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Abstract—A series of novel pyrrolocarbazoles was synthesized as potential PARP-1 inhibitors. Pyrrolocarbazole 1 was identified as
a potent PARP-1 inhibitor (IC50 = 36 nM) from our internal database. Synthesis of analogs around this template with the aid of
modeling studies led to the identification of the truncated imide 14. Compound 14 (IC50 = 40 nM), with deleted B-ring, was found
to be an equipotent PARP-1 inhibitor.
� 2005 Elsevier Ltd. All rights reserved.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear
enzyme that catalyzes the synthesis of poly(ADP-ribose)
chains from NAD+ in response to single-strand DNA
breaks as part of the DNA repair process.1,2 The
PARP-1 enzyme is comprised of three functional re-
gions: an N-terminal DNA binding domain containing
two zinc fingers, a linker region, and a C-terminal cata-
lytic domain. Upon activation in response to DNA dam-
age, PARP-1 synthesis and degradation consumes
massive amounts of NAD+, which leads to depletion
of ATP energy stores, and ultimately necrotic cell death.
PARP-1 has been implicated in many important patho-
physiological processes such as stroke, myocardial ische-
mia, diabetes, shock, and traumatic CNS injury.3

PARP-1 inhibition in tumor cells may potentiate radio-
therapy and cancer chemotherapeutic agents targeting
DNA due to its involvement in processes related to
DNA repair.3 Therefore, potent, selective, soluble
PARP-1 inhibitors might be therapeutically useful in
the treatment of neurodegenerative disorders and
cancers.

In the literature, a variety of scaffolds, which mimic and
bind to the nicotinamide site of NAD+, have been
reported as inhibitors of PARP-1.4 The X-ray crystal
structures of 3-aminobenzamides and several other clas-
ses have been reported.5 Although a variety of PARP-1
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inhibitors have been disclosed in the literature, many
suffer from development problems such as toxicity, poor
solubility, or poor pharmacokinetic profiles. In search of
novel PARP-1 inhibitors, we identified pyrrolocarbazole
1 (IC50 = 36 nM) as a potent inhibitor from our internal
database.6 Described here are the synthesis and evalua-
tion of the structure–activity relationships around this
novel pyrrolocarbazole PARP-1 template.
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The synthesis of the pyrrolocarbazole imides is illustrat-
ed in Schemes 1 and 2 . In Scheme 1, protection of the
indole nitrogen with carbon dioxide, followed by 2-lith-
iation and addition to the cycloketone, provided the 2-
substituted indole–alcohol intermediate. Acid catalyzed
elimination of the alcohol at room temperature to the
diene, Diels–Alder reaction with neat maleimide, fol-
lowed by DDQ oxidation at 60 �C in toluene gave the
pyrrolocarbazole targets 1–3. Alternatively, as shown
in Scheme 2, the indole diene was prepared using an
intramolecular Wittig reaction.7 The indole diene react-
ed with maleimide, followed by DDQ oxidation to form
the pyrrolocarbazole imides 4–9.
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Scheme 1. Reagents and conditions: (a) BuLi/THF, �78 �C, CO2(g), t-BuLi/THF, then, the ketone, 60–80%; (b) HCl, rt, 80–90%; (c) 190 �C, neat,
1 h, 50%; (d) DDQ, toluene, 60 �C, 75–85%; (e) Pd/C/hexene, reflux.
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Scheme 2. Reagents and conditions: (a) pyridine, CH2Cl2, reflux, 30 min, 76%; (b) potassium t-butoxide/toluene, reflux, 30 min, 48%; (c) neat,

190 �C, 61%; (d) DDQ, toluene, 40 �C, 40%.
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The pyrrolocarbazole lactam regioisomers were pre-
pared using ethyl cis-b-cyanoacrylate as a dienophile
in a thermal Diels–Alder reaction with 2-cyclopentenyl
indole to form mainly cis-tetrahydrocarbazole regioi-
somers. DDQ oxidation and reductive cyclization of
5- and 7-cyano-esters using Raney� nickel in DMF
produced lactams 10 and 11 after fractional recrystalli-
zations from DMF and acetone (Scheme 3). The benzo-
furan (12) and benzothiophene (13) analogs were
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Scheme 3. Reagents and conditions: (a) neat, 200–205 �C, 1.5 h, >95%; (b)

7 days; 28%.
prepared in a similar manner for compounds 1–3, as
outlined in Scheme 4.

Truncated analogs were prepared as shown in Scheme 5.
The triisopropylsilyl-protected 2-cyclopentenyl pyrrole
diene was reacted with neat dimethyl acetylenedicarb-
oxylate at 150 �C to form the indole diester.8 Hydrolysis
of the diester to the diacid, anhydride formation, and
subsequent transamination with (TMS)2NH gave 14
N
H

EtO2C CN

N
H

N
H

O

N
H

N
H

O

+

+

10 11

b

DDQ, toluene, 35–40 �C, 20 h, 25%; (c) Raney� Nickel/DMF, 45 psi,
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Scheme 5. Reagents and conditions: (a) neat, 150 �C, 64 h, 21–35%; (b) 10 N NaOH in EtOH, reflux, 3 h, 96%; (c) acetic anhydride, 73 h, 66%; (d)

(TMS)2NH/MeOH, DMF, 73 �C, 4 h, 88%; (e) neat, rt, 18 h, 40%; (f) DDQ/toluene, rt, 1 h, 82%; (g) 5 N NaOH/MeOH, rt, 1 h, 66%; (h) Ac2O, 4 h,

85%; (i) NH2CONH2, neat, 150 �C, 30 min, 60%.
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Scheme 4. Reagents and conditions: (a) conditions for benzothiophene: (i)—BuLi/ether, 0 �C; (ii)—TsOH, reflux for 5 min, 47%; conditions for

benzofuran: (iii)—BuLi/ether, 0 �C; (iv)—TsOH, 40 �C for 30 min, 36%; (b) tetrachloroquinone, neat, 190 �C, 23–29%.
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and 15. Compound 16 lacking the indole ring was pre-
pared by the same procedure as 14 and 15 but 1-vinyl-
cyclopentene was utilized as the starting material and
transamination was accomplished with urea (Scheme 5).

The pyrrolocarbazole analogs were evaluated as inhib-
itors of recombinant human poly(ADP-ribose) poly-
merase-1 as shown in Tables 1–4. As mentioned
earlier, pyrrolocarbazole 1 inhibits PARP-1 with the
IC50 value of 36 nM. Modification of the ring size
led to a loss of potency. The cyclohexyl analog 2
and fused phenyl analog 3 displayed IC50 values
>10 lM, indicating that the cyclopentyl ring is critical
for activity. The fused furano analog 4 is also a weak
PARP-1 inhibitor as shown in Table 1. Deleting the
cyclopentyl ring (5) or replacement with alkyl and
dialkyl groups led to a significant loss in potency.
The dimethyl analog 6 displayed modest PARP-1
activity (IC50 = 700 nM), while the other alkyl and
dialkyl analogs showed weaker activity.

As shown in Table 2, both 5-oxo (11) and 7-oxo (10) lac-
tam pyrrolocarbazoles were synthesized to explore the
role of the imide functionality. The 7-oxo lactam 10 is
2.5-fold less potent (IC50 = 90 nM) than the imide 1,
while the 5-oxo analog 11 is essentially inactive
(IC50 = 10 lM). The 7-oxo lactam isomer 10 is >100-
fold more potent than the 5-oxo isomer 11, indicating
that the 7-oxo carbonyl is required to bind to PARP-
1. The role of the indole N–H was evaluated by synthe-
sizing the benzofuran and benzothiophene analogs 12
and 13. As shown by the data in Table 3 both 12 and
13 are inactive for PARP-1, indicating that the indole
nitrogen in compound 1 is important for activity.

Carbazole 1 was truncated to further explore the contri-
bution of the different rings. The indole imide 14, which
lacks phenyl ring B, displayed an equally potent PARP-
1 activity (IC50 = 40 nM), compared to the lead com-
pound 1 (IC50 = 36 nM). However, further truncated
compound 15, in which pyrrole ring C is also absent,
is a weaker PARP-1 inhibitor. Indole imide 16, where
both phenyl ring B and the cyclopentane ring have been
removed, is almost 20-fold less potent (IC50 = 750 nM).
The activity of 16 compared to, 15 reveals the impor-
tance of the indole N–H group and represents the min-
imum pharmacophore for retaining PARP-1 activity in
the series.

A molecular docking study of carbazole 1 to the catalyt-
ic domain of chicken PARP-1 was conducted and is
illustrated in Figure 1. A binding model for PARP-1
was derived using the coordinates for 4-amino-1,8-naph-
thalimide bound at the NAD+ site of the catalytic frag-
ment of chicken PARP-1 (PDB 2PAX).5a Compound 1
was docked and minimized in the model. The key inter-
actions identified and supported by the SAR were
hydrogen-bond donor–acceptor interactions with the
imide/lactam 7-oxo C@O and NH with backbone
carbonyl and amino of Gly863. Ser904 is involved in a
H-bond with the 7-oxo C@O. The indole N–H shares
a hydrogen-bond with the carboxyl side chain of
Glu988. The aromatic p-stacking interactions occur
between carbazole rings B and D, and the aryl groups



Table 1. PARP-1 inhibition by pyrrolocarbazoles9

N
H

N
H
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OO

Compound R1 R2 PARP-1 IC50
a,b (nM)

1 36

2 �10,000

3 >10,000

4
O

�10,000

5 H H �10,000

6 CH3 CH3 700

7 CH3 H 5000

8 H CH3 �2000

9 Et nPr >10,000

a 4-Amino-1,8-naphthalimide (IC50 = 26 nM).
b Values of duplicate determinations were within 2-fold of each other.

Figure 1. Important interactions of compound 1 with PARP-1.

Table 4. PARP-1 inhibition by truncated analogs

Compound Structure PARP-1 IC50
a (nM)

14
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15
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750

16
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O O
2220

a Values of duplicate determinations were within 2-fold of each other.

Table 2. PARP-1 inhibition by pyrrolocarbazole lactams

Compound Structure PARP-1 IC50
a (nM)

10

N
H

N
H

O5

90

11

N
H

N
H

O 7

�10,000

a Values of duplicate determinations were within 2-fold of each other.

Table 3. Benzofuran and benzothiophene imides

N
H

X

O O

Compound X PARP-1 IC50
a (nM)

12 O >10,000

13 S >10,000

a Values of duplicate determinations were within 2-fold of each other.
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of Tyr896 and Tyr907. The cyclopentyl fits closely into a
fold formed by the Lys861 side chain, Ala898, Trp861,
and Asn987 which locks the inhibitor in the pocket.

In summary, we identified a novel pyrrolocarbazole
PARP-1 inhibitor (1) through high throughput screen-
ing of our internal library. Structural modification to
the core identified the key pharmacophore elements
necessary for PARP-1 inhibition. The cyclopentyl ring
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is required for potency and fits into a steric pocket with
the enzyme. Expanding, deleting, or opening the cyclo-
pentyl ring led to weak or inactive inhibitors. The indole
NH is required and forms a significant H-bond with
PARP-1 as the benzofuran and benzothiophene analogs
were inactive. The truncated pyrrole imide 14 was found
to be equipotent to 1, indicating that the B-ring is not
required. The des-aryl compound 14, with a lower
molecular weight, would be anticipated to have im-
proved physical chemical properties and represents a
novel small molecule PARP-1 scaffold.
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