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Abstract

We have succeeded in developing direct syntheses oftrans�-azidohydrins andtrans1,2-diol derivatives from
olefins catalyzed by dichlorotin oxide. The regioselectivity of these reactions with tri-substituted olefins is high
(10:1 in the synthesis of 1,2-diol derivatives) to excellent (>99:1 in the synthesis of azidohydrins). It has been
found that these reactions do not proceed via epoxides. © 2000 Elsevier Science Ltd. All rights reserved.
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Syntheses oftrans �-substituted alcohols from olefins usually require two steps, epoxidation of an
olefin and the following opening of the epoxide. Although this two-step method is well-established,
only one inefficient example is known, wheretrans 1,2-diol derivatives are formed directly from
olefins.1 Therefore, the development of a directtrans �-substituted alcohol synthesis from olefins is
very important. We recently reported on the SnCl4-catalyzed directtrans chlorohydrin synthesis from
olefins using bis(trimethylsilyl) peroxide (BTSP) and trimethylsilyl chloride (TMSCl) (Scheme 1).2 The
active catalytic species of this reaction is dichlorotin oxide (Cl2SnO)n which is generated from SnCl4

by BTSP. From mechanistic studies, we proposed a catalytic cycle that involves the insertion of a C_C
double bond to dichlorotin oxide, nucleophilic attack of BTSP on Sn and regeneration of (Cl2SnO)n
by SN2 attack of TMSCl. Accordingly, it was expected that it would be possible to apply this catalytic
cycle to othertrans�-substituted alcohol syntheses by using the corresponding trimethylsilyl reagents
((CH3)3SiX in Scheme 1). Herein, we report the direct syntheses oftransazidohydrins andtrans1,2-diol
derivatives from olefins catalyzed by dichlorotin oxide.

First, we tried the directtrans �-azidohydrin synthesis from cyclohexene (1.0 mmol) using SnCl4

(10 mol%), BTSP (2 mol equiv.) and trimethylsilyl azide (TMSN3) (2 mol equiv.). As expected, when
performing the reaction at ambient temperature for 7 h the reaction gavetrans-2-azido-1-cyclohexanol
(1) (yield 43%), together with the undesiredtrans-2-chloro-1-cyclohexanol (yield 17%).3 This undesired
formation of the chlorohydrin could be reduced, using pre-generated dichlorotin oxide4 (20 mol%)
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Scheme 1. Proposed mechanism

instead of SnCl4, to give the azidohydrin1 in 52% yield and the chlorohydrin in 10% yield (Table 1,
entry 1).5 Other substrates (cyclic and acyclic olefins) also gave the correspondingtrans�-azidohydrins
in acceptable yields (Table 1).6 Furthermore, 1-methyl-1-cyclohexene (Table 1, entry 6) gave6 with
almost complete regioselectivity.7 To the best of our knowledge, this is the first example of a directtrans
�-azidohydrin synthesis starting with olefins.

Table 1
Synthesis oftransazidohydrins
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Next, we extended the reaction for the synthesis oftrans1,2-diol derivatives. We were pleased to find
that, by using trimethylsilyl acetate (TMSOAc) instead of TMSN3, cyclic and acyclic olefins were also
successfully converted to the correspondingtrans�-acetoxy alcohols (Table 2, entries 1, 3, 5 and 6).6

Furthermore, in order to improve the yield, other trimethylsilyl carboxylates were investigated.9 As a
result, we found that trimethylsilyl methoxyacetate, which can coordinate to Sn because of the�-oxygen
atom, improved the yield in the case of cyclohexene and cyclopentene (Table 2, entries 2 and 4).10 Also
in this case, high regioselectivity (10:1) was obtained for 1-methyl-1-cyclohexene to give13as the major
product (Table 2, entry 7).

Table 2
Synthesis oftrans1,2-diol derivatives

Interestingly, it was found from the following experiment, that epoxides were not the intermediate
in these azidohydrin and acetoxy alcohol syntheses (Scheme 2). Thus, the reaction of a mixture of
cycloheptene and cyclohexene oxide using (Cl2SnO)n (20 mol%), BTSP (1.2 mol equiv.) and TMSN3

(2 mol equiv.) gave only3, and1 was not detected in the reaction mixture. The same reaction using
TMSOAc (2 mol equiv.) instead of TMSN3 gave only11. In agreement with this result, the epoxide
derived from cycloheptene was not detected in the reaction mixtures by TLC and1H NMR analyses.
Therefore, we postulate the reaction mechanism as shown in Scheme 1.11

In summary, we have developed a one-step procedure for the synthesis of azidohydrins and acetoxy
alcohols from olefins by the catalysis of (Cl2SnO)n. The development of a catalytic asymmetric version
of these reactions is currently under investigation.
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Scheme 2. Experiment using a mixture of olefin and epoxide
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