) 523.2264, found 523.2265.

2b

Colorless solid, mp 67-68 °C. IR (CHCl₃) 3191, 1697, 1473, 1387, 1091, 828, 709 cm⁻¹. ¹H NMR (CD₃OD) δ 1.06 (s, 9H, (CH₃)₃CSi), 1.33 (s, 3H, CH₃C), 1.53 (s, 3H, CH₃C) 3.86 (dd, 1H, J=5.1, 11.4, 5'-H), 3.96 (dd, 1H, J=5.1, 11.4, 5''-H), 4.23 (dt, 1H, J=3.9, 5.1, 4'-H), 4.79 (dd, 1H, J=3.9, 6.3, 3'-H), 4.90 (dd, 1H, J=2.9, 6.3, H-2'), 5.44 (d, 1H, J=8.1, H-5), 5.82 (d, 1H, J=2.9), 7.41 (m, 6H, Ph), 7.64 (m, 5H, Ph, 6-H). MS: (CI) m/z 523 (M+1)⁺ (100%), 445, 387. HRMS (FAB) m/z calcd for C₂₈H₃₄O₆N₂Si (M⁺+1) 523.2264, found 523.2265.

3a

Colorless solid, mp 125-126 °C. IR (CHCl₃) 3329, 3177, 1650, 1598, 1479, 1381, 1296, 1091, 841, 788 cm⁻¹.¹H NMR (CDCl₃) δ -0.029 (s, 3H, CH₃SiO), -0.024 (s, 3H, CH₃SiO), 0.80 (s, 9H, (CH₃)₃CSi), 1.36 (s, 3H, CH₃C), 1.58 (s, 3H, CH₃C) 3.71 (dd, 1H, J=4.2, 11.4, 5'-H), 3.82 (dd, 1H, J=4.2, 11.4, 5''-H), 4.36 (dt, 1H, J=2.7, 4.2, 4'-H), 4.91 (dd, 1H, J=2.7, 6.3, 3'-H), 5.25 (dd, 1H, J=2.4, 6.3, H-2'), 6.12 (d, 1H, J=2.4, H-1'), 7.99 (s, 1H, H-2), 8.32 (s, 1H, H-8). MS: (FAB) m/z 422 (M+1)⁺, 364, 218 (100%). HRMS (FAB) m/z calcd for C₁₉H₃₁O₄N₅Si (M⁺+1) 422.2224, found 422.2225.

3b

Colorless solid, mp 45-46 °C. IR (CHCl₃) 3329, 3177, 1651, 1604, 1479, 1433, 1380, 1261, 1117, 1091, 709 cm⁻¹. ¹H NMR (CDCl₃) δ 0.90 (s, 9H, (CH₃)₃CSi), 1.35 (s, 3H, CH₃C), 1.58 (s, 3H, CH₃C) 3.73 (dd, 1H, J=4.2, 11.1, 5'-H), 3.86 (dd, 1H, J=4.2, 11.1, 5''-H), 4.37 (dt, 1H, J=3.0, 4.2, 4'-H), 4.94 (dd, 1H, J=3.0, 6.3, 3'-H), 5.29 (dd, 1H, J=2.4, 6.3, H-2'), 6.08 (d, 1H, J=2.4, H-1'), 7.31 (s, 1H, H-2), 7.31 (m, 6h, Ph), 7.56 (m, 4H, Ph), 7.93 (s, 1H, H-8). MS: (FAB) m/z 546 (M⁺+1), 418, 218 (100%). HRMS (FAB) m/z calcd for C₂₉H₃₅O₄N₅O₄N₅O₄N₅Si (M+1) 546.2537, found 546.2544.

Acknowledgments. The authors are indebted to Consejo Nacional de Ciencia y Tecnología (CONACyT) for financial support (Project No 1348-E9206), Messrs. R. Patiño for taking IR spectra, F. Pérez and L. Velasco for obtaining HRMS.

3026

References

1. Vorbruggen, H., Acc. Chem. Res. 1995, 28, 509.

2. Greene, T.W. and Wuts, P.G.M. "Protective Groups in Organic Synthesis", John Wiley and Sons, New York, **1991**, pp.77-84.

3. Schelhass, M. and Waldmann, H., Angew. Chem. Int. Ed. Engl. 1996, 35, 2056.

4. Gourhari, M. and Subhas Chandra, R., Tetrahedron Lett. **1977**, 38, 495.

5. Wilson Noel, S. and Keay Brian, A., Tetrahedron Lett. 1997, 38, 187.

6. Kawahara, S., Kawahara, T. and Sekine, M., Tetrahedron Lett. **1996**, 37, 509.

7. Jun-ichi, A., Morris, J. R., Yukihiro, A. and Tong Hei, K., J. Org. Chem. **1996**, 61, 9027.

8. Schmittberger, T. and Uguen, D., Tetrahedron Lett. 1995, 36, 7445.

9. Ogilvie, K. K., Beaucage, S. L., Shifman, A. L., Theriault, N. Y., and Sadana, K. L., Can. J. Chem. **1978**, 56, 2768.

10. Ogilvie, K. K., Can J. Chem. 1973, 51 3799.

11. Yogesh, S. S., Ramesh, B., Françoise, D., Alain De M., Synthesis 1994, pp 1163-1166.

12. Matulic-Adamic, J. and Watanabe, K. A., Chem. Pharm. Bull **1988**, 36 (4), 1554-1557.

13. Tanaka, H., Hayakawa, H., Shibata, S., Haraguchi, K. and Miyasaka, T. Nucleosides and Nucleotides **1992**, 11 (2-4), 319.

(Received in the USA 05 March 1998)