
This article was downloaded by: [Moskow State Univ Bibliote] On: 12 December 2013, At: 04:55 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lncn20</u>

Synthesis of Cyclic ADP-Carbocylcic-Xylose and its 3''- O O -Methyl Analogue as Stable and Potent Ca²⁺-Mobilizing Agents

Takashi Kudoh $^{\rm a}$, Akira Matsuda $^{\rm a}$, Satoshi Shuto $^{\rm a}$, Takashi Murayama $^{\rm b}$ & Yasuo Ogawa $^{\rm b}$

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan

^b Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan Published online: 07 Feb 2007.

To cite this article: Takashi Kudoh , Akira Matsuda , Satoshi Shuto , Takashi Murayama & Yasuo Ogawa (2006) Synthesis of Cyclic ADP-Carbocylcic-Xylose and its 3^{''}- O O -Methyl Analogue as Stable and Potent Ca²⁺-Mobilizing Agents, Nucleosides, Nucleotides and Nucleic Acids, 25:4-6, 583-599, DOI: <u>10.1080/15257770600685867</u>

To link to this article: http://dx.doi.org/10.1080/15257770600685867

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

SYNTHESIS OF CYCLIC ADP-CARBOCYLCIC-XYLOSE AND ITS 3"-O-METHYL ANALOGUE AS STABLE AND POTENT Ca²⁺-MOBILIZING AGENTS

Takashi Kudoh, Akira Matsuda, and Satoshi Shuto \Box *Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan*

Takashi Murayama and Yasuo Ogawa Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan

 \Box We previously showed that 3"-deoxy-cyclic ADP-carbocyclic-ribose (3"-deoxy-cADPcR, **3**) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, **1**), a Ca²⁺-mobilizing second messenger. From these results, we newly designed another 3"-modified analogues of cADPcR and identified the N1-"xylo"-type carbocyclic analogue, i.e., cADPcX (**4**), as one of the most potent cADPR-related compounds reported so far.

Keywords cADPR; Calcium; Second messenger

INTRODUCTION

Much attention has been focused on cyclic ADP-ribose (cADPR, 1, Figure 1), a naturally occurring metabolite of NAD⁺,^[1] due to the biological interest.^[2] cADPR has been shown to mobilize intracellular Ca²⁺ in various cells, and is now recognized as a general mediator involved in Ca²⁺ signaling.^[2] Under neutral conditions, cADPR is in a zwitterionic form with a positive charge around the N(1)-C(6)-N⁶ moiety (pK_a = 8.3), making the molecule unstable. The charged adenine moiety attached to the anomeric carbon of the N1-ribose can be an efficient leaving group. Accordingly, cADPR is readily hydrolyzed at the unstable *N*-1-ribosyl linkage of its adenine moiety to produce ADP-ribose (ADPR), even in neutral aqueous

Received 5 January 2006; accepted 18 January 2006.

This article is dedicated to Professor Eiko Ohtsuka on the occasion of her 70th birthday.

This report constitutes Part 239 of Nucleosides and Nucleotides. Part 238: Ichikawa, S.; Minakawa, N.; Shuto, S.; Tanaka, M.; Sasaki, T.; Matsuda, A. Synthesis of 3'-β-carbamoylmethylcytidine (CAMC) and its derivatives as potential Antitumor agents. Organic and Biomolecular Chemistry **2006**, 4, 1284–1296.

Address correspondence to Satoshi Shuto, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan. E-mail: shu@pharm.hokudai.ac.jp

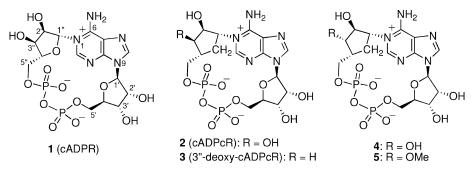
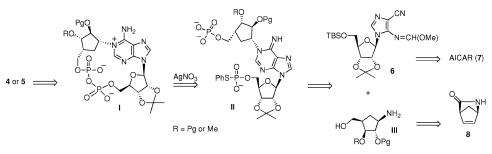


FIGURE 1 cADPR (1), cADPcR (2), and the 3"-modified cADPcR analogues 3-5.

solution.^[3] Under physiological conditions, cADPR is also hydrolyzed at the *N*-1-ribosyl linkage by cADPR hydrolase to give the inactive ADPR.^[3]

cADPR analogues can be used in proving the mechanism of cADPRmediated Ca²⁺ signaling pathways and are also expected to be lead structures for the development of drugs, since cADPR has been shown to play important physiological roles.^[2] Therefore, the synthesis of cADPR analogues has been extensively investigated by enzymatic and chemo-enzymatic methods using ADP-ribosyl cyclase-catalyzed cyclization. However, the analogues obtained by these methods are limited due to the substrate-specificity of the ADPribosyl cyclase.^[2]


On the other hand, in the chemical synthesis of cADPR and its analogues, construction of the large 18-membered ring structure is the key step, and we recently developed an efficient method for forming the 18-membered ring employing phenylthiophosphate-type substrates.^[4] When these substrates were activated by AgNO₃ or I₂ in the presence of molecular sieves in pyridine, the corresponding 18-membered ring products were obtained in high yields.^[4b,c] Using this method, we successfully synthesized cyclic ADP-carbocyclic-ribose (cADPcR, **2**),^[4c] designed as a stable mimic of cADPR, in which the oxygen atom in the *N*-1-ribose ring of cADPR is replaced by a methylene group. Biological evaluation of cADPcR showed that it actually act as biologicically and chemically stable equivalent of cADPR.^[4c]

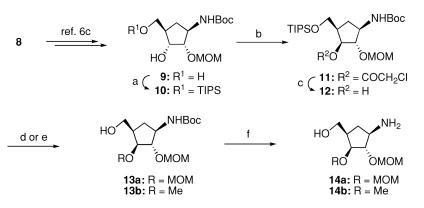
Based on these results, we have investigated further synthetic and biological studies on N1-carbocyclic derivatives of cADPR.^[5] In the course of these studies, we describe here the synthesis and biological evaluation of newly designed analogues of cADPcR, which are cyclic ADP-carbocyclic-xylose (cADPcX, **4**) and the corresponding 3"-O-methyl derivative (3"-OMe-cADPcX, **5**).

RESULTS AND DISCUSSION

Design and Synthetic Plan

We previously showed (1) that cADPcR (2) is actually resistant to both enzymatic and chemical hydrolysis, since it has a chemically and biologically

SCHEME 1

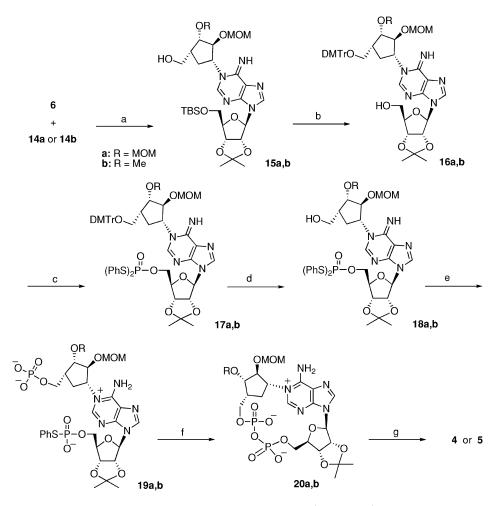

stable *N*-alkyl linkage instead of the unstable N1-glycosidic linkage of cADPR,^[4b] (2) that cADPcR has a conformation similar to that of cADPR,^[5c] and (3) that cADPcR, like cADPR, effectively mobilizes intracellular Ca²⁺ in sea urchin eggs and neuronal cells.^[4c,5b,c] Furthermore, we have investigated SAR of the N1-ribose moiety of cADPcR and clarified that modification at the N1-ribose moiety changes the biological potency.^[5b,c] Throughout these studies, we also found that although deletion of the 2″-hydroxy group resulted in a marked reduction of potency, deletion of the adjacent 3″-hydroxy group (3″-deoxy-cADPcR, **3**) greatly potentiated the Ca²⁺-mobilizing ability in sea urchin eggs.^[5c] These results suggest that modification at the 3″-position may improve the biological potency of cADPR and its analogues. Thus, we newly designed another 3″-modified analogues of cADPcR, which were the N1-"xylo"-type carbocyclic analogue, i.e., cADPcX (**4**) and the corresponding *O*-methyl analogue **5**.

As described above, we have developed an efficient total synthetic method for cADPR analogues,^[4] which we^[5] and other groups^[6] have effectively used in the synthesis of a variety of cADPR analogues. Thus, we planned to synthesize the target compounds based on the previous total synthetic method.

The synthetic plan is shown in Scheme 1 as a retrosynthetic analysis. The chiral carbocyclic–xylosyl amines **III**, composing the N1-substituted moiety in the targets **4** and **5**, could be prepared from commercially available (1R)-(–)-2-azabicyclo[2.2.1]hept-5-en-3-one (**8**). From these carbocyclic amines **III** and the known imidazole nucleoside derivative **6**,^[4b] the 5'-phenylthiophosphate-type substrates **II** for the key intramolecular condensation could be prepared. Treatment of **II** with AgNO₃/MS 3A as a promoter^[4a,b] was expected to form the cyclized products **I**, and subsequent acidic treatment for deprotection would furnish the desired cADPcR analogues **4** and **5**.

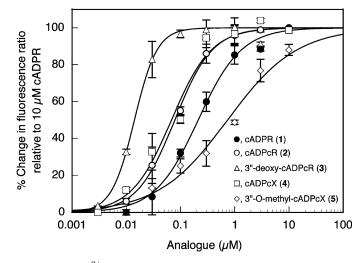
Synthesis

The carbocyclic-xylosyl amine units **14a** and **14b** were synthesized from the optically active bicyclic lactam **8**, as summarized in Scheme 2. After



SCHEME 2 Reagents and conditions: a) TIPSCl, imidazole, DMAP, DMF, rt, 91%; b) ClCH₂CO₂H, DIAD, Ph₃P, toluene, 0°C, 74%; c) NaOMe, MeOH, rt, 88%; d) 1) MOMCl, *i*-Pr₂NEt, CH₂Cl₂, rt, 2) TBAF, THF, rt, 97% (**13a**); e) 1) MeOTf, DTBMP, CH₂Cl₂, rt, 2) TBAF, THF, rt, 45% (**13b**); f) H₂O, reflux, quant. (**14a**, **14b**).

protection of the primary hydroxyl with a triisopropysilyl (TIPS) group of cabocylicilc-ribose derivative **9**, prepared from **8** according to the previously reported method,^[5c] treatment of the resulting **10** under Mitsunobu reaction conditions with ClCH₂CO₂H/DIAD/Ph₃P gave the corresponding 3-position-inverted product **11**, and subsequent removal the 3-*O*-chloroacetly group with NaOMe/MeOH to afford the carbocyclic-xylose derivative **12**. The 3-hydroxy of **12** was protected with a MOM group under usual conditions or methylated with MeOTf and 2,6-di-*tert*-butyl-4-methylpyridine (DTBMP), followed by removal of the TIPS and BOC groups, to give the desired 3-*O*-MOM-ptotected unit **14a** or the 3-*O*-methyl unit **14b**, respectively.


The target 3"-modified cADPcR analogues **4** and **5** were successfully synthesized from the carbocyclic amines **14a** or **14b** and the imidazole nucleoside **6**, as shown in Scheme 3.

The *N*-1-substituted adenosine derivatives **15a** and **15b** were obtained in high yield by the treatment of a mixture of **6** and either amine **14a** or amine **14b** with K_2CO_3 in MeOH at room temperature. The 5"-hydroxy group of **15a** or **15b** was protected with a dimethoxytrityl (DMTr) group, and the 5'-*O*-TBS group of the product was subsequently removed with TBAF to give **16a** or **16b**. Treatment of **16a** or **16b** under the conditions reported by Hata and co workers with an *S*,*S*'-diphenylphosphorodithioate (PSS)/2,4,6triisopropylbenzenesulfonyl chloride (TPSCI)/pyridine system^[7] gave the 5'-*bis*(phenylthio)phosphate **17a** or **17b**, respectively. The 5"-*O*-DMTr group of **17a** or **17b** was removed to give **18a** or **18b**, respectively. A phosphoryl group was introduced at the resulting 5"-primary hydroxyl of **18a** or **18b** by Yoshikawa's method with POCl₃/(EtO)₃PO,^[8] followed by treatment of the product with H₃PO₂ and Et₃N^[9] in the presence of *N*-methylmaleimide (NMM)^[4c] in pyridine, to afford the corresponding 5'-phenylthiophosphate **19a** or **19b**, respectively, which was the substrate of the key intramolecular

SCHEME 3 Reagents and conditions: a) K_2CO_3 , MeOH, rt, 83% (15a), 84% (15b); :b) 1) DMTrCl, pyridine, rt, 2) TBAF, AcOH, THF, rt, quant. (16a), quant. (16b); c) PSS, TPSCl, py, rt, 65% (17a), 62% (17b); d) aq. 60% AcOH, rt, 83% (18a), 88% (18b); e) 1) POCl₃, (EtO)₃PO, 0°C, 2) H₃PO₂, Et₃N, NMM, pyridine, 0°C, 46% (19a), 58% (19b; f) AgNO₃, MS 3A, Et₃N, py, rt, 46% (20a), 47% (20b); h) aq. 80% HCO₂H, then aq. NH₃, rt, 90% (4), quant. (5).

condensation reaction. When a solution of **19a** in pyridine was added slowly to a mixture of a large excess of AgNO₃ and Et₃N in the presence of MS 3A in pyridine at room temperature,^[4b,c] the intramolecular pyrophosphate linkage was successfully formed as the previously reported cases to give the desired cyclization product **20a** in 46% yield. The other substrate **19b** was similarly condensed and the cyclization product **20b** was obtained. Finally, the protecting groups of **20a** and **20b** were simultaneously removed by acidic treatment with aqueous HCO₂H furnished the target cADPcX (**4**) and 3"-OMe-cADPcX (**5**).

FIGURE 2 Dose-dependent Ca²⁺-mobilizing activity of compounds in sea urchin egg homogenate. The Ca²⁺-mobilizing activity of each compound was expressed as a percent change in ratio of fura-2 fluorescence (F340/F380) relative to that of 10 μ M cADPR. The compounds examined are cADPR (1, filled circles), cADPcR (2, open circles), 3"-deoxy-cADPcR (3, open triangles), cADPcX (4, open squares), and 3"-O-methyl-cADPcX (5, open diamonds). Data are mean ± SEM of 3–6 experiments.

Ca²⁺-Mobilizing Activity in Sea Urchin Egg Homogenate

The Ca^{2+} -mobilizing ability of the newly synthesized compounds 4 and 5 was evaluated by the fluorometrically Ca^{2+} -monitoring method with H. pulcherrimus sea urchin egg homogenate,^[5b,10] and the results were compared with those of the natural second messenger cADPR (1) and the related carbocyclic analogues cADPcR (2) and 3"-deoxy-cADPcR (3). Both of the two newly synthesized compounds 4 and 5 released Ca^{2+} from the homogenate in a dose-dependent manner, as shown in Figure 2, where the maximal Ca²⁺mobilizing activity was almost equal to that of cADPR. Thus, 4 and 5 were shown to be full agonists as cADPcR (2) and 3"-deoxy-cADPcR (3). cADPcX (4), the 3''-epimer of cADPcR, showed marked Ca²⁺-mobilizing activity with an EC₅₀ value of 69 nM, which was similar to that of cADPcR with an EC₅₀ value of 79 nM and was 3 times more potent than the natural ligand cADPR $(EC_{50} = 220 \text{ nM})$. The 3"-O-methyl cADPcX (5) showed an EC₅₀ value of 740 nM, which was about 10 times weaker than cADPcX. Similar to the case of cADPcR, 3"-methylation of the 3"-hydroxy group of cADPcX markedly reduced the activity.

CONCLUSION

We successfully synthesized cADPcX (4), the 3"-epimer of cADPcR (2), and the corresponding 3"-O-methyl analogue (3"-OMe-cADPcX, 5) and identified cADPcX as one of the most potent cADPR-related compounds reported so far. Therefore, irrespective of the 3"-configuration, both cADPcX and cADPcR have strong Ca²⁺-mobilizing activity to suggest that the 3"-hydroxy group seems to be unnecessary in their binding with the target biomolecule, which is in accord with the previous results on the 3"-deoxy-cADPcR with remarkable activity.^[5c]

EXPERIMENTAL

General Methods

Chemical shifts are reported in ppm downfield from Me₄Si (¹H), MeCN (¹³C) or H₃PO₄ (³¹P). All of the ¹H NMR assignments described were in agreement with COSY spectra. Thin-layer chromatography was done on Merck coated plate $60F_{254}$. Silica gel chromatography was done on Merck silica gel 5715. Reactions were carried out under an argon atmosphere.

(1R, 2S, 3R, 4R-1-tert -Butoxycarbonylamino-2-(methoxymethyloxy)-3-hydroxy-4 -(triisopropylsilyloxymethyl)cyclopentane (10). A mixture of 9 (1.20 g, 4.12 mmol), TIPSCl (2.12 ml, 9.88 mmol), imidazole (1.01 g, 14.8 mmol), and DMAP (0.604 g, 4.94 mmol) in DMF (40 ml) was stirred at room temperature for 4 h. After addition of MeOH (10 ml), the resulting mixture was evaporated. The residue was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, 25% EtOAc in hexane) to give 10 (1.68 g, 91%) as a colorless oil: ¹H-NMR (CDCl₃, 500 MHz) δ 4.98 (brs, 1H, NH), 4.78 (d, 1H, MOM-CH₂, J = 6.4 Hz), 4.72 (d, 1H, MOM-CH₂, J = 6.4 Hz), 4.08 (m, 1H, H-3), 3.99 (m, 1H, H-1), 3.88 (dd, 1H, H-6a, $J_{6a,6b} = 9.6$ Hz, $J_{6a,4} = 2.8$ Hz), 3.80 (m, 1H, H-2), 3.69 (dd, 1H, H-6b, $I_{6b,6a} = 9.6$ Hz, $I_{6b,4} = 3.2$ Hz), 3.41 (s, 3H, MOM-CH₃), 2.66 (brs, 1H, OH), 2.37 (m, 1H, H-5a), 2.04 (m, 1H, H-4), 1.42 (s, 9H, tert-Bu), 1.33 (m, 1H, H-5b), 1.07-1.18 (m, 21H, TIPS); ¹³C-NMR (CDCl₃, 125 MHz) & 155.10, 96.53, 84.21, 79.13, 72.64, 63.66, 55.73, 53.62, 45.40, 30.33, 28.36, 18.00, 12.05; HRMS (FAB, positive) calcd for C₂₂H₄₆NO₆Si 448.3094 (MH⁺), found 448.3109.

(1R,2S,3S,4R)-1-tert -Butoxycarbonylamino-2-(methoxymethyloxy)-3-(chloroacethoxy)-4-(triisopropylsilyloxymethyl)cyclopentane (11). To a mixture of 10 (0.160 g, 0.357 mmol), chloroacetic acid (0.135 g, 1.43 mmol), and Ph₃P (0.374 g, 1.43 mmol) in toluene (2 ml), a solution of DIAD (281 μ l, 1.43 mmol) in toluene (1.5 ml) was added slowly at 0°C, and the mixture was stirred at room temperature for 6 h and then evaporated. The residue was purified by column chromatography (SiO₂, 10% EtOAc in hexane) to give 11 (0.139 g, 74%) as a colorless oil: ¹H-NMR (CDCl₃, 500 MHz) δ 5.21 (dd, 1H, H-3, $J_{3,2}$ = 3.9 Hz, $J_{3,4}$ = 6.0 Hz), 4.86 (m, 1H, NH), 4.72 (d, 1H, MOM-CH₂, J = 6.6 Hz), 4.69 (d, 1H, MOM-CH₂, J = 6.6 Hz), 4.05 (s, 2H, Cl-Ac), 3.97 (m, 1H, H-1), 3.92 (m, 1H, H-2), 3.70 (m, 2H, H-6 × 2), 3.36 (s, 3H, MOM-CH₃), 2.48 (m, 1H, H-4), 2.38 (m, 1H, H-5a), 1.43 (m, 10H, H-5b, *tert*-Bu), 1.09 (m, 21H, TIPS); ¹³C-NMR (CDCl₃, 125 MHz) δ 166.33, 155.16, 95.70, 85.43, 79.78, 73.06, 70.82, 61.80, 55.48, 54.77, 41.55, 40.78, 32.43, 28.35, 17.95, 11.89; HRMS (FAB, positive) calcd for C₂₄H₄₇ClNO₇Si 524.2810 (MH⁺), found 524.2816.

(1R, 2S, 3S, 4R)-1-tert-Butoxycarbonylamino-2-(methoxymethyloxy)-3-hydroxy-4 -(triisopropylsilyloxymethyl)cyclopentane (12). A mixture of 11 (0.173 g, 0.330 mmol) and NaOMe (1 M in MeOH, 50 μ l, 50 μ mol) in MeOH (3 ml) was stirred at room temperature for 30 min. After addition of aqueous saturated NH_4Cl (1 ml) at 0°C, the resulting mixture was extracted with EtOAc, and the organic layer was washed with H_2O and brine, dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography $(SiO_2,$ 25% EtOAc in hexane) to give **12** (0.130 g, 88%) as a colorless oil: ¹H-NMR $(DMSO-d_6, 500 \text{ MHz}) \delta 6.69 \text{ (d, 1H, NH, } I = 7.3 \text{ Hz}), 4.70 \text{ (d, 1H, OH,}$ J = 4.6 Hz), 4.63 (d, 1H, MOM-CH₂, J = 6.4 Hz), 4.60 (d, 1H, MOM-CH₂, J = 6.4 Hz, 3.84 (m, 2H, H-6a, H-3), 3.62 (m, 1H, H-1), 3.58 (m, 2H, H-2, H-6b), 3.22 (s, 3H, MOM-CH₃), 2.02 (m, 1H, H-4), 1.96 (m, 1H, H-5a), 1.36 (s, 10H, H-5b, *tert*-Bu), 1.03 (m, 21H, TIPS); ¹³C-NMR (DMSO-d₆, 125 MHz) δ 156.04, 95.36, 88.30, 78.17, 74.92, 63.31, 55.46, 55.04, 43.62, 32.28, 28.56, 18.16, 11.67; HRMS (FAB, positive) calcd for C₂₂H₄₆NO₆Si 448.3094 (MH⁺), found 448.3092.

(1R, 2S, 3S, 4R-1-tert -Butoxycarbonylamino-2, 3-bis (methoxymethyloxy)-4-hydroxymethylcyclopentane (13a). A mixture of 12 (0.871 g, 1.95 mmol), MOMCI (739 µl, 9.73 mmol) and *i*-Pr₉NEt (3.39 ml, 19.5 mmol) in CH₉Cl₉ (20 ml) was stirred at room temperature for 75 h. After addition of MeOH (10 ml), the resulting mixture was evaporated. The residue was partitioned between EtOAc and 0.1 M HCl, and the organic layer was washed in H_2O and brine, dried (Na₂SO₄), and evaporated. A mixture of the residue and TBAF (1.0 M in THF, 3.0 ml, 3.0 mmol) in THF (20 ml) was stirred at room temperature for 1 h and then evaporated. The residue was purified by column chromatography (SiO₂, EtOAc) to give 13a (0.634 g, 97%) as a yellow oil: ¹H-NMR (DMSO- d_6 , 500 MHz) δ 6.85 (d, 1H, NH, J = 7.9 Hz), 4.64 (d, 1H, MOM-CH₂, I = 6.5 Hz), 4.59 (m, 3H, MOM-CH₂ × 3), 4.34 (m, 1H, OH), 3.84 (m, 1H, H-3), 3.80 (m, 1H, H-2), 3.66 (m, 1H, H-1), 3.50 (m, 1H, H-6a), 3.38 (m, 1H, H-6b), 3.26 (s, 3H, MOM-CH₃), 3.23 (s, 3H, MOM-CH₃), 2.06 (m, 1H, H-4), 1.93 (m, 1H, H-5a), 1.33 (s, 9H, tert-Bu), 1.32 (m, 1H, H-5b); ¹³C-NMR (DMSO-d₆, 125 MHz) δ 155.15, 95.14, 94.64, 85.42, 80.11, 77.69, 60.05, 55.65, 54.98, 54.72, 42.69, 32.25, 28.39; FAB-MS m/z 336 (MH⁺); Anal. Calcd for C₁₅H₂₉NO₇: C, 53.72; H, 8.72; N, 4.18. Found; C, 53.49; H, 8.57; N, 4.00.

(1R, 2S, 3S, 4R)-1-tert -Butoxycarbonylamino-2-(methoxymethyloxy)-3-methoxy-4-hydroxymethylcyclopentane (13b). A mixture of 12 (0.513 g, 1.15 mmol), MeOTf (648 μ l, 5.73 mmol) and DTBMP (1.29 g, 6.30 mmol) in CH₂Cl₂ (11 ml) was stirred at room temperature for 12 h. After addition of aqueous saturated NaHCO₃ (10 ml) at 0° C, the mixture was extracted with EtOAc, and the organic layer was washed with H_2O and brine, dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, 10% EtOAc in hexane) to give the 3-O-methylated product (0.259 g, 49%)as a colorless oil. A mixture of the oil and TBAF (1.0 M in THF, 0.84 ml, 0.84 mmol) in THF (5 ml) was stirred at room temperature for 2 h and then evaporated. The residue was purified by column chromatography $(SiO_2, 75\% EtOAc in hexane)$ to give **13b** (0.154 g, 90%) as a yellow oil: ¹H-NMR (DMSO- d_6 , 500 MHz) δ 6.84 (d, 1H, NH, J = 8.0 Hz), 4.65 (d, 1H, MOM-CH₂, J = 6.5 Hz), 4.58 (d, 1H, MOM-CH₂, J = 6.5 Hz), 4.29 (m, 1H, OH), 3.77 (dd, 1H, H-2, $I_{2,1} = 5.1$ Hz, $I_{2,3} = 3.0$ Hz), 3.65 (m, 1H, H-1), 3.55 (m, 1H, H-6a), 3.47 (dd, 1H, H-3, $J_{3,2} = 3.0$ Hz, $J_{3,4} = 5.8$ Hz), 3.32 (m, 1H, H-6b), 3.24 (s, 6H, OMe, MOM-CH₃), 2.04 (m, 1H, H-4), 1.91 (m, 1H, H-5a), 1.36 (s, 9H, tert-Bu), 1.30 (m, 1H, H-5b); ¹³C-NMR (DMSO-d₆, 125 MHz) & 155.16, 94.70, 84.84, 84.45, 77.68, 59.93, 56.82, 55.69, 54.74, 42.65, 32.30, 28.39; FAB-MS m/z 306 (MH⁺); Anal. Calcd for C₁₄H₂₇NO₆: C, 55.07; H, 8.91; N, 4.59. Found; C, 55.09; H, 8.76; N, 4.51.

(1R, 2S, 3S, 4R)-1-Amino-2, 3-bis (methoxymethyloxy)-4-hydroxymethylcyclopentane (14a). A solution of 13a (0.614 g, 1.83 mmol) in H₂O (18 ml) was stirred at 100°C for 12 h and then evaporated. The residue was azeoptroped with toluene (10 ml × 3) to give 14a (0.430 g, quant.) as a brown oil: ¹H-NMR (DMSO-d₆, 500 MHz) δ 4.67 (d, 1H, MOM-CH₂, J=6.5 Hz), 4.59 (m, 3H, MOM-CH₂ × 3), 3.85 (dd, 1H, H-3, $J_{3,2}$ =3.5 Hz, $J_{3,4}$ =6.0 Hz), 3.57 (m, 1H, H-2), 3.50 (dd, 1H, H-6a, $J_{6a,6b}$ =10.3 Hz, $J_{6a,4}$ =7.0 Hz), 3.37 (dd, 1H, H-6b, $J_{6b,6a}$ =10.3 Hz, $J_{6b,4}$ =6.5 Hz), 3.26 (s, 6H, MOM-CH₃ × 2), 2.96 (m, 1H, H-1), 2.06 (m, 1H, H-4), 1.92 (m, 1H, H-5a), 1.15 (s, 1H, H-5b); ¹³C-NMR (DMSO-d₆, 125 MHz) δ 95.24, 95.18, 89.75, 80.81, 60.41, 56.84, 54.98, 54.86, 42.57, 35.50; HRMS (FAB, positive) calcd for C₁₀H₂₂NO₅ 236.1498 (MH⁺), found 236.1508.

(1R,2S,3S,4R)-1-Amino-2-(methoxymethyloxy)-3-methoxy-4-hydroxymethylcyclopentane (14b). Compound 14b (0.239 g, quant.) was obtained from 13b (0.351 g, 1.15 mmol) as described for the synthesis of 14a: ¹H-NMR (DMSO- d_6 , 500 MHz) δ 4.68 (d, 1H, MOM-CH₂, J=6.6 Hz), 4.62 (d, 1H, MOM-CH₂, J=6.6 Hz), 3.53 (m, 1H, H-2), 3.49 (m, 2H, H-3, H-6a), 3.33 (m, 1H, H-6b), 3.27 (s, 3H, MOM-CH₃ or OMe), 3.25 (s, 3H, MOM-CH₃ or OMe), 2.95 (m, 1H, H-1), 2.06 (m, 1H, H-4), 1.91 (m, 1H, H-5a), 1.14 (s, 1H, H-5b); ¹³C-NMR (DMSO- d_6 , 125 MHz) δ 95.30, 89.03, 85.62, 60.28, 56.96, 56.91, 54.87, 42.50, 35.44; HRMS (FAB, positive) calcd for C₉H₂₀NO₄ 206.1392 (MH⁺), found 206.1390.

N-1-{(*1R*, 2*S*, 3*S*, 4*R*)*-2*, 3-Bis(*methoxymethyloxy*)*-4-*(*hydroxymethyl*)*cyclopentyl*} -5'-O-(tert -*butyldimethylsilyl*)*-2'*, 3'-O-isopropylideneadenosine (**15a**). A mixture of **6** (0.765 g, 1.75 mmol), **14a** (0.417 g, 1.77 mmol), and K₂CO₃ (12 mg, 88 μ mol) in MeOH (18 ml) was stirred at room temperature for 12 h and then evaporated. The residue was partitioned between EtOAc and H₂O, and

the organic layer was washed with brine, dried (Na_2SO_4) , and evaporated. The residue was purified by column chromatography (SiO₂, 25% MeOH in EtOAc) to give 15a (0.930 g, 83%) as a white foam: ¹H-NMR (CDCl₃, 500 MHz) δ 7.91 (s, 1H, H-2 or H-8), 7.82 (s, 1H, H-2 or H-8), 6.02 (d, 1H, H-1', $J_{1',2'} = 2.7$ Hz), 5.37 (m, 1H, H-1"), 5.09 (dd, 1H, H-2', $J_{2',1'} = 2.7$ Hz, $J_{2',3'} = 6.1$ Hz), 4.89 (dd, 1H, H-3', $J_{3',2'} = 6.1$ Hz, $J_{3',4'} = 2.4$ Hz), 4.81 $(d, 1H, MOM-CH_2, J = 6.6 Hz), 4.76 (d, 1H, MOM-CH_2, J = 6.6 Hz), 4.69 (d, J)$ 1H, MOM-CH₂, J = 6.9 Hz), 4.65 (d, 1H, MOM-CH₂, J = 6.9 Hz), 4.48 (m, 1H, H-2"), 4.39 (ddd, 1H, H-4', $J_{4',3'} = 2.4$ Hz, $J_{4',5'a} = 6.4$ Hz, $J_{4',5'b} = 3.7$ Hz), 4.19 (dd, 1H, H-3", $\int_{3'',2''} = 3.5$ Hz, $\int_{3,4''} = 5.8$ Hz), 3.83 (m, 2H, H-5' a, H-5"a), 3.77 (m, 2H, H-5' b, H-5"b), 3.45 (s, 3H, MOM-CH₃), 3.21 (s, 3H, MOM-CH₃), 2.47 (m, 1H, H-4"), 2.39 (m, 1H, H-6"a), 2.02 (m, 1H, H-6"b), 1.61, 1.39 (each s, each 3H, isopropylidene), 0.86 (s, 9H, tert-Bu), 0.046, 0.035 (each s, each 3H, TBS-Me \times 2); ¹³C-NMR (CDCl₃, 125 MHz) δ 154.45, 146.66, 140.62, 136.78, 123.40, 114.16, 96.39, 95.63, 91.26, 87.03, 85.32, 84.38, 81.76, 81.33, 63.46, 61.56, 60.08, 56.02, 55.49, 42.10, 31.22, 27.23, 25.86, 25.38, 18.32, -5.43, -5.54; FAB-MS m/z 640 (MH⁺); UV (MeOH) $\lambda_{\text{max}} = 261, 295$ (sh) nm; Anal. Calcd for C₂₉H₄₉N₅O₉Si: C, 54.44; H, 7.72; N, 10.95. Found; C, 54.24; H, 7.66; N, 10.84.

N-1-[(1R,2S,3S,4R)-2,3-bis (methoxymethyloxy)-4-(dimethoxytrityloxy methyl) cyclopentyl]-2', 3'-O-isopropylideneadenosine (16a). A mixture of 15a (0.884 g, 1.38 mmol) and DMTrCl (1.40 g, 4.14 mmol) in pyridine (15 ml) was stirred at room temperature for 10 min. After addition of MeOH (10 ml), the resulting mixture was evaporated. The residue was partitioned between EtOAc and H_2O , and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. A mixture of the residue, TBAF (1.0 M in THF, 2.76 ml, 2.76 mmol) and AcOH (79 μ l, 1.38 mmol) in THF (10 ml) was stirred at room temperature for 3 h and then evaporated. The residue was purified by column chromatography (SiO₂, 25% MeOH in EtOAc) to give **16a** (1.19 g, quant.) as a white foam: ¹H-NMR (CDCl₃, 500 MHz) δ 8.00 (s, 1H, H-2 or H-8), 7.62 (s, 1H, H-2 or H-8), 6.82–7.43 (m, 13H, DMTr), 5.79 (m, 2H, H-1', H-1"), 5.02 (m, 2H, H-2', H-3'), 4.81 (d, 1H, MOM-CH₂, J = 6.9 Hz), 4.67 (d, 1H, MOM-CH₂, I = 6.9 Hz), 4.61 (d, 1H, MOM-CH₂, I = 6.7 Hz), 4.54 (d, 1H, MOM-CH₂, I = 6.7 Hz), 4.47 (m, 1H, H-4'), 4.20 (m, 1H, H-3''), 4.12 (m, 1H, H-2''), 3.91 (m, 1H, H-5'a), 3.80 (s, 6H, DMTr-OMe × 2), 3.72 (m, 1H, H-5'b), 3.33 (s, 3H, MOM-CH₃), 3.29 (m, 1H, H-5"a), 3.25 (s, 3H, MOM-CH₃), 3.13 (m, 1H, H-5"b), 2.68 (m, 1H, H-4"), 2.56 (m, 1H, H-6"a), 1.62, 1.35 (each s, each 3H, isopropylidene), 1.49 (m, 1H, H-6" b); ¹³C-NMR (CDCl₃, 125 MHz) δ 158.45, 146.70, 144.96, 137.95, 136.31, 136.11, 129.97, 129.93, 128.12, 127.79, 126.76, 114.20, 113.09, 113.06, 96.41, 94.93, 93.90, 86.00, 85.82, 83.61, 81.37, 63.19, 61.56, 60.37, 58.81, 55.98, 55.60, 55.20, 42.94, 35.23, 27.55, 25.18, 21.02, 14.19; HRMS (FAB, positive) calcd for $C_{44}H_{54}N_5O_{11}$ 828.3820 (MH⁺), found 828.3818; UV (MeOH) $\lambda_{max} = 260$, 295 (sh) nm.

N-1-[(1R,2S,3S,4R)-2,3-Bis (methoxymethyloxy)-4-(dimethoxytrityloxymethyl) cyclopentyl]-5'-O-{bis(phenylthio)phospholyl}-2',3'-O-isopropylide-neadenosine (17a). After stirring a mixture of PSS (1.56 g, 4.09 mmol) and TPSCI (1.12 g, 3.69 mmol) in pyridine (14 ml) at room temperature for 1 h, 16a (1.13 g, 1.36 mmol) was added, and the resulting mixture was stirred at room temperature for further 2 h and then evaporated. The residue was partitioned between EtOAc and H_2O , and the organic layer was washed with brine, dried (Na_2SO_4) , and evaporated. The residue was purified by column chromatography (SiO₂, 2% MeOH in CHCl₃) to give 17a (0.890 g, 65%) as a white foam: ¹H-NMR (CDCl₃, 500 MHz) δ 7.95 (s, 1H, H-2 or H-8), 7.64 (s, 1H, H-2 or H-8), 6.81-7.51 (m, 23H, DMTr, SPh × 2), 5.96 (d, 1H, H-1', $J_{1'2'} = 2.6$ Hz), 5.76 (m, 1H, H-1"), 5.07 (dd, 1H, H-2', $J_{2',1'} = 2.6$ Hz, $J_{2',3'} = 6.3$ Hz), 4.85 (dd, 1H, H-3', $J_{3',2'} = 6.3$ Hz, $J_{3',4'} = 2.7$ Hz), 4.76 (d, 1H, MOM-CH₂, J = 6.8 Hz), 4.64 (d, 1H, MOM-CH₂, J = 6.8 Hz), 4.57 (d, 1H, MOM-CH₂, J = 6.7 Hz), 4.53 (d, 1H, MOM-CH₂, J = 6.7 Hz), 4.41 (m, 1H, H-4'), 4.38 (m, 2H, H-5' \times 2), 4.20 (d, 1H, H-3", $\int_{3'',4''} = 4.0$ Hz), 4.14 (d, 1H, H-2", $\int_{2'',1''} = 2.6$ Hz), 3.79 (s, 6H, DMTr-OMe \times 2), 3.30 (m, 1H, H-5"a), 3.27 (s, 3H, MOM-CH₃), 3.19 (s, 3H, MOM-CH₃), 3.16 (m, 1H, H-5"b), 2.61 (m, 1H, H-4"), 2.54 (m, 1H, H-6"a), 1.59, 1.34 (each s, each 3H, isopropylidene), 1.54 (m, 1H, H-6"b); ¹³C-NMR (CDCl₃, 125 MHz) δ 158.43, 154.52, 146.61, 144.99, 140.49, 136.94, 136.35, 136.17, 135.34, 135.29, 135.21, 135.17, 129.98, 129.96, 129.66, 129.63, 129.46, 129.44, 128.13, 127.76, 126.72, 125.93, 125.87, 125.79, 125.74, 123.52, 114.69, 113.05, 113.02, 95.88, 94.99, 90.61, 86.00, 85.87, 84.67, 84.61, 84.45, 81.06, 80.78, 66.42, 66.36, 61.80, 58.76, 55.86, 55.51, 55.19, 42.79, 35.17, 27.13, 25.30, 21.02, 14.19; ³¹P-NMR (CDCl₃, 202 MHz) δ 50.74 (s); HRMS (FAB, positive) calcd for $C_{56}H_{63}N_5O_{12}PS_2$ 1092.3652 (MH⁺), found 1092.3660; UV (MeOH) $\lambda_{\text{max}} = 295$ (sh) nm.

N-1-[(1R,2S,3S,4R)-2,3-Bis(methoxymethyloxy)-4-(hydroxymethyl)cyclopentyl]-5' -O-[bis (phenylthio)phospholyl]-2', 3'-O-isopropylideneadeno-sine (18a). A solution of 17a (0.916 g, 0.839 mmol) in aqueous 60% AcOH (8 ml) was stirred at room temperature for 4 h. After addition of aqueous saturated NaHCO₃ (60 ml) at 0°C, the mixture was extracted with EtOAc, and the organic layer was washed with aqueous saturated NaHCO₃, H₂O and brine, dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, 10% MeOH in CHCl₃) to give **18a** (0.551 g, 83%) as a white foam: ¹H-NMR (CDCl₃, 500 MHz) δ 7.93 (s, 1H, H-2 or H-8), 7.69 (s, 1H, H-2 or H-8), 7.30–7.52 (m, 10H, SPh \times 2), 5.99 (m, 1H, H-1'), 5.32 (m, 1H, H-1"), 5.11 (m, 1H, H-2'), 4.90 (dd, 1H, H-3', $I_{3',2'} = 6.2$ Hz, $I_{3',4'} = 2.5$ Hz), 4.76 (d, 1H, MOM-CH₂, J = 6.5 Hz), 4.72 (d, 1H, MOM-CH₂, J = 6.5Hz), 4.66 (d, 1H, MOM-CH₂, J = 6.7 Hz), 4.62 (d, 1H, MOM-CH₂, J = 6.7Hz), 4.45 (m, 1H, H-2"), 4.43 (m, 2H, H-4', H-5'a), 4.38 (m, 1H, H-5'b), 4.18 (m, 1H, H-3"), 3.84 (dd, 1H, H-5"a, $J_{5"a,5"b} = 11.2$ Hz, $J_{5"a,4"} = 3.8$ Hz), 3.76 $(dd, 1H, H-5''b, \int_{5''b, 5''a} = 11.2 \text{ Hz}, \int_{5''b, 4''} = 5.9 \text{ Hz}), 3.41 (s, 3H, MOM-CH_3),$

3.19 (s, 3H, MOM-CH₃), 2.47 (m, 1H, H-4″), 2.40 (m, 1H, H-6″a), 2.04 (m, 1H, H-6″b), 1.60, 1.36 (each s, each 3H, isopropylidene); ¹³C-NMR (CDCl₃, 125 MHz) δ 154.27, 146.89, 137.38, 135.31, 135.27, 135.17, 135.13, 129.69, 129.66, 129.64, 129.62, 129.44, 129.42, 125.87, 125.82, 125.77, 125.72, 114.66, 96.35, 95.77, 90.74, 84.74, 84.68, 84.43, 81.64, 81.12, 66.39, 66.32, 61.49, 55.95, 55.50, 42.02, 31.10, 27.11, 25.29; ³¹P-NMR (CDCl₃, 202 MHz) δ 51.10 (s); FAB-MS m/z 790 (MH⁺); UV (MeOH) $\lambda_{max} = 259$, 295 (sh) nm; Anal. Calcd for C₃₅H₄₄N₅O₁₀PS₂: C, 53.22; H, 5.61; N, 8.87. Found; C, 53.20; H, 5.66; N, 8.68.

N-1-[(1R2S,3S,4R)-2, 3-Bis(methoxymethyloxy)-4-(phosphonoxy-methyl)cyclopentyl]-5'-O-[(phenylthio)phospholyl]-2', 3'-O-isopropyli-deneadenosine (19a). A mixture of POCl₃ (93 μ l, 1.0 mmol) and 18a (79 mg, 0.10 mmol) in $PO(OEt)_3$ (1.0 ml) was stirred at 0°C for 1 h. After addition of aqueous saturated NaHCO₃ (3.0 ml), the resulting mixture was stirred at 0° C for 10 min. To the mixture was added triethylammonium acetate (TEAA, 2.0 M, pH 7.0, 1.0 ml) buffer and H_2O (5.0 ml), and the resulting solution was applied to a C_{18} reversed phase column (1.1 \times 14 cm). The column was developed using a linear gradient of 0-65% MeCN in TEAA buffer (0.1 M, pH 7.0, 400 ml). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reversed phase column chromatography (1.1 × 17 cm, eluted with 70% aqueous MeCN). Appropriate fractions were evaporated, and the residue was co-evaporated with pyridine $(2.0 \text{ ml} \times 3)$. A mixture of the residue, NMM (77 mg, 0.69 mmol), H_3PO_2 (70 μ l, 1.39 mmol), and Et₃N (97 μ l, 0.69 mmol) was stirred at 0°C for 4 h under shading. After addition of TEAA buffer (1.0 M, pH 7.0, 2.0 ml), the resulting mixture was evaporated. The residue was partitioned between EtOAc and $H_{2}O_{2}$ and the aqueous layer was evaporated. A solution of the residue in H_2O (5.0 ml) was applied to a C_{18} reverse-phase column (1.1 × 16 cm), and the column was developed using a linear gradient of 0–40% MeCN in TEAA buffer (0.1 M, pH 7.0, 400 ml). Appropriate fractions were evaporated, and excess TEAA was removed by C₁₈ reversed phase column chromatography $(1.1 \times 17 \text{ cm}, \text{eluted with } 50\% \text{ aqueous MeCN})$. Appropriate fractions were evaporated, and the residue was lyophilized to give 19a (41 mg, 46%) as a triethylammonium salt: ¹H-NMR (D_2O , 500 MHz) δ 8.71 (s, 1H, H-2 or H-8), 8.40 (s, 1H, H-2 or H-8), 7.01-7.30 (m, 5H, SPh), 6.31 (d, 1H, H-1', $J_{1',2'} = 2.1$ Hz), 5.33 (dd, 1H, H-2', $J_{2',1'} = 2.1$ Hz, $J_{2',3'} = 6.0$ Hz), 5.00 (m, 1H, H-1"), 4.94 (dd, 1H, H-3', $\int_{3',2'} = 6.0$ Hz, $\int_{3',4'} = 1.2$ Hz), 4.86 (s, 2H, MOM-CH₂), 4.72 (d, 1H, MOM-CH₂, J = 7.3 Hz), 4.70 (m, 1H, H-4'), 4.68 $(d, 1H, MOM-CH_2, I = 7.3 \text{ Hz}), 4.51 (m, 1H, H-2''), 4.33 (m, 1H, H-3''), 4.15$ (m, 2H, H-5' \times 2), 4.07 (m, 2H, H-5" \times 2), 3.48 (s, 3H, MOM-CH₃), 3.27 (s, 3H, MOM-CH₃), 3.18 (q, 6H, Et₃NH-CH₂ \times 3, J = 7.3 Hz), 2.74 (m, 1H, H-4"), 2.68 (m, 1H, H-6"a), 2.08 (m, 1H, H-6"b), 1.62, 1.39 (each s, each 3H, isopropylidene), 1.26 (t, 9H, Et₃NH-CH₃ × 3, J = 7.3 Hz); ¹³C-NMR (D₂O, 125 MHz) & 151.02, 146.31, 146.10, 143.91, 133.21, 133.17, 129.90, 129.85,

129.44, 128.28, 119.61, 115.17, 97.10, 96.75, 91.87, 87.05, 86.67, 86.59, 84.64, 81.91, 80.44, 66.27, 63.81, 56.40, 56.14, 47.12, 40.75, 40.68, 26.38, 24.73, 8.69; ³¹P-NMR (D₂O, 202 MHz) δ 17.10 (s), 0.84 (s); HRMS (FAB, positive) calcd for C₂₉H₄₂N₅O₁₄P₂S 778.1919 (MH⁺), found 778.1934; UV (H₂O) λ_{max} 260 nm.

2", 3"-Bis-O-methoxymethyl-cyclic ADP-carbocyclic-xylose 2', 3'-Acetonide (20a). To a mixture of AgNO₃ (310 mg, 1.83 mmol), Et₃N (255 μ l, 1.83 mmol), and MS 3A (400 mg) in pyridine (70 ml), a solution of **19a** (76 mg, 0.087 mmol) in pyridine (70 ml) was added slowly over 15 h, using a syringe-pump, at room temperature under shading. The MS 3A was filtered off with Celite and washed with H₂O. To the combined filtrate and washings was added TEAA buffer (2.0 M, pH 7.0, 2 ml), and the resulting solution was evaporated. The residue was partitioned between EtOAc and H₂O, and the aqueous layer was evaporated. A solution of the residue in $H_{2}O$ (5.0 ml) was applied to a C_{18} reverse-phase column $(1.1 \times 17 \text{ cm})$, and the column was developed using a linear gradient of 0-25% MeCN in TEAA buffer (0.1 M, pH 7.0, 400 ml). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reverse-phase column chromatography (1.1 \times 17 cm, eluted with 40% aqueous MeCN). Appropriate fractions were evaporated, and the residue was lyophilized to give **20a** (40 mg, 46%) as a triethylammonium salt: ¹H-NMR (D₂O, 500 MHz) δ 9.20 (s, 1H, H-2 or H-8), 8.44 (s, 1H, H-2 or H-8), 6.41 (d, 1H, H-1', $J_{1',2'} = 1.6$ Hz), 5.53 (dd, 1H, H-2', $J_{2',1'} = 1.6$ Hz, $J_{2',3'} = 6.1$ Hz), 5.46 (dd, 1H, H-3', $\int_{3',2'} = 6.1$ Hz, $\int_{3',4'} = 2.5$ Hz), 5.04 (m, 1H, H-1"), 4.80 $(s, 2H, MOM-CH_2), 4.76 (d, 1H, MOM-CH_2, J = 6.9 Hz), 4.67 (d, 1H, MOM-CH_2), J = 6.9 Hz), 4.67 (d, 1H, MOM-CH_2), 4.67 (d, 1H, MOM-CH_2), J = 6.9 Hz), 4.67 (d, 1H, MOM-CH_2), 4.67 ($ CH_2 , J = 6.9 Hz), 4.63 (m, 1H, H-4'), 4.62 (m, 1H, H-2''), 4.37 (m, 1H, H-3''), 4.23 (m, 1H, H-5"a), 4.16 (m, 1H, H-5'a), 4.09 (m, 2H, H-5'b, H-5"b), 3.42 (s, 3H, MOM-CH₃), 3.11 (s, 3H, MOM-CH₃), 3.19 (q, 6H, Et_3NH -CH₂ × 3, J = 7.3 Hz, 2.99 (m, 1H, H-6"a), 2.76 (m, 1H, H-4"), 2.36 (m, 1H, H-6"b), 1.64, 1.44 (each s, each 3H, isopropylidene), 1.27 (t, 9H, $Et_3NH-CH_3 \times 3$, I = 7.3 Hz); ¹³C-NMR (D₂O, 125 MHz) δ 151.93, 146.22, 146.28, 144.80, 119.64, 115.13, 97.69, 96.82, 92.47, 88.26, 86.92, 86.82, 85.13, 81.87, 81.29, 64.82, 64.61, 60.93, 56.25, 47.10, 37.29, 37.21, 28.70, 26.43, 24.74, 8.67; ³¹P-NMR (D₂O, 202 MHz) δ -9.58 (d, J=11.2 Hz), -10.56 (d, J=11.2 Hz); HRMS (FAB, positive) calcd for $C_{23}H_{36}N_5O_{14}P_2$ 668.1729 (MH⁺), found 668.1730; UV (H₂O) λ_{max} 259 nm.

Cyclic ADP-carbocyclic-xylose (**4**). A solution of **20a** (31 mg, 0.040 mmol) in aqueous 80% HCO₂H (1 ml) was stirred at room temperature for 48 h and then evaporated. After evaporation of the residue in H₂O and *i*-PrOH, aqueous 28% NH₃ (1 ml) was added to the residue, and the mixture was stirred at room temperature for 90 min. After evaporation of the residue in H₂O and *i*-PrOH, the resulting residue was dissolved in TEAB buffer (0.1 M, pH 7.0, 600 μ l), and the solution was lyophilized to give **4** (21 mg, 90%) as a triethylammonium salt: ¹H-NMR (D₂O, 500 MHz, K⁺ salt) δ 9.11 (s, 1H, H-2 or H-8), 8.42 (s, 1H, H-2 or H-8), 6.11 (d, 1H, H-1', $J_{1',2'} = 6.0$ Hz), 5.20 (dd,

1H, H-2', $J_{2',1'} = 6.0$ Hz, $J_{2',3'} = 4.8$ Hz), 4.95 (m, 1H, H-1"), 4.64 (dd, 1H, H-3', $J_{3',2'} = 4.8$ Hz, $J_{3',4'} = 2.6$ Hz), 4.62 (m, 1H, H-5'a), 4.51 (m, 1H, H-2"), 4.45 (m, 1H, H-4'), 4.32 (m, 1H, H-3"), 4.23 (m, 1H, H-5"a), 4.14 (m, 2H, H-5'b, H-5"b), 2.95 (m, 1H, H-6"a), 2.65 (m, 1H, H-4"), 2.46 (m 1H, H-6"b); ¹³C-NMR (D₂O, 125 MHz) δ 152.20, 146.70, 145.43 144.83, 120.40, 91.07, 85.29, 82.52, 76.53, 73.89, 71.16, 65.13, 64.20, 63.12, 39.52, 28.02; ³¹P-NMR (D₂O, 202 MHz) δ –9.41 (d, J=11.4 Hz), -10.35 (d, J=11.4 Hz); HRMS (FAB, positive) calcd for C₁₆H₂₄N₅O₁₂P₂ 540.0891 (MH⁺), found 540.0875; UV (H₂O) λ_{max} 259 nm.

N-1-[(1R, 2S, 3S, 4R)-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclo-2-(Methoxymethyl)cyclo-2-(pentyl]-5'-O-(tert-butyldimethylsilyl)-2', 3'-O-isopropylideneadenosine (15b). Compound 15b (0.565 g, 84%) was obtained from 6 (0.480 g, 1.10 mmol) and 14b (0.227 g, 1.11 mmol) as described for the synthesis of 15a: ¹H-NMR (CDCl₃, 500 MHz) δ 7.91 (s, 1H, H-2 or H-8), 7.83 (s, 1H, H-2 or H-8), 6.02 (d, 1H, H-1', $J_{1',2'} = 2.6$ Hz), 5.54 (m, 1H, H-1"), 5.11 (dd, 1H, H-2', $J_{2',1'} = 2.6 \text{ Hz}, J_{2',3'} = 6.1 \text{ Hz}), 4.89 \text{ (dd, 1H, H-3', } J_{3',2'} = 6.1 \text{ Hz}, J_{3',4'} = 2.5$ Hz), 4.74 (d, 1H, MOM-CH₂, I = 6.8 Hz), 4.65 (d, 1H, MOM-CH₂, I = 6.8Hz), 4.39 (ddd, 1H, H-4', $\int_{4',3'} = 2.5$ Hz, $\int_{4',5'a} = 3.7$ Hz, $\int_{4',5'b} = 6.3$ Hz), 4.35 (m, 1H, H-2"), 3.90 (dd, 1H, H-5"a, $\int_{5"a,4"} = 3.0$ Hz, $\int_{5"a,5"b} = 11.3$ Hz), 3.84 (dd, 1H, H-5'a, $\int_{5'a,4'} = 3.8$ Hz, $\int_{5'a,5'b} = 11.2$ Hz), 3.79 (m, 2H, H-3", H-5'b), 3.76 (m, 1H, H-5"b), 3.50 (s, 3H, MOM-CH₃ or OMe), 3.25 (s, 3H, MOM-CH₃ or OMe), 2.42 (m, 2H, H-4", H-6"a), 2.08 (m, 1H, H-6"b), 1.61, 1.39 (each s, each 3H, isopropylidene), 0.86 (s, 9H, tert-Bu), 0.048, 0.037 (each s, each 3H, TBS-Me \times 2); ¹³C-NMR (CDCl₃, 125 MHz) δ 154.48, 146.35, 140.70, 136.89, 123.26, 114.17, 95.33, 91.27, 87.04, 86.99, 85.28, 83.40, 81.34, 63.45, 61.54, 59.37, 57.70, 55.51, 42.02, 31.65, 27.22, 25.86, 25.37, 18.32, -5.43, -5.54; FAB-MS m/z 610 (MH⁺); Anal. Calcd for C₂₈H₄₇N₅O₈Si: C, 55.15; H, 7.77; N, 11.48. Found; C, 54.95; H, 7.59; N, 11.26.

N-1-[(1R,2S,3S,4R)-2-(Methoxymethyloxy)-3-methoxy-4-(dimethoxytrityloxymcyclopentyl]-2',3'-O-isopropylideneadenosine (16b). Compound ethyl) 16b (0.697 g, quant.) was obtained from 15b (0.527 g, 0.864 mmol) as described for the synthesis of 16a: ¹H-NMR (CDCl₃, 500 MHz) δ 7.92 (brs, 1H, H-2 or H-8), 7.62 (brs, 1H, H-2 or H-8), 6.82-7.45 (m, 13H, DMTr), 5.78 (m, 2H, H-1', H-1"), 5.02 (m, 2H, H-2', H-3'), 4.82 (d, 1H, MOM-CH₂, J = 6.7 Hz), 4.68 (d, 1H, MOM-CH₂, I = 6.7 Hz), 4.49 (m, 1H, H-4'), 4.11 (m, 1H, H-2''), $3.91 (m, 1H, H-3''), 3.80 (s, 7H, H-5'a, DMTr-OMe \times 2), 3.75 (m, 1H, H-5'b),$ 3.37 (s, 3H, MOM-CH₃ or OMe), 3.35 (s, 3H, MOM-CH₃ or OMe), 3.25 (m, 1H, H-5"a), 3.19 (m, 1H, H-5"b), 2.56 (m, 1H, H-4"), 2.48 (m, 1H, H-6"a), 1.62, 1.36 (each s, each 3H, isopropylidene), 1.46 (m, 1H, H-6"b); ¹³C-NMR (CDCl₃, 125 MHz) δ 180.59, 165.74, 163.74, 152.56, 152.49, 144.47, 142.10, 141.56, 140.21, 136.11, 124.30, 122.87, 122.84, 99.99, 98.40, 88.24, 87.29, 86.38, 85.52, 82.67, 59.34, 56.69, 54.38, 51.96, 49.88, 49.24, 33.87, 23.65,

18.31, 14.03, 11.04, 9.88, 4.19, -3.60, -21.04; HRMS (FAB, positive) calcd for C₄₃H₅₂N₅O₁₀ 798.3714 (MH⁺), found 798.3721.

N-1-[(1R,2S,3S,4R)-2-(Methoxymethyloxy)-3-methoxy-4-(dimethoxytrityloxymethyl) cyclopentyl]-5'-O-[bis(phenylthio)phospholyl]-2',3'-O-isopropylideneadenosine (17b). Compound 17b (0.539 g, 62%) was obtained from 16b (0.659 g, 0.826 mmol) as described for the synthesis of 17a: ¹H-NMR (CDCl₃, 500 MHz) δ 7.91 (s, 1H, H-2 or H-8), 7.64 (s, 1H, H-2 or H-8), 6.81–7.51 (m, 23H, DMTr, SPh x 2), 5.96 (d, 1H, H-1', $J_{1',2'} = 2.6$ Hz), 5.76 (m, 1H, H-1"), 5.08 (dd, 1H, H-2', $J_{2',1'} = 2.6$ Hz, $J_{2',3'} = 6.3$ Hz), 4.86 (dd, 1H, H-3', $I_{3',2'} = 6.3$ Hz, $I_{3',4'} = 2.7$ Hz), 4.79 (d, 1H, MOM-CH₂, I = 6.8 Hz), 4.63 (d, 1H, MOM-CH₂, I = 6.8 Hz), 4.41 (m, 3H, H-4', H-5' \times 2), 4.11 (m, 1H, H-2"), 3.79 (s, 6H, DMTr-OMe \times 2), 3.78 (m, 1H, H-3"), 3.33 (s, 3H, MOM-CH₃ or OMe), 3.30 (s, 3H, MOM-CH₃ or OMe), 3.25 (m, 1H, H-5"a), 3.18 (m, 1H, H-5"b), 2.54 (m, 1H, H-4"), 2.47 (m, 1H, H-6"a), 1.59, 1.35 (each s, each 3H, isopropylidene), 1.48 (m, 1H, H-6"b); ¹³C-NMR (CDCl₃, 125 MHz) & 158.38, 154.52, 146.79, 145.20, 140.52, 136.97, 136.42, 136.38, 135.34, 135.29, 135.22, 135.18, 130.04, 130.02, 129.65, 129.63, 129.43,128.15, 127.69, 126.63, 125.94, 125.89, 125.82, 125.77, 123.51, 114.69, 113.00, 112.98, 95.09, 90.65, 85.79, 85.23, 84.71, 84.64, 84.45, 81.04, 66.45,66.38, 61.23, 58.69, 57.39, 55.56, 55.19, 43.12, 35.07, 27.13, 25.30, 11.44;³¹P-NMR (CDCl₃, 202 MHz) δ 48.14 (s); FAB-MS m/z 1062 (MH⁺); UV (MeOH) $\lambda_{\text{max}} = 295$ (sh) nm; Anal. Calcd for $C_{55}H_{60}N_5O_{11}PS_2$: C, 62.19; H, 5.69; N, 6.59. Found; C, 62.34; H, 5.83; N, 6.34.

N-1-[(1R,2S,3S,4R)-2-(Methoxymethyloxy)-3-methoxy-4-(hydroxymethyl)cyclop $entyl]-5'-O-{bis (phenylthio)phospholyl}-2', 3'-O-isopropylideneadenosine (18b).$ Compound **18b** (0.312 g, 88%) was obtained from **17b** (0.496 g, 0.467 mmol) as described for the synthesis of 18a: ¹H-NMR (CDCl₃, 500 MHz) δ 7.92 (s, 1H, H-2 or H-8), 7.69 (s, 1H, H-2 or H-8), 7.31–7.52 (m, 10H, SPh \times 2), 5.99 (d, 1H, H-1', $\int_{1',2'} = 2.3$ Hz), 5.48 (m, 1H, H-1"), 5.12 (dd, 1H, H-2', $I_{2',1'} = 2.3$ Hz, $I_{2',3'} = 6.2$ Hz), 4.91 (dd, 1H, H-3', $I_{3',2'} = 6.2$ Hz, $J_{3',4'} = 2.4 \text{ Hz}$, 4.71 (d, 1H, MOM-CH₂, J = 6.7 Hz), 4.62 (d, 1H, MOM-CH₂, I = 6.5 Hz, 4.43 (m, 2H, H-4', H-5'a), 4.39 (m, 2H, H-2", H-5'b), 3.90 (dd, 1H, H-5"a, $I_{5"a,5"b} = 11.4$ Hz, $I_{5"a,4"} = 2.8$ Hz), 3.79 (m, 1H, H-3"), 3.76 (dd, 1H, H-5"b, $J_{5"b,5"a} = 11.4$ Hz, $J_{5"b,4"} = 4.7$ Hz), 3.46 (s, 3H, MOM-CH₃ or OMe), 3.21 (s, 3H, MOM-CH₃ or OMe), 2.41 (m, 2H, H-4", H-6"a), 2.06 (m, 1H, H-6"b), 1.60, 1.36 (each s, each 3H, isopropylidene); ¹³C-NMR (CDCl₃, 125 MHz) & 154.37, 146.65, 140.61, 137.38, 135.34, 135.30, 135.21, 135.17, 129.70, 129.68, 129.66, 129.63, 129.44, 125.92, 125.86, 125.81, 125.76, 123.57, 114.70, 95.54, 90.76, 86.98, 84.79, 84.73, 84.47, 83.46, 81.14, 66.44,66.38, 61.55, 60.36, 59.69, 57.74, 55.55, 41.90, 31.44, 27.13, 25.30, 21.01, 14.18; ³¹P-NMR (CDCl₃, 202 MHz) δ 51.05 (s); FAB-MS m/z 760 (MH⁺); UV (MeOH) $\lambda_{max} = 259, 295$ (sh) nm; Anal. Calcd for $C_{34}H_{42}N_5O_9PS_2$: C, 53.75; H, 5.57; N, 9.22. Found; C, 53.59; H, 5.60; N, 8.97.

N-1-[(1R, 2S, 3S, 4R)-2-(Methoxymethyloxy)-3-methoxy-4-(phosphonoxymethyl) cyclopentyl]-5'-O-[(phenylthio)phospholyl]-2', 3'-O-isopropylideneadenosine (19b).

Compound 19b (90 mg, 58%) was obtained from 18b (140 mg, 0.184 mmol) as described for the synthesis of **19a**: ¹H-NMR (D_2O , 500 MHz) δ 8.65 (s, 1H, H-2 or H-8), 8.39 (s, 1H, H-2 or H-8), 7.12–7.30 (m, 5H, SPh), 6.30 (d, 1H, H-1', $J_{1',2'} = 2.2$ Hz), 5.32 (dd, 1H, H-2', $J_{2',1'} = 2.2$ Hz, $J_{2',3'} = 5.9$ Hz), 5.01 (m, 1H, H-1"), 4.94 (dd, 1H, H-3', $I_{3',2'} = 5.9$ Hz, $I_{3',4'} = 1.6$ Hz), 4.74 (d, 1H, MOM-CH₂, J = 7.1 Hz), 4.69 (m, 2H, H-4', MOM-CH₂), 4.50 (m, 1H, H-2"), 4.15 (m, 1H, H-5'a), 4.11 (m, 1H, H-5'b), 4.03 (m, 2H, $H-5'' \times 2$), 3.99 (m, 1H, H-3''), 3.54 (s, 3H, MOM-CH₃ or OMe), 3.26 (s, 3H, MOM-CH₃ or OMe), 3.18 (q, 6H, Et₃NH-CH₂ \times 3, I = 7.3 Hz), 2.71 (m, 1H, H-4"), 2.60 (m, 1H, H-6"a), 2.06 (m, 1H, H-6"b), 1.62, 1.38 (each s, each 3H, isopropylidene), 1.26 (t, 9H, $Et_3NH-CH_3 \times 3$, J=7.3 Hz); ¹³C-NMR $(D_2O, 125 \text{ MHz}) \delta 150.82, 146.42, 146.30, 143.88, 133.18, 133.14, 129.92,$ 129.87, 129.42, 128.25, 119.82, 119.61, 115.15, 97.02, 91.86, 86.61, 86.53, 84.62, 84.33, 81.89, 66.24, 63.67, 58.06, 56.12, 47.10, 40.69, 40.63, 26.39, 24.73, 8.68; ³¹P-NMR (D₂O, 202 MHz) δ 16.70 (s), 0.55 (s); HRMS (FAB, positive) calcd for C₂₈H₄₀N₅O₁₃P₂S 748.1813 (MH⁺), found 748.1804; UV (H₂O) λ_{max} 260 nm.

2"-O-Methoxymethyl-3"-O-methyl-cyclic ADP-carbocyclic-xylose 2',3'-Acetonide Compound **20b** (37 mg, 47%) was obtained from **19b** (90 mg, 0.11 (**20b**). mmol) as described for the synthesis of **20a**: ¹H-NMR (D_2O , 500 MHz) δ 9.10 (s, 1H, H-2 or H-8), 8.45 (s, 1H, H-2 or H-8), 6.41 (s, 1H, H-1'), 5.55 (d, 1H, H-2', $J_{2',3'} = 6.1$ Hz), 5.44 (dd, 1H, H-3', $J_{3',2'} = 6.1$ Hz, $J_{3',4'} = 2.4$ Hz), 5.02 $(m, 1H, H-1''), 4.75 (d, 1H, MOM-CH_2, J=6.8 Hz), 4.67 (d, 1H, MOM-CH_2,$ J = 6.8 Hz, 4.64 (m, 1H, H-4'), 4.57 (m, 1H, H-2"), 4.15 (m, 2H, H-5'a, H-5"a), 4.09 (m, 3H, H-5'b, H-5"b, H-3"), 3.48 (s, 3H, MOM-CH₃ or OMe), 3.16 (s, 3H, MOM-CH₃ or OMe), 3.19 (q, 6H, Et_3NH -CH₂ × 3, I = 7.3 Hz), 2.94 (m, 1H, H-6"a), 2.88 (m, 1H, H-4"), 2.37 (m, 1H, H-6"b), 1.64, 1.44 (each s, each 3H, isopropylidene), 1.27 (t, 9H, $Et_3NH-CH_3 \times 3$, I = 7.3 Hz); ¹³C-NMR (D₂O, 125 MHz) δ 152.18, 145.29 144.63, 119.65, 115.10, 97.24, 92.46, 87.79, 86.93, 86.83, 85.04, 84.82, 81.87, 64.60, 64.25, 58.47, 56.24, 47.10, 36.34, 36.26, 28.41, 26.42, 24.73, 8.67; ³¹P-NMR (D₂O, 202 MHz) δ -9.56 (d, I = 11.4 Hz), -10.46 (d, I = 11.4 Hz); HRMS (FAB, positive) calcd for $C_{22}H_{34}N_5O_{13}P_2$ 638.1623 (MH⁺), found 638.1627; UV (H₂O) λ_{max} 259 nm.

3"-O-Methyl-cyclic ADP-carbocyclic-xylose (5). Compound 5 (30 mg, quant.) was obtained from **20b** (37 mg, 0.050 mmol) as described for the synthesis of 4: ¹H-NMR (D₂O, 500 MHz, K⁺ salt) δ 9.04 (s, 1H, H-2 or H-8), 8.41 (s, 1H, H-2 or H-8), 6.10 (d, 1H, H-1', $J_{1',2'} = 6.1$ Hz), 5.21 (m, 1H, H-2'), 4.95 (m, 1H, H-1''), 4.62 (m, 1H, H-5'a), 4.60 (m, 1H, H-3'), 4.56 (m, 1H, H-2''), 4.44 (m, 1H, H-4'), 4.11 (m, 3H, H-5'b, H-5'' × 2), 4.03 (m, 1H, H-3''), 3.52 (s, 3H, OMe), 2.94 (m, 1H, H-6''a), 2.90 (m, 1H, H-4''), 2.52 (m 1H, H-6'' b); ¹³C-NMR (D₂O, 125 MHz) δ 152.19, 146.69, 145.43, 144.52, 120.42, 91.00, 85.77, 85.34, 81.35, 73.82, 71.18, 65.14, 63.94, 63.46, 58.59,

36.81, 27.72; ³¹P-NMR (D₂O, 202 MHz) δ –9.70 (d, *J*=11.4 Hz), -10.32 (d, *J*=11.4 Hz); HRMS (FAB, positive) calcd for C₁₇H₂₆N₅O₁₂P₂ 554.1048 (MH⁺), found 554.1035; UV (H₂O) λ_{max} 259 nm.

REFERENCES

- Clapper, D.L.; Walseth, T.F.; Dargie, P.J.; Lee, H.C. Pyridine nucleotide metabolite stimulate calcium release from sea urchin egg microsomes desensitized to inositol triphosphate. Journal of Biological Chemistry 1987, 262, 9561–9568.
- Shuto, S.; Matsuda, A. Chemistry of cyclic ADP-ribose and its analogs. Current Medicinal Chemistry 2004, 11, 827–845, and references therein.
- Lee, H.C.; Aarhus, R. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochemica et Biophysica Acta 1993, 1164, 68–74.
- 4. (a) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. Synthesis of cyclic IDP-carbocyclic-ribose, a stable mimic of cyclic ADP-ribose. Significant facilization of the intramolecular condensation reaction of *N*-1-(carbocyclic-ribosyl)inosine 5',6"-Diphosphate derivatives by an 8-bromo-substitution at the hypozanthine moiety. Journal of Organic Chemistry **1998**, 63, 1986–1994. (b) Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno, Y.; Matsuda, A. An efficient synthesis of cyclic IDP- and cyclic 8-bromo-IDP-carbocyclic-riboses using a modified Hata condensation method to form an intramolecular pyrophosphate linkage as a key step. An entry to a general method for the chemical synthesis of cyclic ADP-ribose analogues. Journal of Organic Chemistry **2000**, 65, 5238–5248. (c) Shuto, S.; Fukuoka, M.; Manikowsky, M.; Ueno, T.; Nakano, T.; Kuroda, R.; Kuroda, H.; Matsuda, A. Total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca²⁺-mobilizing second messenger cyclic ADP-ribose. Journal of the American Chemical Society **2001**, 123, 8750–8759.
- 5. (a) Shuto, S.; Fukuoka, M.; Kudoh, T.; Garnham, C.; Galione, A.; Potter, B.V.L.; Matsuda, A. Convergent synthesis and unexpected Ca²⁺-mobilizing activity of 8-substituted analogues of cyclic ADP-carbocyclic-ribose, a stable mimic of the Ca²⁺-mobilizing second messenger cyclic ADP-ribose. Journal of Medicinal Chemistry **2003**, 46, 4741–4749. (b) Hashii, M.; Shuto, S.; Fukuoka, M.; Kudoh, T.; Matsuda, A.; Higashida, H. Amplification of depolarization-induced and ryanodine-sensitive cytosolic Ca²⁺ elevation by synthetic carbocyclic analogues of cyclic ADP-ribose and their antagonistic effects in NG108-15 neuronal cells. Journal of Neurochemistry **2005**, 94, 316–323. (c) Kudoh, T.; Fukuoka, M.; Ichikawa, S.; Murayama, T.; Ogawa, Y.; Hashii, M.; Higashida, H.; Kunerth, S.; Weber, K.; Guse, A.H.; Potter, B.V.L.; Matsuda, A.; Shuto, S. Synthesis of stable and cell-type selective analogues of cyclic ADP-ribose, a Ca²⁺-mobilizing second messenger. Structure-activity relationship of the N1-ribose moiety. Journal of the American Chemical Society **2005**, 127, 8846–8855.
- For example: (a) Galeone, A.; Mayol, L.; Oliviero, G.; Piccialli, G.; Varra, M. Synthesis of a novel N-1 carbocyclic, N-9 butyl analogue of cyclic ADP ribose (cADPR). Tetrahedron **2002**, 58, 363–368. (b) Huang, L.-J.; Zhao, Y.-Y.; Yuan, L.; Min J.-M.; Zhang L.-H. Syntheses and calcium-mobilizing evaluations of N1-glycosyl-substituted stable mimics of cyclic ADP-ribose. Journal of Medicinal Chemistry **2002**, 45, 5340–5352.
- Sekine, M.; Nishiyama, S.; Kamimura, T.; Osaki, Y.; Hata, T. Chemical synthesis of capped oligoribonucleotides, m⁷G^{5'} ppp AUGACC. Bulletin of the Chemical Society of Japan 1985, 58, 850–860.
- Yoshikawa, M.; Kato, T.; Takenishi, T. Studies of phosphorylation. III. Selective phosphorylation of unprotected nucleosides. Bulletin of the Chemical Society of Japan 1969, 42, 3505–3508.
- Hata, T.; Kamimura, T.; Urakami, K.; Kohno, K.; Sekine, M.; Kumagai, I.; Shinozaki, K.; Miura, K. A new method for the synthesis of oligodeoxyribonucleotides bearing a 5'-terminal phosphate group. Chemistry Letters 1987, 117–120.
- Shiwa, S.; Murayama, T.; Ogawa, Y. Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. American Journal of Physiology: Regulatory Integrative and Comparative Physiology 2002, 282, R727–R737.