

Tetrahedron Letters 40 (1999) 7473-7476

TETRAHEDRON LETTERS

Characterization and synthesis of (-)-7-methoxydodec-4(E)-enoic acid, a novel fatty acid isolated from Lyngbya majuscula

Véronique Mesguiche,^a Robert Valls,^{a,*} Louis Piovetti^b and Gilbert Peiffer^a

^aLaboratoire des Organo-Phosphorés, Université d'Aix-Marseille, BP 552, 13397 Marseille, Cedex 20, France ^bLaboratoire de Recherches de Chimie Marine des Organométalliques, Université de Toulon et du Var, BP 132, 83957 La Garde, France

Received 21 July 1999; accepted 11 August 1999

Abstract

The isolation and characterization of (-)-7-methoxydodec-4(*E*)-enoic acid, a novel fatty acid isolated from the marine Cyanophyte Lyngbya majuscula collected off the French Mediterranean coast are described. The synthesis of this acid and three of its isomers is reported. © 1999 Published by Elsevier Science Ltd. All rights reserved.

Keywords: natural product; Lyngbya majuscula; fatty acid; Wittig reaction.

The marine Cyanophyte Lyngbya majuscula is the source of a wide variety of biologically active marine metabolites, such as Malyngamides.¹ In 1993, Praud et al. reported the isolation of Malyngamide G^2 from this cyanobacterium collected off the French Mediterranean coast. We report herein the isolation and synthesis of the first dodecenoic acid from L. majuscula: (-)-7-methoxydodec-4(E)-enoic acid A, which is the probable precursor of Malyngamide G (Scheme 1).

Scheme 1.

Re-investigation of the ether extract of *L. majuscula* collected at Le Brusc (Var, France) and containing Malyngamide G, led to isolation of A (7.5% of the extract).³ Both compounds show potent immuno-suppressive properties.⁴

The chemical structure⁵ of A was confirmed by spectral analysis (¹H NMR, ¹³C NMR, UV, IR, MS) and comparison with literature data.^{1,2} The comparison of the ¹³C NMR spectra of A and Malyngamide G showed significant differences in chemical shifts for the carbon atoms close to the amide moiety (C-1: 178.9 ppm for A vs 171.2 ppm and C-2: 33.9 ppm for A vs 35.3 ppm).

^{*} Corresponding author. Fax: 33-4-91-28-94-02; e-mail: robert.valls@iut-chimie.u-3mrs.fr

^{0040-4039/99/\$ -} see front matter © 1999 Published by Elsevier Science Ltd. All rights reserved. *P11:* S0040-4039(99)01532-4

The synthesis of the Z- and E-isomers of A was achieved by a Wittig reaction as outlined in Scheme 2.

Scheme 2. (i) NaH, CH₃I/THF reflux; (ii) BH₃·THF then NaOH, H₂O₂; (iii) I₂, PPh₃, imidazole, diisopropylamine/CH₃CN, Et₂O, 25°C; (iv) PPh₃/CH₃CN reflux; (v) DHP, Amberlyst 15 cat., 25°C; (vi) PDC/CH₂Cl₂, 25°C; (vii) LiHMDS/THF (-78° C then 25°C); (viii) Amberlyst 15 cat./MeOH, 25°C; (ix) PDC/DMF, 25°C

Oct-1-en-3-ol 1 was converted into its iodo derivative 2 in 73% yield by a three-step sequence: protection of the hydroxyl group, hydroboration of the double bond with the BH₃·THF complex,⁶ followed by halogenation with iodine.⁷ Treatment of 2 with triphenylphosphine in acetonitrile led to formation of the corresponding phosphonium salt 3 in 90% yield.

In a parallel sequence, butan-1,4-diol 4 was monoprotected by treatment with DHP⁸ (68%) and oxidized with PDC⁹ to obtain the aldehyde 5 in 58% yield. The Wittig reaction between 5 and the phosphorane derived from 3 led to an unseparable mixture of olefins Z/E 6 (80%).¹⁰ Removal of the tetrahydropyranyl group by methanolysis in the presence of a catalytic amount of Amberlyst 15 afforded a mixture of the Z-isomer 7a and the E-isomer 7b in a 75:25 ratio and 98% yield. Compounds 7a and 7b were separated by preparative HPLC and unambiguously characterized by ${}^{1}H$ NMR spectroscopy of the coupling constants of the olefinic protons (10.3 and 15.4 Hz, respectively, for the Z- and E-isomers). Infrared spectroscopy allowed distinction of the Z-isomer by two characteristic absorption bands at 1406 and 724 cm⁻¹ while the E-isomer showed absorption bands at 1260 and 872 cm⁻¹. On the other hand, the HMBC sequence, ¹H and ¹³C NMR analysis allowed assignment of the structure of the two isomers. Thus, the chemical shifts affected by the change of isomery concerned the C-4 and C-5 atoms and also the vicinal carbon atoms 3 and 6 (the values of the chemical shifts were, respectively, 24.0 and 31.9 ppm for the Z-isomer and 29.4 and 36.5 ppm for the E-isomer). Treatment of each of these alcohols $7a^{11}$ and $7b^{12}$ with PDC in DMF led to the corresponding acids $8a^{13}$ and $8b^{14}$ in 90% yield. Only an absorption band in IR spectrum of E-isomer 8b at 972 cm⁻¹ distinguished it from the Z-isomer 8a. In NMR spectroscopy, the most important difference may be noticed in chemical shifts of the H-3 and H-6 atoms and C-3 to C-6 atoms.

Since the only stereocenter of A is the C-7 atom, a method to produce and incorporate optically active (R)- and (S)-oct-1-en-3-ol was explored. Commercial (R)-oct-1-en-3-ol was submitted to Mitsunobu's asymmetric transformation (Scheme 3) and led to the (S)-benzoic ester.¹⁵ This reaction was followed by an alcaline hydrolysis (without allylic rearrangement) and led to (S)-1 in up to 95% ee.

Optically active (R)-1 and (S)-1 could now be incorporated into the above synthesis to produce the natural optically active (-)-7-methoxydodec-4(E)-enoic acid A, and its enantiomer.

These results allowed confirmation of the structure and geometry of the natural metabolite A and of its synthetic Z-isomer. The synthesis of Malyngamide G and its isomers from this new fatty acid is under current investigation.

Acknowledgements

The authors are grateful to T. Sevenet and P. Pusset (Gif-sur-Yvette) for the cytotoxic and immunosuppressive tests.

References

- (a) Cardellina II, J. H.; Dalietos, D.; Marner, F. J.; Mynderse, J. S.; Moore, R. E. Phytochemistry 1978, 17, 2091–2095.
 (b) Cardellina II, J. H.; Marner, F. J.; Moore, R. E. J. Am. Chem. Soc. 1979, 101, 240–242. (c) Ainslie, R. D.; Barchi, J. J.; Kuniyoshi, M.; Moore, R. E.; Mynderse, J. S. J. Org. Chem. 1985, 50, 2859–2862. (d) Gerwick, W. H.; Reyes, S.; Alvarado, B. Phytochemistry 1987, 26, 1701–1704. (e) Orjala, J.; Nagle, D.; Gerwick, W. H. J. Nat. Prod. 1995, 58, 764–768. (f) Todd, J. S.; Gerwick, W. H. Tetrahedron Lett. 1995, 36, 7837–7840. (g) Wu, M.; Milligan, K. E.; Gerwick, W. H. Tetrahedron 1997, 53, 15983–15990. (h) Kan, Y.; Fujita, T.; Nagai, H.; Sakamoto, B.; Hokama, Y. J. Nat. Prod. 1998, 61, 152–155.
- 2. Praud, A.; Valls, R.; Piovetti, L.; Banaigs, B. Tetrahedron Lett. 1993, 34, 5437-5440.
- 3. Isolation of (4E,7S)-A: 35 g of a freeze-dried sample of *Lyngbya majuscula* collected at Le Brusc (Var, France) gave 1 g of the ether extract (3% of the dried weight). HPLC Chromatography on semi-preparative column, 3 mL min⁻¹, EtOAc:isooctane, 60:40, gave 75 mg of (4E,7S)-A as a pale yellow oil: $[\alpha]_D^{20}$ =-8 (*c* 1.8, CHCl₃); IR (ν_{max} , cm⁻¹, film): 3400–3200, 2950–2800, 1742, 1719, 1452, 1380, 1102, 977; HRMS: [MH]⁺ 229.18041 (calcd for C₁₃H₂₅O₃: 229.18037); EIMS *m/z* (relative intensity) 229 (1%, [MH]⁺), 197 (2%, [MH]⁺, CH₃OH), 157 (3%, C₈H₁₃O₃), 115 (100%, C₇H₁₅O), 83 (89%, C₆H₁₁), 71 (16%, C₅H₁₁), 60 (2%, C₂H₄O₂), 55 (50%, C₄H₇); ¹H NMR (400 MHz, CDCl₃) δ 5.46 (m, 2H, H-4, H-5), 3.33 (s, 3H, OCH₃), 3.14 (m, 1H, H-7), 2.28 (m, 2H, H-3), 2.18 (m, 4H, H-2, H-6), 1.42 (m, 2H, H-8), 1.42–1.29 (m, 2H, H-9), 1.29 (m, 4H, H-10, H-11), 0.89 (t, 3H, H-12); ¹³C NMR (100 MHz, CDCl₃) δ 178.9 (C, C-1), 130.2 (CH, C-4), 127.7 (CH, C-5), 80.8 (CH, C-7), 56.5 (CH₃, OCH₃), 36.3 (CH₂, C-6), 33.9 (CH₂, C-2), 33.2 (CH₂, C-8), 32.0 (CH₂, C-10), 27.6 (CH₂, C-3), 24.9 (CH₂, C-9), 22.6 (CH₂, C-11), 14.0 (CH₃, C-12).
- Compound A and Malyngamide G are non-cytotoxic to KB cells in tissue culture and show immunosuppressive activity (ED₅₀=6 μg mL⁻¹ on culture cells with concanavaline K and LPS).
- 5. Compound A has elemental composition $C_{13}H_{24}O_3$ (HRMS). The EIMS spectrum gave a major ion at m/z 115 ($C_2H_{15}O$) followed by m/z 83 (C_6H_{11}) that confirmed the presence of a C-7-methoxy group. The IR spectrum showed bands at 1742 and 1719 cm⁻¹ for non-conjugated carboxylic carbonyl, a band at 1102 cm⁻¹ for methoxy group and a band at 977 cm⁻¹ characteristic of *trans* disubstituted alkene.
- 6. Lane, C. F. J. Org. Chem. 1974, 39, 1437-1438.
- 7. Corey, E. J.; Pyne, S. G.; Su, W. Tetrahedron Lett. 1983, 24, 4883-4886.
- 8. Bongini, A.; Cardillo, G.; Orena, M.; Sandri, S. Synthesis 1979, 618-620.
- 9. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 5, 399-402.
- (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927. (b) Vedejs, E.; Peterson, M. J. Topics in Stereochemistry; Eliel, E. L.; Wilen, S. H., Eds.; Wiley & Sons: New York, 1994; Vol. 21, pp. 1-157. (c) Bergelson, L. D.; Barsukov, L. I.; Shemyakin, M. M. Tetrahedron 1967, 23, 2709-2720.

- Spectral data of 7a: ¹H NMR (400 MHz, CDCl₃) δ 5.39 and 5.42 (AB system, 2H, H-4, H-5, J=10.3 Hz), 3.59 (t, 2H, H-1), 3.29 (s, 3H, OCH₃), 3.15 (m, 1H, H-7), 2.22 (m, 2H, H-6), 2.16 (m, 2H, H-3), 1.59 (m, 2H, H-2), 1.42 (m, 2H, H-8), 1.30–1.22 (m, 6H, H-9, H-10, H-11), 0.84 (t, 3H, H-12); ¹³C NMR (100 MHz, CDCl₃) δ 131.5 (C, C-4), 127.0 (CH, C-5), 81.6 (CH, C-7), 62.2 (CH₂, C-1), 57.3 (CH₃, C-13), 33.9 (CH₂, C-8), 32.6 (2 CH₂, C-2, C-10), 31.9 (CH₂, C-6), 25.5 (CH₂, C-9), 24.0 (CH₂, C-3), 23.2 (CH₂, C-11), 14.6 (CH₃, C-12).
- Spectral data of 7b: ¹H NMR (400 MHz, CDCl₃) δ 5.47 and 5.43 (AB system, 2H, H-4, H-5, *J*=15.4 Hz), 3.63 (t, 2H, H-1), 3.30 (s, 3H, OCH₃), 3.14 (m, 1H, H-7), 2.18 (m, 2H, H-6), 2.09 (m, 2H, H-3), 1.63 (m, 2H, H-2), 1.42 (m, 2H, H-8), 1.32–1.23 (m, 6H, H-9, H-10, H-11), 0.86 (t, 3H, H-12); ¹³C NMR (100 MHz, CDCl₃) δ 132.3 (C, C-4), 127.0 (CH, C-5), 80.9 (CH, C-7), 62.7 (CH₂, C-1), 56.6 (CH₃, C-13), 36.5 (CH₂, C-6), 33.4 (CH₂, C-8), 32.4 (CH₂, C-2), 32.2 (CH₂, C-10), 29.4 (CH₂, C-3), 25.1 (CH₂, C-9), 22.8 (CH₂, C-11), 14.2 (CH₃, C-12).
- Spectral data of 8a: ¹H NMR (400 MHz, CDCl₃) δ 5.42 (m, 2H, H-4, H-5), 3.31 (s, 3H, OCH₃), 3.17 (quint., 1H, H-7), 2.35 (m, 4H, H-2, H-3), 2.25 (m, 2H, H-6), 1.40 (m, 2H, H-8), 1.20–1.35 (m, 6H, H-9, H-10, H-11), 0.85 (t, 3H, H-12); ¹³C NMR (100 MHz, CDCl₃) δ 178.8 (C, C-1), 129.0 (CH, C-4), 127.3 (CH, C-5), 80.9 (CH, C-7), 56.6 (CH₃, OCH₃), 34.0 (CH₂, C-2), 33.6 (CH₂, C-8), 32.0 (CH₂, C-10), 31.1 (CH₂, C-6), 25.1 (CH₂, C-9), 22.8 (CH₂, C-3), 22.6 (CH₂, C-11), 14.1 (CH₃, C-12).
- 14. Spectral data of 8b: ¹H NMR (400 MHz, CDCl₃) δ 5.46 (m, 2H, H-4, H-5), 3.30 (s, 3H, OCH₃), 3.14 (quint., 1H, H-7), 2.37 (m, 2H, H-2), 2.30 (m, 2H, H-3), 2.15 (m, 2H, H-6), 1.40 (m, 2H, H-8), 1.20-1.35 (m, 6H, H-9, H-10, H-11), 0.87 (t, 3H, H-12); ¹³C NMR (100 MHz, CDCl₃) δ 178.4 (C, C-1), 130.2 (CH, C-4), 127.7 (CH, C-5), 80.8 (CH, C-7), 56.5 (CH₃, OCH₃), 36.3 (CH₂, C-6), 33.9 (CH₂, C-2), 33.2 (CH₂, C-8), 32.0 (CH₂, C-10), 27.7 (CH₂, C-3), 24.9 (CH₂, C-9), 22.6 (CH₂, C-11), 14.0 (CH₃, C-12).
- 15. Mitsunobu, O. Synthesis 1981, 1, 1-28.