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Immobilization of chiral Rh catalyst on glass and application to
asymmetric transfer hydrogenation of aryl ketones in aqueous media
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A B S T R A C T

A chiral catalyst, Cp*RhTsDPEN (Cp* = pentamethyl cyclopentadiene, TsDPEN = substitutive phenylsul-

fonyl-1,2-diphenylethylenediamine), was synthesized and immobilized at the surface of glass. The

immobilized catalyst exhibited good catalytic efficiency for asymmetric transfer hydrogenation of

aromatic ketones in water with HCOONa as hydrogen source.

� 2014 Tan-Yu Cheng and Guo-Hua Liu. Published by Elsevier B.V. on behalf of Chinese Chemical

Society. All rights reserved.
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1. Introduction

Self-assembled monolayers (SAMs) are an excellent tool to
change surface properties of materials. The method has attracted a
lot of interest and has developed rapidly in the past years.
Nanotechnology has developed rapidly in recent decades, and it is
widely used in several areas. SAMs are often used to prepare
nanoparticles [1–3], because most nanoparticles need to be
functionalized and have their biological toxicity reduced. Glass
plates are also good supports for functional molecules. Fluorescent
sensors were assembled on glass, which were used for the
detection of nitroaromatic compounds in the vapor phase [4–6].
Fluorescent proteins were immobilized on glass surfaces, and they
were very important for potential applications in bionanotechnol-
ogy [7]. Some metal catalysts were supported on glass surfaces,
which were used to catalyze oxidation reactions [8,9].

Chiral compounds are very important in our daily life, especially
in medicinal chemistry, because different configurations have
different drug activities. As such, enantioselective synthesis has
attracted increasing interest from chemists during the past few
decades. There are three main approaches to asymmetric
synthesis, which are chiral pool synthesis, chiral auxiliaries, and
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asymmetric catalysis. Asymmetric transfer hydrogenation (ATH) is
one of the most important asymmetric catalytic reactions, and it is
normally promoted by transition metal catalysts [10–17]. Noyori
et al. found that chiral TsDPEN exhibited excellent catalytic activity
and enantioselectivity in the asymmetric transfer hydrogenation
of aromatic ketones [18], and they have made outstanding
contributions in this area [19,20]. Compared with homogeneous
catalysts, heterogeneous immobilization molecular catalysts at the
surfaces of materials have several outstanding advantages,
including facile product purification, easy catalyst recovery from
reaction mixtures and reusability. Normally, the materials used for
immobilizing molecular catalysts are mesoporous silica [21,22],
magnetic materials [23], zeolites [24], organic polymers [25], or
high surface area carbon [26]. However, to the best of our
knowledge there is no chiral catalyst that is immobilized on a glass
surface.

What we are interested in is material supported catalysts in an
effort to achieve highly active and recyclable heterogeneous
catalysts [27–31]. Herein, the ligand of TsDPEN (substitutive
phenylsulfonyl-1, 2-diphenylethylenediamine) with ethynyl
group was synthesized, and the ligand was conjuncted with a
silica source via click chemistry. Then, the homogeneous catalyst
was prepared through stirring the solution of the ligand and
[Cp*RhCl2]2 in dichloromethane at room temperature. At last, the
obtained catalyst was immobilized at the surface of glass plates to
form the heterogeneous catalyst, which showed good catalytic
efficiency and enantioselectivity.
 Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
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Scheme 1. Preparation of heterogeneous catalyst supported on glass.
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Fig. 1. XPS spectrum of the Rh active site within GH-catalyst.
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2. Experimental

2.1. Preparation of the glass containing hydroxyl group

Microscope glass slides were used for monolayer preparation.
The substrates were oxidized with piranha solution for 15 min
(concentrated H2SO4 and 33% aqueous H2O2 in 3:1 ratio; caution:
piranha should be handled carefully) and rinsed with MilliQ water
(MQ). After drying with nitrogen stream, the substrates were used
immediately to provide a freshly hydroxyl terminated surface on
which to form the silanized monolayer.

2.2. Preparation of glass-supported heterogeneous catalyst (GH-

catalyst)

As shown in Scheme 1, processed glass were immersed in the
solution of silanizing homogeneous catalyst in CH2Cl2 until the
solvent evaporated completely. To remove the unreacted homo-
geneous catalyst, the prepared glass were treated with ultrasound
in CH2Cl2 and EtOH. The glass-supported heterogeneous catalyst
(GH-catalyst) was obtained after the glass dried.

2.3. Typical catalytic procedure

A typical procedure was as follows [32]: GH-catalyst,
HCOONa (20 mg, 0.3 mmol), ketones (2.0 mmol), and 2.0 mL
water were added in a 10 mL round bottom flask. The mixture
was allowed to react at 40 8C for 4 h. During the reaction, it was
monitored constantly by TLC. The conversion and ee value could
be determined by chiral GC using a Supelco b-Dex 120 chiral
column (30 m � 0.25 mm (i.d.), 0.25 mm film) or HPLC analysis
Fig. 2. AFM images of the glas
with UV–vis detector using Daicel OJ-H chiral column (1
0.46 cm � 25 cm).

3. Results and discussion

3.1. XPS analysis of GH-catalyst

The click reaction was used for the synthesis of the TsDPEN
ligand with the trimethoxysilane group, which combined with Rh
to form the homogeneous catalyst (see Supporting information).
The heterogeneous catalyst was synthesized by grafting the
homogeneous catalyst onto the oxidized glass with excess
hydroxy groups. According to the XPS data, the O/Si ratio of
normal glass was 1.53, and that of oxidized glass was 2.11. That
indicated that excess hydroxy groups were obtained after the
glass was oxidized. The content of sulfur increased from 0 to
0.61%. This was because a few sulfonic groups were produced
when the glass was oxidized by sulfuric acid. The glass we used
were normal slides, so there was plentiful carbon according to the
XPS data. After grafting the homogeneous catalyst onto the slides,
the XPS N1s and Rh3d signals indicated that the catalyst was
immobilized successfully. As shown in Fig. 1, the binding energy
of Rh3d was 308.8 eV, which was nearly the same with
Cp*RhTsDPEN (309.3 eV).

3.2. AFM analysis of GH-catalyst

The resulting AFM images are shown in Fig. 2. The surface
roughness exhibited by the root-mean-square (RMS) height value
for glass was 2.60 nm. After grafting, the RMS value for the catalyst
6 decreased to 2.19 nm. This decrease in roughness can be
s (A) and GH-catalyst (B).



Table 1
Asymmetric transfer hydrogenation of aromatic ketones.a

Ar

O

Ar

OH

HCOON a,  H2O
40 oC

Cat.

Entry Ar Conv.b (%) ee (%)b

1 Ph 95 94

2 4-FPh 98 87

3 4-ClPh 93 91

4 4-BrPh 97 93

5 4-MePh 86 90

6 4-MeOPh 87 93

7 4-NO2Ph 99 84

8 4-CF3Ph 99 84

9 4-CNPh 84 85

10 3-MeOPh 94 93

11 3-Br 99 94

12 a-Acetonaphthone 85 80

a Reactions were carried out in water. Reaction conditions: catalysts

(0.33 mmol of Rh, based on the ICP analysis), HCO2Na (130 mg, 1.67 mmol),

ketone (0.2 mmol) and 2.0 mL water, reaction temperature (40 8C), reaction time

(4 h) except 12 (for 6 h).
b Determined by chiral GC or HPLC analysis (see Supporting information).
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explained by the grafted homogeneous catalyst decreasing the
altitude difference.

3.3. Catalytic performances of GH-catalyst for asymmetric transfer

hydrogenation

The catalytic activity of GH-catalyst was evaluated following
successful preparation of heterogeneous catalyst. Table 1 sum-
marizes catalytic performances for asymmetric transfer hydro-
genation of aromatic ketones in aqueous medium. GH-catalyst
delivered high conversions for most of the aromatic ketones and in
most cases the enantioselectivities were good, with ee values
reaching up to 93%. Comparing entries 2, 7, and 8 with 6 and 10, it
was obvious that aromatic ketones with electron-drawing groups
were generally more active than those with electron-donating
groups. That may be because the electron-donating groups give
lower LUMO values, which accelerates the catalytic reaction.
Another advantage of GH-catalyst was the active centers were at
the surface of the slides, which can show good catalytic activity for
the huge size substrate (entry 12). In addition, the recyclability of
GH-catalyst was also investigated with acetophenone as a
substrate in the same conditions. GH-catalyst was recovered very
easily and could be reused directly. However, the conversion at the
third cycle was 25%, and decreased rapidly from 99% (the second
cycle). That may because the active center was lost from the glass.

4. Conclusion

In conclusion, we have synthesized trimethoxysilane-substi-
tute Cp*RhTsDPEN via click reaction that can be directly grafted
onto oxidized glass slides to prepare heterogeneous catalysts.
Using XPS and AFM, we have demonstrated the heterogeneous
catalyst was prepared successfully. The catalyst displayed good
catalytic activity and enantioselectivity in the asymmetric transfer
hydrogenation of aromatic ketones in aqueous medium, and the
substrates with electron-donating groups had more enantioselec-
tivity than those with electron-drawing groups.
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