
Combining the Photocatalyst Pt/TiO₂ and the Nonphotocatalyst SnPd/Al₂O₃ for Effective Photocatalytic Purification of Groundwater Polluted with Nitrate

Jun Hirayama[†] and Yuichi Kamiya^{*,‡}

[†]Graduate School of Environmental Science, [‡]Research Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan

Supporting Information

ABSTRACT: We investigated photocatalytic reduction of NO₃⁻ in real groundwater in the presence of the photocatalyst Pt/TiO₂ and the nonphotocatalyst SnPd/Al₂O₃, which were dispersed in the groundwater, under irradiation at $\lambda > 300$ nm, with glucose as a hole scavenger. In this system, photocatalytic H₂ evolution $(2H^+ + 2e^- \rightarrow H_2)$ proceeded over Pt/TiO₂, and nonphotocatalytic, that is, conventional catalytic, reduction of NO₃⁻ with H₂ (NO₃⁻ + 5/2H₂ \rightarrow 1/2N₂ + 2H₂O + OH⁻) occurred over SnPd/Al₂O₃. NO₃⁻ (1.0 mmol dm⁻³) in the groundwater completely and selectively decomposed to N₂ (yield 83%) after 120 h with a 300 W Xe lamp ($\lambda > 300$ nm) over the Pt/TiO₂-SnPd/Al₂O₃ system in combination with photooxidative pretreatment of the groundwater over Pt/TiO₂ to decompose organic compounds. The decomposition rate of NO₃⁻ in the groundwater was still slower than that in an aqueous NO₃⁻ solution even after the pretreatment of the groundwater. The lower photocatalytic performance was

due to poisoning of Pt/TiO_2 with sulfate and silicate ions and poisoning of $SnPd/Al_2O_3$ with polymerized silicate ions. On the other hand, cations, including Na⁺, K⁺, Mg²⁺, and Ca²⁺, in the groundwater did not affect the photocatalytic and catalytic performances of the system. Sulfate ions adsorbed on the Pt sites on Pt/TiO_2 , where H₂ evolution occurs, and silicate ions deactivated the oxidation sites on TiO_2 by reacting with the surface hydroxyl groups, leading to a decline in the photocatalytic performance of Pt/TiO_2 .

KEYWORDS: photocatalysis, nitrate reduction, platium-modified titanium dioxide, groundwater purification, tin–palladium bimetal, hydrogenation

INTRODUCTION

Pollution of groundwater with nitrate (NO₃⁻) as a result of intensive agricultural activities using nitrogen fertilizers, human sewage, and industrial effluents is a serious global problem.¹ NO₃⁻ is reduced to nitrite (NO₂⁻) in the human body, which causes methemoglobinemia in infants (i.e., blue-baby syndrome) and is a possible precursor of carcinogenic nitrosamine.² Thus, the World Heath Organization recommends that the concentration of NO₃⁻ in drinking water should be below 0.8 mmol dm⁻³, which corresponds to 50 mg dm^{-3.3} Since groundwater is an important fresh water resource that is indispensable to human society, NO₃⁻ needs to be removed from polluted groundwater.

In recent years, photocatalytic reduction of NO_3^- in water has been extensively investigated as a promising technology to remediate NO_3^- -polluted groundwater.^{4–19} Guan's group⁹ and Kominami's group¹⁰ have reported that Ag/TiO₂ and CuPd/ TiO₂, respectively, show high selectivity to N₂ in the photocatalytic reduction of NO_3^- in aqueous NO_3^- solutions under UV irradiation in the presence of a hole scavenger. However, there are only a few reports on the photocatalytic reduction of NO₃⁻ in real groundwater. Westerhoff et al. first reported the photocatalytic reduction of NO₃⁻ in groundwater in 2012.¹⁵ They use TiO₂ to photocatalytically reduce NO₃⁻ in groundwater under UV irradiation. Although NO₃⁻ decomposes in the presence of formic acid, the conversion decreases from 51% in aqueous NO₃⁻ solution to 37% in groundwater. To the best of our knowledge, the photocatalytic reduction of NO₃⁻ to N₂ with high selectivity in real groundwater has not been reported so far.

Photocatalytic reactions over semiconductor photocatalysts, such as TiO_2 and WO₃, proceed via three sequential reactions:^{20,21} (1) photoexcited electrons (e^-) and positive holes (h^+) are produced in the bulk of the semiconductor photocatalyst by photoabsorption, (2) e^- and h^+ migrate to the surface, (3) e^- and h^+ undergo reduction and oxidation, respectively, with the substrates adsorbed on the surface, and (4) unreacted e^- and h^+ recombine, which does not cause any

 Received:
 March 18, 2014

 Revised:
 May 23, 2014

chemical reactions to occur with the substrates. Observed rates of the chemical reactions, i.e., rates of reactant consumption and of product formation, depend on the rates of these three reactions. The reaction rates of (1) and (3) positively influence the observed rate, whereas the reaction rate of (4) negatively influences it.

Generally, semiconductor photocatalysts themselves, i.e., unmodified bare photocatalysts, show low photocatalytic activities. However, the photocatalytic activity is dramatically increased when a small amount of metal is added.^{14,22} There are a few reasons for the increase in the photocatalytic activity. One reason is that e^- are trapped on the modified metal, leading to elongation of the charge-separated state of e^- and positive holes, which decreases the rate of (4). Another reason is that the modified metal becomes an adsorption site for the reactants, resulting in an increase in the rate of (3). However, addition of metal into the photocatalyst may increase the rate of (4) because the excess metal acts as recombination sites for e^{-} and $h^{+,7,9}$ Therefore, an optimal balance among the loading amount, kind, crystalline structure, location, and particle size of the metal must be obtained to afford high-performance photocatalysts.

In some photocatalytic reactions, not only the loading amount and particle size but also the elemental species of metal strongly affect the photocatalytic performance. Photocatalytic reduction of NO₃⁻ in water over a semiconductor photocatalyst is a quite typical case that the elemental species of metal strongly affects the photocatalytic performances. Semiconductor photocatalysts modified with silver and Cu-Pd particles have high activity and high selectivity to N2 in the photocatalytic reduction of $NO_3^{-9,10,14}$ but Pt- and Rhmodified ones show extremely low activities in the photo-catalytic reduction of NO₃^{-,5,14} because Ag and Cu–Pd form adsorption sites for NO₃⁻, which become activated. Since the metal particles activate NO₃⁻ via adsorption, they must have a high surface area for high photocatalytic activity. In addition, the modified metal must help in the charge separation of the $e^{-}h^{+}$ pairs. If the two functions are maximized simultaneously by optimizing the loading amount, elemental species, crystalline structure, location, and particle size of the metals, extremely high-performance semiconductor photocatalysts can be obtained. However, it is usually difficult to achieve this with semiconductor photocatalysts modified directly with metals, because excess metal provides the recombination sites for eand h^+ .

Recently, reaction systems in which various catalytic functions are distributed to separate catalysts present in the same solution have been actively investigated to maximize the performance of catalysts. Artificial Z-scheme-type photocatalytic water splitting, which affords H_2 and O_2 , is an example of function-distribution on separate catalysts. In the artificial Z-scheme photocatalytic system, O₂ and H₂ evolution sites are built on separate semiconductor photocatalysts (e.g., WO_3 for O_2 evolution and TaON for H_2 evolution), and two catalysts are added to the reaction solution with a redox shuttle between the two catalysts.²³⁻²⁷ The combination of a biocatalyst and a conventional catalyst (metal complexes and precious metal-supported catalysts are examples for the latter) has been reported to be a highly efficient system.^{28,29} In this reaction system, the biocatalyst promotes difficult reactions with high chemo-, regio-, and stereoselectivities, and conventional catalysts perform relatively simple reactions with high

reaction rates. However, the biocatalysts and conventional catalysts perform their reactions successively.

We have previously reported that the photocatalytic reduction of NO₃⁻ in an aqueous NO₃⁻ solution is effectively and selectively promoted under light irradiation in the presence of a photocatalyst (Pt/TiO₂¹⁷ or Pt/SrTiO₃:Rh¹⁸) and a nonphotocatalyst (SnPd/Al₂O₃). In this photocatalytic system, H₂ is formed by a photocatalytic reaction over Pt/TiO₂ (eq 1), and the formed H₂ thermally reduces NO₃⁻ in water over SnPd/Al₂O₃ (eq 2):

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \to \mathrm{H}_{2} \tag{1}$$

$$NO_3^- + 5/2H_2 \rightarrow 1/2N_2 + 2H_2O + OH^-$$
 (2)

The combined photocatalytic system shows much better photocatalytic performance in terms of both activity and selectivity than does TiO_2 directly modified with Sn–Pd particles. The photocatalyst (Pt/TiO₂) and nonphotocatalyst (SnPd/Al₂O₃) can be designed separately to maximize their performance levels for the photocatalytic (eq 1) and non-photocatalytic (eq 2) reactions, respectively.

In the present study, we investigated the photocatalytic reduction of NO₃⁻ in real groundwater in the presence of both the photocatalyst Pt/TiO₂ and the nonphotocatalyst SnPd/Al₂O₃ under light irradiation ($\lambda > 300$ nm). We chose glucose as a hole scavenger for the photocatalytic reaction because it is a readily available organic compound and has a high efficiency of H₂ production by photocatalysis. Moreover, the effects of compounds in the groundwater on the photocatalytic and nonphotocatalytic performance levels over Pt/TiO₂ and SnPd/Al₂O₃, respectively, were systematically investigated, and we have proposed a guideline for the remediation of real groundwater by photocatalytic reduction of NO₃⁻.

EXPERIMENTAL METHODS

Preparation of Catalysts. AEROXIDE TiO₂ P25 (Evonik) was used as a TiO₂ photocatalyst. TiO₂ was modified with 0.5 wt % Pt by using photodeposition. TiO₂ (2 g) was dispersed in distilled water (135 cm³), and then CH₃OH (15 cm³, Wako Pure Chem., Ind., Ltd.) and $H_2PtCl_6 \cdot 6H_2O$ (1.25 cm³, 0.04 mol dm⁻³, Wako Pure Chem., Ind., Ltd.) were added to the suspension. The suspension, which was in a Pyrex glass cell, was purged with a stream of N₂ (15 cm³ min⁻¹) for 30 min and then irradiated using a 300 W Xe lamp ($\lambda > 300$ nm, USHIO Inc., Optical Modulex) for 3 h with stirring. The suspension was centrifuged to separate the catalyst powder, and the resulting supernatant solution was replaced with distilled water (200 cm^3) . The suspension was stirred for a few minutes and centrifuged again. This process was repeated three times. Finally, the catalyst powder was dried in air at 333 K overnight. The obtained catalyst is denoted as Pt/TiO₂.

The nonphotocatalytic catalyst, 2.3 wt % Sn-4.2 wt % Pd/ Al₂O₃ (molar ratio of Sn/Pd was 0.5, denoted as SnPd/Al₂O₃), was prepared by using an incipient wetness method. Al₂O₃ (AEROXIDE, Alu C, Evonik) was heated in air at 523 K for 4 h before use. An aqueous solution of PdCl₂ (7.38 cm³, 0.112 mol dm⁻³, Wako Pure Chem., Ind., Ltd.) was dropped onto the Al₂O₃ (2.0 g), and then the resulting wet solid was dried in air at 373 K overnight, followed by calcination in air at 523 K for 3 h. An aqueous solution of SnCl₂·2H₂O (2.31 cm³, 0.172 mol dm⁻³, Wako Pure Chem., Ind., Ltd.) was dropped onto the resulting solid, and then the wet solid was dried in air at 373 K overnight, followed by calcination in air at 523 K for 3 h. TiO₂

Table 1. Concentrations of	he Components	Contained in th	e Groundwater and	l Reaction Sol	utions Used	l in this Study

		concentration/mmol dm ⁻³									
reaction solution	initial pH	NO ₃ ⁻	Cl-	SO4 ²⁻	SiO_x^{n-}	$\mathrm{NH_4}^+$	Na^+	K^+	Mg ²⁺	Ca ²⁺	TOC ⁱ
GW^a	8.1	1.0	0.5	1.1	1.1	< 0.01	1.0	0.1	0.7	1.6	3.3
GW-Ox ^b	8.1	1.0	0.5	1.1	0.7	< 0.01	1.0	0.1	0.7	1.6	0.2
GW-Ox-Cation-removal ^c	7.8	1.0	0.5	1.1	0.7	0	0	3.0	0	0	0.2
GW-Ox-Anion-removal ^d	5.3	1.0	0	0	0	< 0.01	1.0	1.1	0.7	1.6	0.2
KNO ₃ -aq ^e	5.5	1.0	0	0	0	0	0	1.0	0	0	0
KNO ₃ –Cl [–] -aq ^f	5.4	1.0	1.0	0	0	0	0	2.0	0	0	0
KNO ₃ -SO ₄ ²⁻ -aq ^g	5.5	1.0	0	1.0	0	0	0	3.0	0	0	0
KNO ₃ -SiO ₃ ²⁻ -aq ^h	9.8	1.0	0	0	1.0	0	0	3.0	0	0	0

^{*a*}Groundwater obtained from a well in Kitami, Hokkaido, Japan. ^{*b*}GW treated with photocatalytic oxidation in the presence of Pt/TiO₂. ^{*c*}GW from which cations were removed by passing GW through a cation-exchange resin, followed by treatment with photocatalytic oxidation to decompose organic matter. ^{*d*}GW from which anions were removed by passing GW through an anion-exchange resin, followed by treatment with photocatalytic oxidation to decompose organic matter. After treatment, KNO₃ was added to the water to adjust the concentration of NO₃⁻ to 1.0 mmol dm⁻³. ^{*e*}Aqueous KNO₃ solution. ^{*f*}Aqueous KNO₃ solution with KCl. ^{*g*}Aqueous KNO₃ solution with K₂SO₄. ^{*h*}Aqueous KNO₃ solution with K₂SiO₃. ^{*i*}Total organic carbon (ppm).

modified with 2.3 wt % Sn and 4.2 wt % Pd was prepared by using a procedure similar to that for $SnPd/Al_2O_3$ and is denoted as $SnPd/TiO_2$.

Just before the photocatalytic and nonphotocatalytic reactions, SnPd/Al₂O₃ was reduced with NaBH₄ (Wako Pure Chem, Ind., Ltd.). NaBH₄ (molar ratio of NaBH₄/(Sn + Pd) = 10) was added to an aqueous suspension (30 cm³) of SnPd/Al₂O₃, and the suspension was stirred at room temperature for 30 min. The catalyst powder was filtered and washed with distilled water (~200 cm³) to afford the reactants. SnPd/TiO₂ was reduced by using a procedure similar to that for SnPd/Al₂O₃.

Component Analysis of Groundwater. Groundwater polluted with NO₃⁻ was obtained from a well in Kitami, Hokkaido, Japan (denoted as GW). Concentrations of the anions and cations in the groundwater were determined by using two ion-chromatographs (Tosoh Co., IC-2001). Analytical conditions are described in detail in our previous report.¹⁸ The concentrations of Si species in the groundwater were determined by using inductively coupled plasma atomic emission spectroscopy (ICP-AES) on a Shimadzu ICPS-7000. The Si species present in the groundwater were anions (silicate ion, SiO_r^{n-}) because no Si was detected in the groundwater that was treated with an anion-exchange resin. The amounts of the organic compounds in the groundwater were measured by using a total organic carbon (TOC) analyzer (Shimadzu Co., TOC-5000A). Components contained in the groundwater (GW) are listed in Table 1.

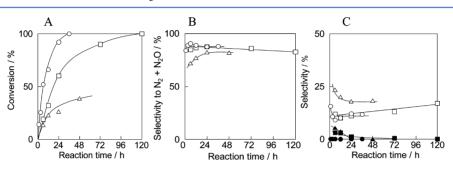
Reaction Solutions. The reaction solutions and their compositions are listed in Table 1. GW-Ox stands for GW pretreated with photocatalytic oxidation in the presence of Pt/TiO₂ (500 mg dispersed in 300 cm³ of GW) to decompose the organic compounds. The suspension in a Pyrex glass cell was purged with a stream of air (100 cm³ min⁻¹) and then irradiated with a 300 W Xe lamp for 24 h. The catalyst was separated from the suspension by filtration. TOC decreased from 3.3 in GW to 0.2 ppm in GW-Ox by the treatment. The concentrations of the other components besides SiO_xⁿ⁻ were not affected by the treatment. The concentration of SiO_xⁿ⁻ decreased from 1.1 to 0.7 mmol dm⁻³.

The cations were removed by passing GW through a glass column with a cation-exchange resin (ORGANO Co., AMBERLYST 70), followed by addition of KOH to adjust the pH of the solution to 7.8 (GW-Ox-Cation). The obtained

solution was further treated with the photocatalytic oxidation, like GW-Ox was. The anions were removed from GW (GW-Ox-Anion) by using a procedure similar to that for GW-Ox-Cation, but an anion exchange resin (ORGANO Co., AMBERLITE IRA410 OH AG) and CO₂ were used instead of the cation-exchange resin and KOH, respectively. To adjust the concentration of NO₃⁻ to 1.0 mmol dm⁻³, KNO₃ (Wako Pure Chem, Ind., Ltd.) was added to the solution.

 KNO_3 was dissolved in distilled water to afford KNO_3 -aq. The concentration of NO_3^- in the solution was adjusted to 1.0 mmol dm⁻³. KNO_3 - Cl^- -aq, KNO_3 - $SO_4^{2^-}$ -aq, and KNO_3 - $SiO_3^{2^-}$ -aq were prepared by adding KCl (Wako Pure Chem., Ind., Ltd.), K_2SO_4 (Wako Pure Chem., Ind., Ltd.), and K_2SiO_3 (Wako Pure Chem., Ind., Ltd.), respectively, to KNO_3 -aq.

Photocatalytic Reduction of NO₃⁻ in Water. Photocatalytic reduction of NO₃⁻ in water was carried out in a Pyrex reaction vessel connected to a closed gas circulation system. Pt/TiO₂ and SnPd/Al₂O₃ were suspended in the reaction solution (250 cm³, [NO₃⁻] = 1.0 mmol dm⁻³) containing glucose (1.0 mmol dm⁻³, Wako Pure Chem., Ind., Ltd.), and the suspension was stirred using a magnetic stirrer. The reaction suspension was thoroughly degassed and then exposed to He (101.3 kPa). A 300 W Xe lamp covered with Pyrex glass ($\lambda > 300$ nm) was used as the light source. The evolved gases were analyzed using an online gas chromatograph (Agilent Technology Inc., 3000 A Micro GC, He carrier) with columns of molecular sieves (for H₂, O₂, and N₂) and Porapak Q (for N₂O). The concentrations of NO₃⁻, NO₂⁻, and NH₄⁺ in the reaction solution were determined by using two ion chromatographs.


Nonphotocatalytic (conventional catalytic) Reduction of NO_3^- with H_2 in Water. Nonphotocatalytic reduction, that is, conventional catalytic reduction, of NO_3^- with H_2 in water was carried out in a batch reactor at 298 K in the dark. The reaction solution (250 cm³, $[NO_3^-] = 1.0$ mmol dm⁻³, 14 mg N dm⁻³) containing SnPd/Al₂O₃ (10 mg) was purged with a stream of He (30 cm³ min⁻¹) for 30 min. Then the gas was changed to a mixture of H_2 (0.5 atm) and CO₂ (0.5 atm) to start the reaction. A small portion of the reaction solution was periodically withdrawn and analyzed by using two ion chromatographs to determine the concentrations of NO_3^- , NO_2^- , and NH_4^+ .

Photocatalytic H₂ and O₂ Evolutions. Photocatalytic H₂ evolution from the reaction solution with glucose over Pt/TiO_2 was carried out by using a procedure similar to that for the

Table 2. Photocatalytic Reduction	" of NO ₃ [–] in Gi	oundwater (GW) un	der Light Irradiation
-----------------------------------	---	-------------------	-----------------------

entry	catalyst	glucose	conversion [%]	NO ₂ ⁻	$\mathrm{NH_4}^+$	N ₂	amnt of $\rm H_2$ detected in gas phase/ μmol
1	Pt/TiO ₂	absence	<1	-	_	_	60
2	Pt/TiO_2	presence	<1	-	-	-	227
3	SnPd/Al ₂ O ₃	presence	0	-	-	-	n.d. ^d
4	Pt/TiO ₂ +SnPd/Al ₂ O ₃	presence	23	3	22	75	18
5	Pt/TiO ₂ +SnPd/Al ₂ O ₃ ^b	presence	0	-	-	-	n.d. ^d
6	Pt/TiO ₂ +SnPd/Al ₂ O ₃	absence	<1	-	-	-	n.d. ^d
7	SnPd/TiO ₂ ^c	presence	5	0	38	62	21

^{*a*}Reaction conditions: catalyst weight, Pt/TiO₂, 500 mg and SnPd/Al₂O₃, 100 mg; reactant NO₃⁻, 1.0 mmol dm⁻³ with 1.0 mmol dm⁻³ glucose; reaction volume, 250 cm³; light irradiation (λ > 300 nm) and reaction time, 12 h. ^{*b*}Under dark conditions. ^{*c*}2.3 wt % Sn-4.2 wt % Pd/TiO₂. The amount of the catalyst loaded in the reactor was 500 mg. ^{*d*}Not detected.

Figure 1. Time courses for photocatalytic reduction of NO₃⁻ in (Δ) GW, (\Box) GW-Ox, and (O) KNO₃-aq in the copresence of Pt/TiO₂ and SnPd/Al₂O₃. (A) Conversion of NO₃⁻, (B) selectivity to N₂ + N₂O, and (C) selectivities to NO₂⁻ (closed symbols) and NH₄⁺ (open symbols). Reaction conditions: catalyst weight, Pt/TiO₂, 500 mg and SnPd/Al₂O₃, 100 mg; reactant NO₃⁻ (from KNO₃), 1.0 mmol dm⁻³ with 1.0 mmol dm⁻³ glucose; reaction volume, 250 cm³; light irradiation (λ > 300 nm).

photocatalytic reduction of NO_3^- in water, as described above, but in the absence of $SnPd/Al_2O_3$. In addition, photocatalytic O_2 evolution from the reaction solution with $AgNO_3$ (10 mmol dm⁻³, Wako Pure Chem., Ind., Ltd.) was conducted by using a procedure similar to that for the photocatalytic H_2 evolution. To prevent the formation of silver colloid, the pH of the reaction solution was adjusted to 8.0 by adding HNO₃ to the solution with $AgNO_3$ and K_2SiO_3 .

Adsorption Measurement. The amount of adsorption of SiO_3^{2-} on Pt/TiO₂ at 303 K was measured as follows. Pt/TiO₂ (30 mg) was added to an aqueous SiO_3^{2-} solution (10 cm³), which was prepared from K₂SiO₃, and the suspension was heated at 303 K with stirring. After 24 h, Pt/TiO₂ was filtered off, and the concentration of SiO_3^{2-} in the filtrate was determined using ICP-AES. The initial concentrations of SiO_3^{2-} were varied from 0.1 to 8.0 mmol dm⁻³. Adsorption reached equilibrium within several hours.

RESULTS AND DISCUSSION

Photocatalytic Reduction of NO₃⁻ in Groundwater (**GW**). Table 2 summarizes the data from the photocatalytic reduction of NO₃⁻ in groundwater (GW) samples under light irradiation for 12 h. Pt/TiO₂ alone in the absence of glucose (entry 1) showed negligible activity for the decomposition of NO₃⁻, whereas H₂ was produced. The H₂ evolution under light irradiation was due to a photocatalytic reaction over Pt/TiO₂ (eq 1) consuming organic substances (3.3 ppm TOC), which were originally present in GW (Table 1) and acted as a hole scavenger because the amount of CO₂ in the gas phase increased with an increase in the reaction time (data not shown). Pt/TiO₂ alone hardly decomposed NO₃⁻ even in the presence of glucose (entry 2), but the amount of H₂ evolved in the gas phase was larger than that for entry 1. $SnPd/Al_2O_3$ alone (entry 3) showed no photocatalytic or catalytic activity for the decomposition of NO_3^- or for the evolution of H_2 even under light irradiation.

On the other hand, relatively high NO₃⁻ conversion was obtained when both Pt/TiO₂ and SnPd/Al₂O₃ (Pt/TiO₂- $SnPd/Al_2O_3$) were dispersed in the reaction solution in the presence of glucose (entry 4). In addition, the formation of undesirable NO_2^- was greatly suppressed (3% selectivity), and desired N₂ selectively formed (75% selectivity at 23% conversion of NO_3^{-}), though the selectivity may change with further conversion. At the time, only N₂ formed as a gaseous nitrogen-containing product. When the reaction was conducted in the dark, the conversion of NO_3^- was negligible even using Pt/TiO₂-SnPd/Al₂O₃ (entry 5). Thus, photocatalysis is responsible for the decomposition of NO₃⁻ in entry 4. When the reaction was conducted in the absence of glucose under light irradiation (entry 6), NO_3^- did not decompose, and no H_2 evolved in the gas phase. Although H₂ evolved during the photocatalytic reaction over Pt/TiO2 even in the absence of glucose (entry 1), no photocatalytic reactions, including the decomposition of NO₃⁻ and H₂ evolution, occurred when Pt/ TiO_2 and $SnPd/Al_2O_3$ were copresent in GW (entry 6). This is probably because the organic compounds are removed from GW by adsorption on SnPd/Al₂O₃, which consequently quenches the photocatalytic H_2 evolution over Pt/TiO₂.

TiO₂ directly modified with SnPd particles exhibited photocatalytic activity for the decomposition of NO₃⁻ (entry 7). However, it was much less active than the Pt/TiO₂-SnPd/Al₂O₃ system was under the same reaction conditions. Since H₂ evolution, as well as NO₃⁻ decomposition, occurred over SnPd/TiO₂ under light irradiation, photoexcited e^- formed in SnPd/TiO₂ were consumed for the reduction of NO₃⁻ (NO₃⁻

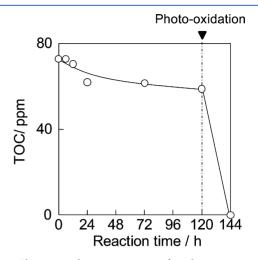

+ $6H^+$ + $5e^- \rightarrow 1/2N_2$ + $3H_2O$) and for H_2 evolution ($2H^+$ + $2e^- \rightarrow H_2$). We calculated the number of e^- consumed during the reaction in entry 7 to be 116 μ mol. On the other hand, that calculated for the reaction in entry 4 (the Pt/TiO₂-SnPd/ Al_2O_3 system), in which H_2 evolved and NO_3^- decomposed, was 369 μ mol. A comparison of the amount of consumed e^- in entries 4 and 7 clearly indicates that the photocatalytic performance of the Pt/TiO2-SnPd/Al2O3 system is much higher than that of SnPd/TiO₂. In addition, SnPd/TiO₂ is less active toward the nonphotocatalytic reduction of NO_3^{-} (NO_3^{-}) $+ 5/2H_2 \rightarrow 1/2N_2 + 2H_2O + OH^-$) than SnPd/Al₂O₃ is because a similar amount of H₂ formed over both SnPd/TiO₂ and Pt/TiO₂-SnPd/Al₂O₃. On the other hand, in the case of the Pt/TiO_2 -SnPd//Al₂O₃ system, the photocatalytic function on Pt/TiO₂ and nonphotocatalytic function on SnPd/Al₂O₃ can be individually optimized. Therefore, we concluded that this reaction system showed superior activity for the decomposition of NO₃⁻ under light irradiation than SnPd/ TiO₂ did.

Figure 1 shows time courses for the conversion of NO₃⁻ and selectivities to N₂ + N₂O, NO₂⁻, and NH₄⁺ for the photocatalytic reduction of NO₃⁻ in GW, GW-Ox, and KNO₃-aq over the Pt/TiO₂-SnPd/Al₂O₃ system. The conversion of NO₃⁻ increased as the reaction progressed up to 12 h in GW but only slightly increased after that (Figure 1A: Δ). That is, the catalytic activity in GW was less than that in KNO₃-aq. Since GW contained various compounds (Table 1), these compounds must have a negative effect on the activities over Pt/TiO₂, SnPd/Al₂O₃, or both.

In order to clarify the influence of the compounds in GW, we conducted the photocatalytic reduction of NO₃⁻ with the Pt/ TiO₂-SnPd/Al₂O₃ system in KNO₃-aq, which did not contain any cations other than K⁺, anions other than NO₃⁻ ions, and organic compounds other than glucose. NO₃⁻ in KNO₃-aq decomposed more rapidly than it did in GW, and the conversion of NO₃⁻ reached 100% at 36 h (Figure 1A: O) without any catalyst deactivation. At 100% conversion, the selectivity to N₂ + N₂O was 88% (Figure 1B: O). From these results, it was concluded that the compounds in GW decreased the photocatalytic or catalytic performances (activity and selectivity) of the Pt/TiO₂-SnPd/Al₂O₃ system. During the initial 24 h of the reaction in KNO₃-aq, N₂O formed in addition to N₂ but was completely transformed to N₂ at 36 h (shown in Figure S1 in the Supporting Information [SI]).

To investigate the effects of the organic compounds in GW on the photocatalytic performance of the Pt/TiO2-SnPd/ Al₂O₃ system, we treated GW with photocatalytic oxidation in the presence of Pt/TiO_2 to decompose the organic compounds (see Experimental Methods) and conducted the photocatalytic reduction of NO_3^- in the treated solution (GW-Ox, Table 1) over the Pt/TiO2-SnPd/Al2O3 system. The decomposition rate of NO₃⁻ in GW-Ox was nearly twice that in GW, and NO_3^- was completely decomposed at 120 h (Figure 1A: \Box). At 100% conversion (120 h), the selectivity to $N_2 + N_2O$ was 83% (Figure 1B: \Box), which was almost the same as that in KNO₃aq. Thus, removing the organic compounds from GW makes it possible to decompose NO_3^- selectively to N_2 and N_2O . However, the reaction rate for NO₃⁻-decomposition in GW-Ox was slower than that in KNO₃-aq (Figure 1A), indicating that compounds other than the organic ones in GW negatively affected the catalytic performance of the Pt/TiO₂-SnPd/Al₂O₃ system. This will be discussed later.

In order for the water obtained by the photocatalytic decomposition of NO_3^- to be used as drinking water, glucose and its partially oxidized compounds must ultimately be removed from the water. Figure 2 shows time courses for

Figure 2. Changes in the concentration of total organic compounds (TOC) during the photocatalytic reduction of NO₃⁻ in GW-Ox in the presence of Pt/TiO₂ and SnPd/Al₂O₃. Reaction conditions ($t \le 120$ h): catalyst weight, Pt/TiO₂, 500 mg and SnPd/Al₂O₃, 100 mg; reactant NO₃⁻ (from KNO₃), 1.0 mmol dm⁻³ with 1.0 mmol dm⁻³ glucose; reaction volume, 250 cm³; light irradiation ($\lambda > 300$ nm). The catalyst powder (Pt/TiO₂-SnPd/Al₂O₃ mixture) was separated from the reaction solution at 120 h and fresh Pt/TiO₂ (500 mg) was added to the solution, followed by light irradiation ($\lambda > 300$ nm) with a flow of air to decompose the organic matter in the solution by photocatalytic oxidation. Reaction conditions (t > 120 h): catalyst weight, Pt/TiO₂, 500 mg; reactant concentration, 1.0 mmol dm⁻³; reaction volume, 250 cm³; air flow rate, 100 cm³ min⁻¹; light irradiation ($\lambda > 300$ nm).

TOC during the photocatalytic reduction of NO₃⁻ in GW-Ox over the Pt/TiO₂-SnPd/Al₂O₃ system. The initial TOC was 73 ppm, and it decreased as the reaction progressed, reaching 59 ppm at 120 h, at which time NO₃⁻ was completely decomposed. To completely decompose the organic compounds in the reaction solution, the catalyst powder (Pt/TiO₂-SnPd/Al₂O₃ mixture) was separated from the reaction solution at 120 h, and fresh Pt/TiO₂ was added to the solution, followed by light irradiation with a stream of air flowing into the reactor (100 cm³ min⁻¹). After an additional 24 h, the organic compounds in the reaction solution were completely decomposed. In other words, glucose added in GW and its partially oxidized compounds can be easily decomposed so that the groundwater can be used as drinking water.

Effects of the Compounds in the Groundwater (GW) on Photocatalytic and Catalytic Performance. Figure 3a shows the conversion of NO_3^- and selectivity for $N_2 + N_2O$ in the photocatalytic reduction of NO_3^- using the Pt/TiO₂-SnPd/Al₂O₃ system in the various reaction solutions under light irradiation for a period of 12 h with an initial concentration of NO_3^- of 1.0 mmol dm⁻³ in each reaction solution. Although the pH of the solutions was different in each case, as shown in Table 1, it barely affected the photocatalytic performance (Figure S2A in the SI).

As was described above, compounds other than the organic compounds still caused the NO_3^- -decomposition activity of the $Pt/TiO_2-SnPd/Al_2O_3$ system to decrease. Thus, cations and

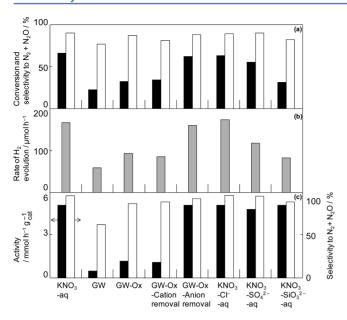


Figure 3. Effects of different compounds in the groundwater on photocatalytic and catalytic performances. (a) Photocatalytic reduction of NO₃⁻ in water in the copresence of Pt/TiO₂ and SnPd/Al₂O₃ under light irradiation. (\blacksquare) Conversion of NO₃⁻, and (\square) selectivity to N₂ + N2O. Reaction conditions: catalyst weight, Pt/TiO2, 500 mg and SnPd/Al₂O₃, 100 mg; concentration of NO₃⁻, 1.0 mmol dm⁻³; concentration of glucose, 1.0 mmol dm⁻³; volume of reaction solution, 250 cm³; light irradiation (λ > 300 nm). (b) Photocatalytic hydrogen evolution over Pt/TiO2 under light irradiation. Reaction conditions: catalyst weight, Pt/TiO₂, 500 mg; concentration of glucose, 1.0 mmol dm⁻³; volume of reaction, 250 cm³; light irradiation (λ > 300 nm). (c) Nonphotocatalytic reduction of NO₃⁻ with H₂ in water over SnPd/ Al_2O_3 under the dark conditions. (\blacksquare) Conversion of NO_3^- , and (\square) selectivity to $N_2 + N_2O$. Reaction conditions: catalyst weight, SnPd/ Al₂O₃, 10 mg; concentration of NO₃⁻, 1.0 mmol dm⁻³; volume of reaction solution, 250 cm³; gas composition, $H_2/CO_2 = 1/1$; gas flow rate, 30 cm³ min⁻¹.

anions were removed from GW by passing it through ionexchange resins, followed by photocatalytic oxidation over Pt/ TiO₂. The solutions obtained from GW by passing through a cation- and an anion-exchange resins are denoted as GW-Ox-Cation-removal and GW-Ox-Anion-removal, respectively. The conversion of NO₃⁻ and the selectivity to N₂ + N₂O in GW-Ox-Cation-removal were almost the same as those in GW-Ox, indicating that the cations in GW did not affect the photocatalytic and nonphotocatalytic performance levels of the Pt/TiO₂–SnPd/Al₂O₃ system. However, in GW-Ox-Anionremoval, the conversion of NO₃⁻ and the selectivity to N₂ + N₂O were recovered, being almost the same as those in KNO₃aq. The results clearly indicate that the anions in GW render the Pt/TiO₂–SnPd/Al₂O₃ system ineffective.

Next, we investigated the influence of each anion (Cl⁻, SO_4^{2-} , and SiO_3^{2-}), which is contained in GW, on the photocatalytic performance of the Pt/TiO₂-SnPd/Al₂O₃ system toward the reduction of NO₃⁻ by using aqueous NO₃⁻ solutions that contained each anion separately. Cl⁻ in KNO₃-Cl⁻-aq did not affect the conversion of NO₃⁻ and selectivity to N₂ + N₂O (Figure 3a). On the other hand, when SO_4^{2-} or SiO_3^{2-} was present in the solution, the conversion of NO₃⁻ decreased. In particular, the decrease in the conversion was most notable in KNO₃-SiO₃²⁻-aq.

Since the photocatalytic reduction of NO_3^- over Pt/TiO_2 -SnPd/Al₂O₃ proceeded with photocatalytic H₂ evolution over

Pt/TiO₂ and nonphotocatalytic (conventional catalytic) reduction of NO₃⁻ with H₂ over SnPd/Al₂O₃, both reaction rates affect the overall reaction rate of the NO₃⁻ decomposition and the selectivities. Thus, to clarify the influence of the organic and anionic compounds in GW on the performance of the Pt/TiO₂–SnPd/Al₂O₃ system, their effects on the photocatalytic performance of Pt/TiO₂ toward H₂ evolution and the catalytic performance of SnPd/Al₂O₃ for the reduction of NO₃⁻ with H₂ must be individually investigated.

Figure 3b shows the photocatalytic H₂ evolution rate over Pt/TiO₂ in the presence of glucose but the absence of SnPd/ Al₂O₃ in various reaction solutions. The H₂ evolution rate $(\mu \text{mol } h^{-1})$ was estimated from the amount of H₂ formed in 1 h from the beginning of the reaction. Although the pH values of the reaction solutions were different, as shown in Table 1, the pH had little impact on the photocatalytic performance of Pt/ TiO_2 (shown in Figure S2B in the SI). The H₂ evolution rate was 167 μ mol h⁻¹ in KNO₃-aq, whereas it was only 59 μ mol h^{-1} in GW. The H₂ evolution rate was 93 μ mol h^{-1} in GW-Ox, indicating that H₂ evolution over Pt/TiO₂ was inhibited by the organic compounds in GW. However, the H₂ evolution rate in GW-Ox was still slower than that in KNO₃-aq. The effects of the cations and anions in GW on the H₂ evolution rate over Pt/ TiO2 were investigated in both GW-Ox-Cation-removal and GW-Ox-Anion-removal. It was found that the cations in GW had no impact on the H₂ evolution rate, whereas the anions in GW inhibited the photocatalytic H₂ evolution over Pt/TiO₂. In $KNO_3-Cl^{-}aq$, the H₂ evolution rate was the almost same as that in KNO₃-aq. In contrast, when either SO_4^{2-} or SiO_3^{2-} was present in KNO₃-aq, the H₂ evolution rate was significantly slower than that in KNO₃-aq. In particular, SiO₃²⁻ dramatically inhibited H₂ evolution. From these results, it was concluded that the organic compounds, SO_4^{2-} , and SiO_x^{n-} in GW decreased the photocatalytic performance of Pt/TiO₂, following the trend organic compounds > SiO_3^{2-} > SO_4^{2-} , which also corresponds to the photocatalytic performance of the Pt/ TiO₂-SnPd/Al₂O₃ system toward NO₃⁻ decomposition (Figure 3a). The mechanism for the inhibition of the photocatalytic reaction over Pt/TiO_2 by SO_4^{2-} and SiO_3^{2-} will be discussed in detail later.

Next, we investigated the influence of the compounds in GW on the catalytic performance of SnPd/Al₂O₃. Figure 3c shows the decomposition rate of NO_3^- and selectivity for $N_2 + N_2O$ in the nonphotocatalytic reduction of NO_3^- with H_2 over $SnPd/Al_2O_3$ in the absence of Pt/TiO_2 in the dark. The decomposition rate of NO₃⁻ in KNO₃-aq was 5.2 mmol h⁻¹ g_{cat}^{-1} , and the selectivity for N₂ + N₂O was 97%. Since the amount of N2O was negligible due to very low selectivity (less than 1%), the formation of N_2O did little harm to the environment. In the case of GW, the decomposition rate of NO_3^- was much slower than that in KNO₃-aq, with a value of 0.5 mmol $h^{-1} g_{cat}^{-1}$, and the selectivity for $N_2 + N_2O$ was only 63%. The decomposition rate of NO3⁻ in GW-Ox was still about a quarter of that in KNO3-aq, and the selectivity for N2 + N_2O was 88%, indicating that the organic compounds in GW significantly affected the nonphotocatalytic reduction of NO₃⁻ with H_2 over SnPd/Al₂O₃. Since the activity and selectivity in GW-Ox-Cation-removal were similar to those in GW-Ox, the cations in GW did not affect the catalytic performance of SnPd/ Al₂O₃. On the other hand, in GW-Ox-Anion-removal, the decomposition rate of NO_3^- and selectivity to $N_2 + N_2O$ were the same as those in KNO3-aq. Thus, the anions in GW inhibited the catalytic performance of SnPd/Al₂O₃. However,

				selectivity/[
entry	anion	activity/mmol $h^{-1} g_{cat}^{-1}$	NO ₂ ⁻	$\mathrm{NH_4}^+$	$N_2 + N_2 O^b$	absorbance @ 440 nm ^c
1	NO ₃ ⁻	5.2	0	3	97	-
2	NO ₃ ⁻ , SiO ₃ ²⁻ , Cl ⁻ , SO ₄ ²⁻	1.7	1	7	92	0.38
3	NO ₃ ⁻ , Cl ⁻ , SO ₄ ²⁻	5.2	0	4	96	-
4	NO ₃ ⁻ , SiO ₃ ²⁻ , SO ₄ ²⁻	5.2	1	6	93	0.46
5	NO ₃ ⁻ , SiO ₃ ²⁻ , Cl ⁻	3.9	<1	5	95	0.43
6	NO ₃ ⁻ , SiO ₃ ²⁻	5.1	1	8	91	0.47

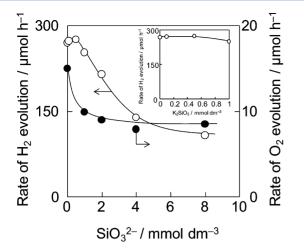
Table 3. Catalytic Reduction^{*a*} of NO_3^- in the Dark in an Aqueous KNO₃ Solution over SnPd/Al₂O₃ in the Presence of K₂SiO₃, KCl, and K₂SO₄

^{*a*}Reaction conditions: catalyst weight, SnPd/Al₂O₃, 10 mg; reactant NO₃⁻ (from KNO₃), 1.0 mmol dm⁻³; reaction volume, 250 cm³; gas composition, $H_2/CO_2 = 1/1$; gas flow rate, 30 cm³ min⁻¹. Initial concentrations of K₂SiO₃, KCl, and K₂SO₄ were 1.1, 0.5, and 1.1 mmol dm⁻³, respectively. ^{*b*}Selectivity to N₂ + N₂O was calculated by subtracting the selectivities of NO₂⁻ and NH₄⁺ from 100%. ^{*c*}Determined by using a molybdenum yellow method.³⁰

when the anions, including Cl⁻, SO_4^{2-} , and SO_x^{n-} , were individually present in KNO₃-aq, the decomposition rate of NO₃⁻ by the catalytic reduction with H₂ over SnPd/Al₂O₃ and the selectivity for N₂ + N₂O were almost the same as those in KNO₃-aq.

Thus, we thought that the anions (Cl⁻, SO₄²⁻, and SiO_xⁿ⁻) only had a significant effect on the catalytic performance of SnPd/Al₂O₃ when a combination of these anions was present. Therefore, we determined the catalytic performance of SnPd/ Al_2O_3 for the reduction of NO_3^- with H_2 in solutions containing different combinations of Cl⁻, SO_4^{2-} , and SiO_x^{n-} . Table 3 summarizes the results for the catalytic reduction of NO₃⁻ with H₂ over SnPd/Al₂O₃ without irradiation in reaction solutions containing Cl⁻, SO_4^{2-} , and SiO_3^{2-} in the same concentrations (0.5, 1.1, and 1.1 mmol dm⁻³, respectively) as those in GW. In the reaction in entry 2, the decomposition rate of NO₃⁻ was significantly slower in comparison with that in KNO₃-aq (entry 1). On the other hand, the decomposition rates of NO_3^- in the solutions containing SO_4^{2-} and Cl^- (entry 3) and SO_4^{2-} and SiO_3^{2-} (entry 4) were comparable to that in KNO_3 -aq (entry 1). In contrast, in a solution containing SiO_3^{2-} and Cl^{-} (entry 5), the decomposition rate of NO_{3}^{-} decreased to 3.9 mmol h^{-1} g_{cat}^{-1} , which was slower than that in KNO₃-aq (5.2 mmol h^{-1} g_{cat}^{-1}). A possible reason for the deactivation of $SnPd/Al_2O_3$ with SiO_3^{2-} in solutions that also contained Cl⁻ or Cl⁻-SO₄²⁻ is that SiO_3^{2-} polymerizes in the presence of Cl⁻ and SO_4^{2-} , after which the formed silicate oligomers are adsorbed on SnPd/Al₂O₃.

Thus, the amount of SiO_3^{2-} monomer in each reaction solution was determined by using a molybdenum yellow method,³⁰ where Mo⁶⁺ is added to the solution and reacts with monomeric silicate ions to form a heteropolyanion $([SiMo_{12}O_{40}]^{4-})$. The amount of $[SiMo_{12}O_{40}]^{4-}$ in the solution is determined from the absorbance at 440 nm in a UV-vis spectrum of the solution. Therefore, if the intensity of the absorbance at 440 nm decreases, then the amount of silicate oligomers has increased. Table 3 lists the absorbances at 440 nm in the reaction solutions after 1 h of the catalytic reduction of NO_3^- with H_2 over $SnPd/Al_2O_3^{-31}$ The absorbance in entry 4 ($A_{440} = 0.46$) was almost the same as that in entry 6 ($A_{440} =$ 0.47). On the other hand, the absorbances in entries 2 and 5 $(A_{440} = 0.38 \text{ and } 0.43, \text{ respectively})$, in which the catalytic performance was smaller, were lower than that in entry 6. In particular, the absorbance in entry 2 was much smaller than that in entry 5. The results indicate that a larger amount of silicate ions was polymerized in the reaction solution in entry 2 than it was in entry 6. The catalytic activity correlated with the

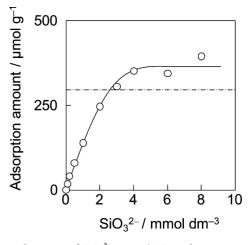

absorbances (Table 3). This correlation clearly indicates that the polymerized silicate ions deactivate $SnPd/Al_2O_3$ in the nonphotocatalytic reduction of NO_3^- with H_2 .

From the results mentioned above, we concluded that K_2SO_4 , K_2SiO_3 , and organic compounds in GW decreased the photocatalytic performance of Pt/TiO₂ and that the organic compounds and polymerized silicate ions in GW lowered the nonphotocatalytic performance of SnPd/Al₂O₃. Thus, the decomposition rate of NO₃⁻ and selectivity to N₂ + N₂O by the Pt/TiO₂-SnPd/Al₂O₃ system also decreased for the photocatalytic reduction of NO₃⁻ in GW and GW-Ox.

Mechanism for Deactivation of Pt/TiO₂ by K₂SO₄ and K_2SiO_3 . As described above, SO_4^{2-} and SiO_x^{n-} in GW decreased the photocatalytic activity of Pt/TiO₂ (Figure 3b). Possible reasons for the deactivation of Pt/TiO₂ by SO₄²⁻ and SiO_{x}^{n-} are poisoning of the reduction sites (Pt e^{-}), oxidation sites $(\text{TiO}_2_h^+)$, or both on Pt/TiO₂ with SO_4^{-2-} and SiO_x^{n-2-} (Figure S3 in the SI). In order to clarify which sites were poisoned by SO_4^{2-} and SiO_x^{n-} , we investigated the influence of the concentrations of both compounds on the photocatalytic performance for H₂ evolution $(2H^+ + 2 (Pt_e^-) \rightarrow H_2 + 2Pt)$ from an aqueous glucose solution over Pt/TiO_2 and for the O_2 evolution $(2H_2O + 4 (TiO_2 h^+) \rightarrow O_2 + 4H^+ + 4TiO_2)$ from an aqueous AgNO₃ solution over bare TiO₂. The former reaction can be used to estimate the level of poisoning of Pt e^{-1} sites due to these compounds, and the latter one can be used to estimate the level of poisoning of TiO_2 h^+ sites.

The H₂ evolution rate over Pt/TiO₂ under photocatalytic conditions was 298 μ mol h⁻¹ in the absence of K₂SO₄ (Figure S4 in the SI). When 0.1 mmol dm⁻³ of K₂SO₄ was added to the solution, the H₂ evolution rate decreased to 245 μ mol h⁻¹. Further addition of K₂SO₄ did not change the H₂ evolution rate. Since a small amount of K₂SO₄ had a substantial effect on the H₂ evolution rate over Pt/TiO₂, we concluded that SO₄²⁻ was strongly adsorbed on the H₂ evolution sites on Pt/TiO₂, i.e., Pt atoms exposed on the surface of the Pt particles, resulting in the deactivation of Pt/TiO₂. In contrast to the H₂ evolution rate a decrease in the O₂ evolution rate over the bare TiO₂, indicating that SO₄²⁻ did not poison the TiO₂_h⁺ sites on TiO₂ (Figure S4 in the SI).

Figure 4 shows the effects of the concentration of K_2SiO_3 on the H₂ evolution rate from the photocatalytic reaction over Pt/ TiO₂ in an aqueous glucose solution and on the O₂ evolution rate from the photocatalytic reaction over bare TiO₂ in an aqueous AgNO₃ solution. The H₂ evolution rate did not change with the concentration of K_2SiO_3 up to 0.5 mmol dm⁻³,


Figure 4. Effects of the concentration of SiO₃²⁻ on the rates of (\bigcirc) H₂ evolution for the photocatalytic reactions in an aqueous glucose solution over Pt/TiO₂ and (\bigcirc) O₂ evolution for the photocatalytic reaction in an AgNO₃ solution over TiO₂. Reaction conditions for H₂ evolution: catalyst weight, Pt/TiO₂, 500 mg; reactant glucose, 100 mmol dm⁻³; reaction volume, 250 cm³; and light irradiation (λ > 300 mg; initial pH, 9.8; reactant AgNO₃, 10 mmol dm⁻³; reaction volume, 250 cm³; and light irradiation (λ > 300 nm).

although the total amount of SiO₃²⁻ (125 μ mol) in the 0.5 mmol dm^{-3} K₂SiO₃ solution was much larger than the number of exposed Pt sites on the surface (3 μ mol), which was estimated from the adsorption amount of CO at 323 K.³² Therefore, the adsorption of SiO_3^{2-} on the surface of the Pt particles was very weak. On the other hand, the O2 evolution rate significantly decreased, even in the presence of a small amount of K_2SiO_3 (1.0 mmol dm⁻³). These results clearly indicated that TiO_2 h^+ sites on TiO_2 were deactivated with K_2SiO_3 . Although the rate-limiting step for the H_2 evolution reaction from the aqueous glucose solution over Pt/TiO₂ was the H_2 evolution reaction from the Pt_e⁻ sites and SiO₃²⁻ deactivated TiO₂ h^+ sites on TiO₂, the H₂ evolution rate decreased when an excess amount of K₂SiO₃ (>1.0 mmol dm⁻³) was added. This is probably because the rate-limiting step for the H₂ evolution reaction from the aqueous glucose solution changed from the consumption of Pt_e^- to form H_2 to that of $\text{TiO}_2 h^+$ due to the poisoning of most of the $\text{TiO}_2 h^+$ sites with SiO_3^{2-} when excess SiO_3^{2-} was present in the reaction solution.

Figure 5 shows an adsorption profile for SiO_3^{2-} on Pt/TiO₂ at 303 K. The dashed line in Figure 5 represents the number of surface hydroxyl groups on Pt/TiO₂ (295 μ mol g⁻¹), which was calculated from the surface area of the Pt/TiO₂ and the density of surface hydroxyl groups (3.3 OH nm⁻²).³² The adsorption amount of SiO₃²⁻ increased with an increase in the concentration of SiO₃²⁻ and saturated at ~350 μ mol g⁻¹, which was approximately equal to the number of surface hydroxyl groups (295 μ mol g⁻¹). This result implies that SiO₃²⁻ stoichiometrically reacted with the surface hydroxyl groups in a 1:1 ratio (Ti–O–Si–OH) and supports the hypothesis that the TiO₂_h⁺ sites were poisoned by SiO₃²⁻.

CONCLUSIONS

Nitrate in real groundwater was decomposed mainly into N_2 with an 83% selectivity by using a photocatalytic reaction system composed of the photocatalyst Pt/TiO_2 and the

Figure 5. Adsorption of ${\rm SiO_3^{2-}}$ on Pt/TiO₂. Adsorption conditions: weight of Pt/TiO₂, 30 mg; initial concentration of ${\rm SiO_3^{2-}}$ (from K₂SiO₃), 0.1–8.0 mmol dm⁻³; temperature, 303 K; and volume of solution, 10 cm³.

nonphotocatalyst SnPd/Al₂O₃, which were dispersed in the groundwater, irradiated at λ > 300 nm in the presence of glucose as a hole scavenger. However, pretreatment of the groundwater by photooxidation with Pt/TiO₂ was necessary to remove the organic compounds from the groundwater because they poisoned both Pt/TiO₂ and SnPd/Al₂O₃. The decomposition rate of NO_3^- and the selectivity to $N_2 + N_2O$ in the photocatalytic reduction of NO3- in the groundwater were lower than those in an aqueous solution of KNO₃. The lower photocatalytic performance of the Pt/TiO2-SnPd/Al2O3 system in the groundwater was due to sulfate and silicate ions and the organic compounds in the groundwater. Sulfate and silicate ions deactivated Pt_e^- and $TiO_2_h^+$ sites, respectively, on the Pt/TiO_2 surface by adsorption, causing a decrease in the photocatalytic performance toward H₂ evolution. In addition, polymerized silicate ions in the groundwater decreased the catalytic performance of SnPd/ Al_2O_3 for the hydrogenation of NO_3^- with H_2 .

ASSOCIATED CONTENT

Supporting Information

Time courses for the photocatalytic reduction of NO_3^- , influence of pH on the photocatalytic reduction of NO_3^- , and dependences of concentrations of glucose and AgNO₃ on the rates of H₂ and O₂ evolutions, respectively, as mentioned in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: kamiya@ees.hokudai.ac.jp. Tel/Fax:+81-11-706-2217.

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) Wakida, F. T.; Lerner, D. N. Water Res. 2005, 39, 3-16.
- (2) Cantor, K. P. Cancer, Causes Control, Pap. Symp. 1997, 8, 292–308
- (3) WHO. Guidelines for drinking-water quality. First addendum to volume 1, Recommendations, 3rd edition; World Health Organization: Geneva, Switzerland, 2006.

- (4) Kudo, A.; Domen, K.; Maruya, K.; Onishi, T. *Chem. Lett.* **198**7, 1019–1022.
- (5) Ranjit, K. T.; Viswanathan, B. J. Photochem. Photobiol., A 1997, 108, 73–78.
- (6) Bems, B.; Jentoft, F. C.; Schlögl, R. Appl. Catal., B **1999**, 20, 155–163.
- (7) Hamanoi, O.; Kudo, A. Chem. Lett. 2002, 838-839.

(8) Gao, W.; Jin, R.; Chen, J.; Guan, X.; Zeng, H.; Zhang, F.; Guan, N. Catal. Today 2004, 90, 331–336.

(9) Zhang, F.; Jin, R.; Chen, J.; Shao, C.; Gao, W.; Li, L.; Guan, N. J. Catal. 2005, 232, 424-431.

- (10) Kominanmi, H.; Nakaseko, T.; Shimada, Y.; Furusho, A.; Inoue, H.; Murakami, S.; Kera, Y.; Ohtani, B. *Chem. Commun.* **2005**, 2933–2935.
- (11) Sà, J.; Agüera, C. A.; Gross, S.; Anderson, J. A. Appl. Catal., B 2009, 85, 192–200.
- (12) Wehbe, N.; Jaafar, M.; Guillard, C.; Herrmann, J. M.; Miachon, S.; Puzenat, E.; Guilhaume, N. *Appl. Catal., A* **2009**, *368*, 1–8.
- (13) Li, L.; Xu, Z.; Liu, F.; Shao, Y.; Wang, J.; Wan, H.; Zheng, S. J. Photochem. Photobiol., A **2010**, 212, 113–121.
- (14) Gekko, H.; Hashimoto, K.; Kominami, H. Phys. Chem. Chem. Phys. 2012, 14, 7965-7970.

(15) Doudrick, K.; Monzon, O.; Mangonon, A.; Hristovski, K.; Westerhoff, P. J. Environ. Eng. 2012, 138, 852-861.

- (16) Doudrick, K.; Yang, T.; Hristovski, K.; Westerhoff, P. Appl. Catal, B 2013, 136–137, 40–47.
- (17) Hirayama, J.; Kondo, H.; Miura, Y.; Abe, R.; Kamiya, Y. Catal. Commun. 2012, 20, 99–102.

(18) Hirayama, J.; Abe, R.; Kamiya, Y. Appl. Catal., B 2014, 144, 721–729.

(19) Shand, M.; Anderson, J. A. Catal. Sci. Technol. 2013, 3, 879–899.

(20) Maeda, K. ACS Catal. 2013, 3, 1486-1503.

(21) Ohtani, B. J. Photochem. Photobiol., C 2010, 11, 157-178.

(22) Amano, F.; Yasumoto, T.; Shibayama, T.; Uchida, S.; Ohtani, B. Appl. Catal, B 2009, 89, 583-589.

(23) Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. Chem. Commun. 2001, 2416–2417.

- (24) Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. J. Photochem. Photobiol., A **2002**, 148, 71–77.
- (25) Abe, R.; Sayama, K.; Sugihara, H. J. Phys. Chem. B 2005, 109, 16052–16061.

(26) Abe, R.; Takata, T.; Sugihara, H.; Domen, K. Chem. Commun. 2005, 3829-3831.

(27) Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A. Chem. Lett. 2004, 33, 1348-1349.

(28) Schwartz, T. J.; Goodman, S. M.; Osmundsen, C. M.; Taarning, E.; Mozuch, M. D.; Gaskell, J.; Cullen, D.; Kersten, P. J.; Dumesic, J. A. ACS Catal. **2013**, *3*, 2689–2693.

(29) Denard, C. A.; Hartwig, J. F.; Zhao, H. ACS Catal. 2013, 3, 2856–2864.

(30) Potapov, V. V.; Serdan, A. A.; Kashpura, V. N.; Gorbach, V. A.; Tyurina, N. A.; Zubakha, S. V. *Glass Phys. Chem.* **2007**, *33*, 44–49.

(31) Two cubic centimeters of a 10% (w/v) aqueous (NH₄)₆Mo₇O₂₄ solution and 1 cm³ of hydrochloric acid (6 mol dm⁻³) were added to 50 cm³ of the reaction solution (entries 2 and 4–6 in Table 3). The solution was allowed to stand for 5 min at 293 K, and then the absorbance of the solution at 440 nm was measured on a spectrophotometer to estimate the amount of $[SiMo_{12}O_{40}]^{4-}$ in the solution.

(32) Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. *Langmuir* **2001**, *17*, 2664–2669.