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Abstract: A new method for synthesizing fully-substituted pyri-
dine derivatives was developed using the self-condensation of cy-
clic ketones in aqueous ammonium chloride under hydrothermal
conditions.
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Pyridine ring systems are an important class of com-
pounds in heterocyclic chemistry because of their occur-
rence in nature as biologically active substances and their
applications in both pharmaceutical and agricultural
chemistry. As a consequence, for the past century, several
methods for the formation of pyridines have been report-
ed.2 However, while these are of great value, there is still
a need for a new method which would allow us to obtain
pyridine derivatives in an environment-friendly manner. 

As one approach toward this end, we were particularly in-
terested in the use of aqueous reaction media under hydro-
thermal conditions. Although there have been several
investigations of the use of near-supercritical water (Tc

water = 374 °C) for organic reactions,3 these are mostly
limited to the degradative combustion of organic materi-
als, and only a few studies directed toward an application
to organic synthesis have been reported.4 In the course of
our own efforts in this field, we found that the self-con-
densation of cyclic ketones in hot aqueous ammonium
chloride provided a novel entry to fully-substituted pyri-
dine derivatives (Scheme 1). Although there is a report of
a similar type of transformation using cyclohexanone and
ammonia, this work only deals with the pyridine forma-
tion as a side reaction and its general utility is unclear.5

The purpose of this paper is to describe the great value of
hydrothermal reactions in the above field of pyridine syn-
thesis via the self-condensation of cyclic ketones. The re-
sults are summarized in the Table.

Scheme 1

Table Preparation of Pyridine Derivatives via Self-condensation of
Cyclic Ketones in aq NH4Cla

aAll reactions were conducted in 30M aq NH4Cl.
bIsolated yield.
cIsolated as a diastereomeric mixture.
dUnreacted starting ketone was recovered.
e1: 1 dimer 8 was also obtained in 4% yield.
fAldol products 9 and 10 were obtained in 11% and 23% yields,
respectively.
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To establish the optimum conditions, we first examined
the reaction of cyclohexanone (1a) with aqueous ammo-
nium chloride at 250 °C. The best results were obtained in
the presence of 30 M aqueous ammonium chloride,6

which after 48 h gave 6-pentyl-1,2,3,4,7,8,9,10-octahy-
drophenanthridine (2a) in an isolated yield of 74% (entry
1).7 The hydrothermal reaction is undoubtedly quite effec-
tive as a new tool for promoting the desired pyridine for-
mation through the simple trimerization of cyclic ketones,
and is an efficient contribution to “green chemistry”.8 A
plausible mechanism for the formation of 2a is outlined in
Scheme 2.5 It can be easily understood that the reaction
should be initiated by the self-aldol condensation of 1a to
give dimer 3. The crucial step in this sequence might be
the Pictet-Spengler-type cyclization9 of the imino-inter-
mediate 6 followed by fragmentation of 7 through irre-
versible aromatization toward 2a.

Under similar conditions, several cyclohexanone deriva-
tives 1b-1d gave 2b-2d in good yields (entries 2-4).10 Cy-
cloheptanone (1e) and cyclooctanone (1f) gave the
desired pyridine derivatives 2e and 2f in moderate yields
at higher temperatures (entries 5 and 6).10 Apparently, in-
creasing the hydrophobicity of the substrates causes a sig-
nificant decrease in the product yield, probably due to
their reduced solubility in the hot water system. Despite
our extensive efforts, only a trace amount of pyridine 2g
was formed from cyclopentanone (1g) (entry 7), which
implies that the initial aldol condensation product 9 is
quite insensitive toward ammonium chloride.11

In conclusion, we have found a novel method for prepar-
ing a variety of fully-substituted pyridine derivatives via
the self-condensation of cyclic ketones in aqueous ammo-
nium chloride under hydrothermal conditions.12 The re-
sults illustrate the potential utility of this method as an
environment-friendly process, and further studies to elab-
orate a new effective way to derive a variety of heterocy-
clic compounds are now in progress.
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