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[180]dAMP, the l 8 0  perturbation in the A complex is 2.5 Hz and 
that in the A complex is 1.3 Hz; these relative values demonstrate 
that the absolute configuration of this sample of uncomplexed 
[a-l*O]dADP is Rp.  These assignments are in agreement with 
those predicted on the basis of the configurations of the precursor 
cyclic [180]dAMP samples and the stereochemical course of the 
adenylate cyclase reaction determined by using ATPaS as sub- 
strate. Thus, the stereochemical course of the reaction catalyzed 
by this enzyme is inversion of configuration by using either oxygen 
chiral or phosphorothioate substrates. 

These results illustrate the considerable utility of substitu- 
tion-inert Co(II1) complexes in determining the configuration at 
the a-phosphorus atom of oxygen chiral [a-180]nucleoside di- 
phosphates. Since substitution-inert &y-bidentate complexes of 
nucleoside triphosphates can be prepared29 and their screw senses 
have been assigned,36 examination of the I8O perturbations of the 
@-phosphorus atoms in complexes prepared from oxygen chiral 
[&‘80] nucleoside triphosphates should be the most convenient 
method for determining their configurations. 

The enzymatic syntheses of the diastereomers of [LU-~~OIADP 
are currently in progress. 
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Total Synthesis of (f )-Maytansinol. The Common 
Precursor to the Maytansinoids 

Sir: 
The ansa macrocyclic antitumor substances, maytansinoids, 

originally isolated and characterized by Kupchan,l have been the 
focus of many pharmacological2 and synthetic  effort^.^ These 
highly potent materials are currently undergoing clinical trials 
under the auspices of the National Cancer Institute. In the last 
2 years, there have been successful routes reported for (f)-N- 
methylmaysenine (2) in racemic4 and optically activeS forms and 
(*)-maysine 3,6 the first naturally occurring maytansinoid. We 
report herein the total synthesis of (&)-maytansin01 l a  which 
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la, R =  H 
l b ,  R = COCH(CH,)N(CH,)COCH, 
IC, R = COCH, 

Me 0 
CI I II 

Me 

N-methylmay senhe (2) 
Me 0 

Me 

maysine (3) 

contains all the requisite functionality and stereochemical prop- 
erties of the antitumor agents maytansine (lb), maytanacine (IC), 
and other simple acylated derivatives.’ Since natural (-)-la has 
been transformed via routine acylation to (-)-lb, (-)-lc, and other 
esters at  C-3, this also constitutes the formal total synthesis, in 
racemic form, for these highly active tumor inhibitors and es- 
tablishes l a  as the pivotal precursor to all these interesting sub- 
stances. 

The synthetic scheme leading to (*)-la follows from the key 
intermediate 4a8 which served as the precursor to (f)-maysineS6 

w:: Me Me0 

4a, R, = H, R, = CHO 
4b, R, = COCH,, R, = CHO 
4c, R, = COCH,, R, = C0,Me 

Me 0 

Me Me0 
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(7) Maytansinol is the key precursor isolated by Kupchan’ and observed 
by the Takeda Company group and transformed into a variety of acylated 
derivatives at C-3: Higashida, E.; Asai, M.; Ootsu, K.; Tanida, S.; Kozai, Y.; 
Hasegawa, T.; Kishi, T.; Sugino, Y.; Yoneda, M. Nature (London) 1977,270, 
721. 
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Table 1. 
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H NMR Data for Synthetic and Natural Maytansinol 

authentic 
(from ref 1 

(-)- 1 a 
proton(s) synthetic (+-)-la authentic (-)-la at 100 MHz) 

Communications to the Editor 

C-4 Me (s) 0.82 0.82 0.84 
C-6 Me (d) 1.30 1.32 1.32 

C-14 Me (s) 1.70 1.70 1.68 
C-2 H 2.54 2.54 

(J= 6.5 H z )  (J= 6.5 Hz) ( J =  6 Hz) 

(a portion, (J= 9.7 Hz) ( J =  9.7 Hz) 
AB 9) 

N-Me (s) 3.20 3.20 3.20 
C-10 OMe (s) 3.35 3.35 3.36 
C-9 OH @I S) 3.60 3.60 3.64 
Ar-OMe (s) 3.98 3.98 3.98 
C-7 H (m) 4.284.35 4.294.35 4.36 
C-11 H (d of d)  5.50 5.50 5.53 

C-13 H (m) 6.13, 6.16 6.13, 6.16 6.19-6.39 
(J= 9,15 Hz) (J= 9,15 Hz) ( J =  9,15 Hz) 

C-13 H (m) 6.22,6.40, 6.22,6.40, 

NH (m) 6.41 6.41 
ArH 6.81,6.91 6.81,6.91 6.81, 7.05 
unassigned m 3.10-3.49, 3.10-3.49, 

6.43,6.44 6.43,6.44 

2.1 1-2.29 2.10-2.29 

Acetylation (CH,COCl, pyridine, 0 OC, 3 h) of the secondary 
amine gave the N-acetyl compound 4b9 in 97% yield, and the 
aldehyde was oxidized (10 equiv of AgNO,, 20 equiv of NaOH, 
THF-H20, 25 OC, 2 h) to the acid and immediately treated with 
diazomethane-ether at 0 OC to give the methyl ester 4c in 65% 
yield.I0 The cyclization to 5 was accomplished in 58% yield by 
using 4 equiv of lithium (hexamethylsily1)amide (-78 OC, THF, 
5 X lo-, M, 4 h) and once again showed that anionic ring closures 
in large rings were indeed a feasible The next event 
to be accomplished was the proper removal of the protecting groups 
at C-7 and C-9. It was necessary to first remove the ethyl thioketal 
to 612 [2.2 equiv of HgC12, 2.6 equiv of CaCO,, CH3CN-H20 
(4:1), 25 OC, 1.5 h] which proceeded in 98% yield, followed by 
hydrolytic removal of the ethoxyethyl group (1 .O N HCl, THF, 
0 OC, 2 h) to 7.13 If the ethoxyethyl group was removed prior 
to the thioketal, extensive decomposition of the molecule resulted, 
presumably due to the acidic lability of the allylic methyl ether 
a t  C-10. Introduction of the cyclic carbinolamide was performed 
by treating the @-hydroxy ketone 7 with 8.0 equiv of phenyl 
chloroformate and 8.0 equiv of pyridine in ether-THF (1:l) at 
0 "C for 1 h. This gave 814 which was immediately added to excess 

(8) Compound 4a was formed in the previous study6 as a 1:l mixture of 
epimers at (2-10 and an undetermined epimeric mixture of ethoxy ethyl ethers 
a t  C-7. The latter was removed at a latet stage, whereas the C-10 epimers 
were ultimately separated in the final isolation of la. 

(9) High-pressure LC analysis (Waters 244; r-porasil, 30 cm) in 20% 
THF-hexane at a flow rate of 3 mL/min gave two peaks, 4.8 and 5.2 min 
( l : l ) ,  shown to be epimers at (2-10. The epimeric centers at C-7 were shown 
in an independent experiment not to interfere with the analysis at (2-10. 
Physical data for 4b: IR (film) 2710, 1725, 1662 cm-'; 'H  NMR (CDC13) 
8 1.50, 1.52 (3, 2 s, C-4 Me due to epimers at C-lo), 1.74 (3, s, (2-14 Me), 
1.81 (3, s, N-Ac), 3.20 (3, s, N-Me), 3.26 (3, s, C-10 OMe), 3.38 (2, br s, 
C-15 H), 3.95 (3, s, Ar-OMe), 6.77 (2, br s, ArH), 8.84, 8.87 (1, s, CHO 
due to epimers at C-10). 

(10) 4c: IR (film) 1737, 1666 cm-I; 'H NMR (CDCI,) 6 1.58, 1.60 (3, 
s, C-4 Me, as a 1:l mixture of epimers at C-lo), 3.71 (3, s, C02Me). 
High-pressure LC analysis (p-porasil, 30% THF-hexane, 2 mL/min) showed 
4.4 and 4.7 min for epimers at C-10. Purification by PTLC (20% acetone- 
hexane) gave purified material as a 1:l mixture of '2-10 epimers, Rf0.2. 

(11) 5: IR (CHCI,) 1718, 1655 cm-I; UV (MeOH) A,, 344, 328,289, 
280, 255, 235 nm; IH NMR (CDC13) 6 3.20 (3, s, N-Me), 3.22 (3, s, C-10 
OMe), 3.90 and 3.92 (ArOCH3 as a 1:l epimeric mixture due to C-10); "C 
NMR (CDC13) 203.4, 203.6 (C-3 carbonyl). High-pressure LC (p-porasil, 
30% THF-hexane. 2 mL/min) gave a ueak at 2.8 min: purification by PTLC, , -  . 
same solvent, gave R 0.'28. 

(12) 6: IR (CH2&12) 1710, 1648 cm-'; 'H NMR (CDCI,) 6 3.21 (3, s, 
N-Me), 3.40 (3, s, C-10 OMe), 3.94 (3, s, ArOMe), 4.53-4.92 [m. -CH- 
(Et)(OEt)]. Purification by PTLC (30% acetone-hexane) gave R, 0.1 1. 

(13) 7: IR (film) 3415, 1716, 1652 cm-I; IH NMR (CDCl3) 6 3.15,3.18 
(3, s, N-Me as a 1:l mixture of epimers from C-lo), 3.38 (3, s, C-10 OMe), 
3.94 (3, s, ArOMe). 

Me 0 

Me M e 0  

6, R, = iMe 
I ,  R ,  = H 
8, R, = C0,Ph 

O E t  

Me 0 

Me M e 0  

9 
ammonia dissolved in T H F  at -78 OC and allowed to stir over- 
night, furnishing 9lS in -5045% yield. 

The remaining step to be carried out required reduction of the 
C-3 carbonyl in 9, and this was performed by using sodium bo- 
rohydride [THF-MeOH (1:1), -40 OC, 30 min] and gave, in 94% 
yield, an epimeric mixture of four compounds, the major product 
(-45%) being isolated with the aid of high-pressure liquid 
chromatography (high-pressure LC). Comparison of this product 
with authentic natural (-)-maytansinolI6 was rather gratifying, 
indicating total identity with high-pressure LC (p-porasil, 30 cm, 
5% MeOH-CHCl,, 4.5 min), PTLC (silica gel, 7% MeOH- 
CHCl R 0.15), mass spectroscopy, UV, and 'H NMR spectra 

The completion of this synthetic goal leading to (*)-maytansinol 
now allows us to pursue the asymmetric synthesis'* of natural and 
unnatural derivatives as well as suitable analogues for biological 
assay. This work is currently in progress. 
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(14) 8 was not isolated except for a sample to assess the extent of the 
carbonate formation: IR (CH2C1J 1755 (carbonate), 1713, 1650 cm-I. 

(15) 9: IR (CH2Cl2) 3100-3500 (NH, OH), 1710, 1651, 1635 (carbin- 
olamide) cm-'. High-pressure LC analysis (p-porasil, 30 cm; 5% MeOH- 
CHC13, 2 mL/min) gave a peak at 2.3 min. 

(!6) We are grateful to Dr. T. Kishi of the Takeda Company, Osaka, for 
providing us with authentic (-)-maytansin01 for comparison. 

(17) Physical data comparison of synthetic and natural maytansinol. (a) 
Ultraviolet spectrum (MeOH, nm): natural (-)-la 232, 244,252, 281, 288 
(cf. ref 1); synthetic (&)-la 233, 243, 252, 281, 288. (b) Mass spectrum (70 
eV): natural (-)-la 503 (26), 485 (32), 468 (29), 453 (19), 450 (22), 374 
(15), 294 (43), 236 (loo), 224 (62); synthetic (+)-la 503 (31), 485 (lOo), 
468 (63), 453 (44), 450 (22), 374 (42), 294 (25), 236 (77), 224 (48). (c) 
Proton magnetic resonance spectrum (360 MHz, CDC13, 6): see Table I. 

(18) The C-3 to C-7 fragment of the molecule has been prepared via 
asymmetric synthesis to enantiomerically pure material. This work will be 
reported in due course. 
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